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We study the properties of a refined weak-coupling limit that preserves complete positivity in order to
describe non-Markovian dynamics in the spin-boson model. With this tool, we show the system presents a rich
non-Markovian phenomenology. This implies a dynamical difference between entanglement and coherence:
the latter undergoes revivals, whereas the former not, despite the induced dynamics being fully incoherent.
In addition, the evolution presents “quasieternal” non-Markovianity, becoming nondivisible at any time period
where the system evolves qualitatively. Furthermore, the method allows for an exact derivation of a master
equation that accounts for a reversible energy exchange between system and environment. Specifically, this is
obtained in the form of a time-dependent Lamb shift term.
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I. INTRODUCTION

The description and characterization of non-Markovian
quantum dynamics has been and is an active area of research
[1–15]. Besides the fundamental point of view, this has
been motivated by the potential utility of non-Markovian
dynamics in different contexts such as quantum metrology and
hypothesis testing [16–19], preservation of entanglement and
coherence [20–24], and quantum information and computation
[25–27].

At sufficiently short times the dynamics of any open quan-
tum system is expected to be non-Markovian [3,4,9,10,28].
This is because the Born-Markov-secular approximation is no
longer valid at a time scale smaller (or of the same order)
than the width of the bath correlation functions, and so the
evolution is not given by a quantum dynamical semigroup
[28,29]. Nevertheless, provided that the system-bath coupling
is small enough to justify the second-order perturbation
treatment, several approaches have been suggested to deal
with the dynamics in the short-time scale. For instance, one
approach avoids the secular approximation and considers
the so-called Redfield equation [30]. However, it has been
shown this equation does not preserve positivity [31] (see
also [32,33]). The schemes to overcome this last drawback
range from restrictions of valid system states to the subset
that remains positive under that dynamical equation [34],
to the inclusion of slippage operators [35]. Although these
proposals can be useful in some situations, they do not
provide a completely general and satisfactory answer. For
example, they may present problems for multipartite systems
[36–38].

Alternatively, in [39] Schaller and Brandes proposed a
method they refer to as “dynamical coarse graining” which,
in principle, allows for a description of the second-order
dynamics for all time scales in a completely positive way
(see also [9]). This proposal has been successfully applied to
several situations [40–43], and it can be seen as a “refined”
weak-coupling limit [43]. However, as far as we know [42],
low attention has been paid to study whether or not it accounts
for the non-Markovian features expected at the short-time
scale.

In this regard, the non-Markovian properties of the paradig-
matic spin-boson model [44,45] are still poorly understood.
This model applies to a two-level system interacting linearly
with a thermal bath of bosons at some temperature T . It plays
a central role in solid-state physics [46–48], chemical physics
[49–51], quantum optics [52–54], or quantum information
technologies [55–57]. However, the absence of a completely
positive description for the spin-boson model out of the
Markovian regime makes the analysis in terms of measures
of non-Markovianity problematic [58]. These allow us to
analyze in a quantitative and rigorous way to what extent
the model presents non-Markovian behavior. Crucially, the
positivity preservation is essential when applying measures
of non-Markovianity. They are typically nonlinear functions
of the dynamics which have only a clear meaning under the
presupposition that the dynamics is physical and preserves the
positivity of the density matrix. Specifically, this implies
the celebrated complete positivity condition in the case of
initial system-environment factorization (see, e.g. [9]).

The objective of this paper comprises both problems by
applying the refined weak-coupling limit to study in detail the
spin-boson model at finite temperature T , and examine its non-
Markovian features. Particularly, we highlight the following
findings.

(i) We solve the dynamics of the transverse spin-boson
model using the refined weak-coupling method and obtain the
exact Liouvillian operator for this dynamics. To our knowl-
edge, this represents the most precise positivity-preserving
master equation among the ones proposed for this problem.

(ii) We find a time-dependent Lamb shift, describing
damped oscillations towards the standard Lamb shift value
in the long-time scale.

(iii) We obtain that non-Markovianity increases for low
temperatures and the system presents “quasieternal” non-
Markovianity at T = 0. Namely, the dynamics is nondivisible
at any time instant during the period of time where the system
state changes appreciably.

(iv) We report a further dynamical difference between
entanglement and coherence. Despite the dynamics being fully
incoherent, the non-Markovian evolution may induce recoher-
ence cycles but does not generate entanglement revivals.
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II. REFINED WEAK-COUPLING LIMIT

Though originally exposed in slightly different terms, the
idea behind the refined weak-coupling limit of Schaller and
Brandes can be succinctly explained as follows. The exact
dynamics of some open system S is formally given by ρS(t) =
TrE[U (t,t0)ρS(t0) ⊗ ρE(t0)U †(t,t0)], with ρS(t0) and ρE(t0) the
open system and environmental initial states, respectively, and
U (t,t0) the unitary operator describing the joint evolution
of system and environment. For some generic Hamiltonian
H = HS + HE + V , with system (HS) and environment (HE)
Hamiltonians, and interaction term V , the system evolution
in the interaction picture and up to second order V (or
equivalently for short times) can be written as (t0 = 0)

ρ̃S(t) = ρS(0) − 1

2
T

∫ t

0
dt1

∫ t

0
dt2TrE

× [Ṽ (t1),[Ṽ (t2),ρS(0) ⊗ ρβ]] + O(V 3), (1)

where X̃(t) stands for the interaction picture of the operator X,
T is the time-ordering operator, and we have already assumed
the environment to be in thermal equilibrium (bath) ρE(0) =
ρβ = exp(−βHE)/Tr[exp(−βHE)]. By applying T under the
integral signs and reordering terms we obtain

ρ̃S(t) � ρS(0) − i[�(t),ρS(0)] + TrE
[
W (t)ρS(0) ⊗ ρβW (t)

− 1
2 {W 2(t),ρS(0) ⊗ ρβ}], (2)

with Hermitian operators �(t) = 1
2i

∫ t

0 dt1
∫ t

0 dt2sgn(t1 −
t2)TrE[Ṽ (t1)Ṽ (t2)ρβ] and W (t) := ∫ t

0 Ṽ (t ′)dt ′. Then, by writ-
ing V = ∑

k Ak ⊗ Bk with also Hermitian Ak and Bk and
after a bit of algebra in Eq. (2) we find (for further details, see
Appendix B)

ρ̃S(t) � ρS(0) − i[�(t),ρS(0)] +
∑
ω,ω′

∑
k,l

�kl(ω,ω′,t)

×
[
Al(ω

′)ρS(0)A†
k(ω) − 1

2
{A†

k(ω)Al(ω
′),ρS(0)}

]
≡ ρS(0) + Z(t)[ρS(0)]. (3)

where we have used the decomposition of Ak = ∑
ω Ak(ω)

in eigenoperators of the system Hamiltonian, [HS,Ak(ω)] =
−ωAk(ω), and

�kl(ω,ω′,t) =
∫ t

0
dt1

∫ t

0
dt2e

i(ωt1−ω′t2)Tr[B̃k(t1 − t2)Blρβ].

(4)

Similarly, the Hamiltonian correction becomes �(t) =∑
ω,ω′

∑
k,l �kl(ω,ω′,t)A†

k(ω)Al(ω′) with

�kl(ω,ω′,t) = 1

2i

∫ t

0
dt1

∫ t

0
dt2sgn(t1 − t2)

× ei(ωt1−ω′t2)Tr[B̃k(t1 − t2)Blρβ]. (5)

From Eq. (2) we infer that Z(t) has the GLKS form [59],
so it turns out that the coefficients �k,l(ω,ω′,t) form a
positive-semidefinite matrix. Despite the fact that the Z(t)
can be seen (for fixed t) as the generator of a dynamical
semigroup, Eq. (3) does not provide a completely positive
(CP) dynamics as the positivity condition can be violated at
order V 3. Nevertheless, for weak coupling (or for short times),
we can safely approximate the dynamics by eZ(t), which is
indeed CP because the GKSL form of Z(t). Crucially, it can
be proven [39] that for long timesZ(t) ≈ LDt , whereLD is the
standard generator of the weak-coupling limit [3,4,9,60]. Thus
the refined weak-coupling limit consists in taking the quantity
Z(t), which we refer to as the Schaller-Brandes exponent, and
describing the evolution by eZ(t)ρS(0). This is CP for all times,
gives the exact correct dynamics at short times, and reproduces
the celebrated Born-Markov-secular generator for long times.

Finally, one may ask about the Liouvillian operator
LZ(t) such that the solution to the differential equation
dρ̃S (t)

dt
= LZ(t)[ρ̃S(t)] gives the refined weak-coupling evolu-

tion ρ̃S(t) = eZ(t)ρS(0). To this end, we write

dρ̃S(t)

dt
=

[
d

dt
eZ(t)

]
ρS(0) =

{[
d

dt
eZ(t)

]
e−Z(t)

}
ρ̃S(t)

⇒ LZ =
{[

d

dt
eZ(t)

]
e−Z(t)

}
. (6)

Combining this with the well-known identity [61] for the
derivative of the exponential of an operator, d

dt
eZ(t) =∫ 1

0 ds esZ(t)[ dZ(t)
dt

]e(1−s)Z(t)ds, we obtain the Liouvillian from
the Schaller-Brandes exponent by means of the relation

LZ =
∫ 1

0
ds esZ(t)

[
dZ(t)

dt

]
e−sZ(t)ds. (7)

Of course, this refined weak-coupling Liouvillian satisfies
limt→∞ LZ(t) = LD .

III. SPIN-BOSON MODEL IN THE REFINED
WEAK-COUPLING LIMIT

For the spin-boson model the system, environment, and
interaction Hamiltonians are given by HS = ω0

2 σz, HE =∑
k ωka

†
kak , and V = ∑

k gkσx(ak + a
†
k), respectively, with

Pauli matrices σx and σz, and bosonic bath operators ak . In this
case the eigenoperators are A1(∓ω0) = σ± = (σx ± iσy)/2,
and the computation of the Schaller-Brandes exponent for this
model yields (Appendix B, Sec. 3)

Z(t)[ρS] = −i[�(t,T )σz,ρS]

+
∑

μ,ν=+,−
�μν(t,T )[σνρSσ

†
μ − {σ †

μσν,ρS}]. (8)

Here the coefficients are given by

�(t,T ) = 1

4π

∫ ∞

−∞
dω t2

{
sinc2

[
(ω0 − ω)t

2

]
− sinc2

[
(ω0 + ω)t

2

]}{
Pv

∫ ∞

0
dυ J (υ)

[
n̄T (υ) + 1

ω − υ
+ n̄T (υ)

ω + υ

]}
, (9)

�−−(t,T ) =
∫ ∞

0
dω t2J (ω)

{
[n̄T (ω) + 1]sinc2

[
(ω0 − ω)t

2

]
+ n̄T (ω)sinc2

[
(ω0 + ω)t

2

]}
, (10)
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FIG. 1. Dynamics in the refined weak-coupling limit. The excited-state population (left) shows a similar decay as for the standard
weak-coupling case, even in the short-time regime. The amount of coherence encoded in the off-diagonal element ρS12 (middle) undergoes
oscillations approaching the weak-coupling value in the long-time scale. The Lamb shift becomes time-dependent (right); it presents long-lived
small oscillations towards the static weak-coupling value in the asymptotic limit. For these computations we have taken an Ohmic spectral
density with exponential cutoff, and parameters α = 0.05 and ωc = 5ω0 (see main text).

�++(t,T ) =
∫ ∞

0
dω t2J (ω)

{
[n̄T (ω) + 1]sinc2

[
(ω0 + ω)t

2

]
+ n̄T (ω)sinc2

[
(ω0 − ω)t

2

]}
, (11)

�+−(t,T ) = �∗
−+(t,T ) =

∫ ∞

0
dω t2J (ω)[2n̄T (ω) + 1]e−iω0tsinc

[
(ω0 + ω)t

2

]
sinc

[
(ω0 − ω)t

2

]
, (12)

where J (ω) is the spectral density of the bath, n̄T (ω) =
[exp(ω/T ) − 1]−1 is the mean number of bosons in the
bath with frequency ω, sinc(ω) := sin ω

ω
, and Pv denotes the

principal value of the integral.
In Fig. 1 (left and middle) we represent the population

ρS11 and coherence |ρS12| in the refined weak coupling. We
compare them with their values in the standard weak coupling
(semigroup eLDt ) for different temperatures and for an Ohmic
spectral density J (ω) = αω e−ω/ωc (α = 0.05, ωc = 5ω0). It
can be seen both dynamics differ in the small-time regime
where the standard weak-coupling limit fails, but approach the
same value for long times as expected.

Notably, it is possible to obtain a closed expression for the
refined weak-coupling Liouvillian for the spin-boson model.
This is so because the different summands in the Schaller-
Brandes exponent, Eq. (8), close a Lie algebra. This, jointly
with Eq. (7), leads to a Liouvillian with the same form as Z(t):

dρ̃S

dt
= LZ(t)[ρS] = −i[
(t,T )σz,ρS]

+
∑

μ,ν=+,−
γμν(t,T )[σνρSσ

†
μ − {σ †

μσν,ρS}], (13)

where the explicit expressions of 
(t,T ) and γμν(t,T ) are
provided in Appendix A. This is a very remarkable result,
because, to the best of our knowledge, this is the most accurate
master equation for the weakly coupled spin-boson model
that guarantees complete positivity. Furthermore, it allows
one to study how decay rates and energy shifts vary as a
function of the time in the short-time scale. For instance,
in Fig. 1 (right), we depict the evolution of the refined
weak-coupling Lamb shift 
(t,0). It is shown the way that
the energy levels are initially renormalized and reach, after
some transient, the standard Lamb shift as computed by the
weak-coupling procedure. Notably, the oscillations of 
(t,0)

decay very slow, and account for a reversible exchange of
energy between system and environment not predicted with the
standard semigroup approach. The experimental determination
of 
(t,0) may be used as an indicator for the time when system
and environment started interacting and the strength of this
interaction.

IV. NON-MARKOVIANITY IN THE
SPIN-BOSON MODEL

It is easy to check that for any diagonal state ρd in the
basis of eigenstates of HS , Z(t)[ρd] is also a diagonal state.
Thus eZ(t) is an incoherent operation [62] and any measure
of coherence must decrease monotonically for a Markovian
(or CP-divisible) eZ(t) [63]. As exemplified in Fig. 1 (middle),
the absolute value of the nondiagonal component |ρS12| is not
monotonically decreasing, and since |ρS12| is indeed a measure
of coherence for a qubit [62], we can certainly assert that the
dynamics we are studying is non-Markovian.

Actually, the spin-boson model in the refined weak-
coupling limit presents a rich and odd non-Markovian phe-
nomenology. A remarkable feature is that entanglement, as a
difference of coherence, does present non-Markovian effects
which could be used to witness non-Markovianity [8]. More
specifically, entanglement between the spin system and an
inert ancilla decreases monotonically with time [see Fig. 2
(left)]. However, the amount of coherence of the same state
presents revivals. This strange phenomenon differentiates in a
dynamical way the concepts of entanglement and coherence.
In addition, the oscillatory behavior is also shared by other
non-Markovinanity witnesses as the trace distance [7]; see
Fig. 2 (middle). Note that in our computations we have
taken the logarithmic negativity [64] and the l1 measure of
coherence [62], which are parallel proposals for quantifying
entanglement and coherence, respectively.
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FIG. 2. Non-Markovian features of the spin-boson model in the refined weak-coupling limit. The entanglement (logarithmic negativity)
between the system and an inert ancilla initially prepared in a maximally entangled state |�〉 decays monotonically. However, the coherence
(l1 measure of coherence [62]) of the same state presents revivals (left). The trace distance between the two ±1 eigenstates of σy also
shows a nonmonotonic decay (middle). The g(t) function [8] is also plotted for several temperatures (right). As expected, the dynamics is
non-Markovian (nondivisible) in the short-time scale. For T = 0 the dynamics is nondivisible at any time instant in the period where the system
evolves qualitatively (up to 27ω−1

0 in the plot). The inset plot in the right part shows the time evolution of the smallest canonical decay rate. For
these computations we have taken an Ohmic spectral density with exponential cutoff, and parameters α = 0.05, and ωc = 5ω0 (see main text).

The instantaneous amount of non-Markovianity can be
quantified by means of the function g(t) as defined in [8],
which in terms of the Liouvillian LZ has the form

g(t) = lim
ε→0+

‖[1 + εLZ(t) ⊗ 1]|�〉〈�|‖1 − 1

ε
� 0, (14)

where ‖ · ‖1 denotes the trace norm and |�〉 is the maximally
entangled state between the system and some ancilla of
the same dimension. Alternatively, this function can also
be obtained by computing the canonical decay rates of
the Liouvillian [65]. One easily obtains g(t) = 1

2 [|λ+(t)| −
λ+(t) + |λ−(t)| − λ−(t)], where the canonical decay rates are

λ±(t)

= γ++(t) + γ−−(t) ±
√

[γ++(t) − γ−−(t)]2 + 4|γ+−(t)|2
2

.

(15)

In Fig. 2 (right) we have represented the function g(t) for
different temperatures, obtaining a larger period of non-
Markovianity at low temperatures. This behavior fit with the
intuition regarding the width of the bath correlation functions,
which in this case increases very rapidly as T approaches zero
[66]. The case of T → 0 is actually very relevant. In the inset
plot of Fig. 2 (right) we have plotted λ−(t) for T = 0 (bath in
the vacuum). It becomes zero at long times because the refined
Liouvillian LZ(t) approaches the standard weak-coupling
Liouvillian. This only has one nonzero decay rate at T = 0:
the one associated to the emission process related to λ+(t) for
long times. Since the function λ−(t) remains negative for most
of the time where the system evolves qualitatively, this can
be thought as a form of “quasieternal non-Markovianity.” The
extreme case of “eternal non-Markovianity” introduced in [65]
denotes the situation where the dynamics is non-Markovian
for all time instant. We now see that the spin-boson model in
the refined weak-coupling limit presents a weak form of that
case, where non-Markovianity is not kept eternally, but during
the time period where the induced system change is mostly
relevant.

V. CONCLUSIONS

We have studied the non-Markovian features of the refined
weak-coupling limit proposed by Schaller and Brandes in
[39] by applying it to the concrete example of the spin-boson
model. Our conclusion is that this technique is not only able
to account for highly non-Markovian effects, but that actually
the spin-boson model presents a rich and odd phenomenology
of non-Markovianity. The amount of entanglement with an
ancilla does not show revivals [8]; however, the amount of
coherence does. This surprising effect represents a dynamical
difference between entanglement and coherence. In addition,
the system is more non-Markovian as the temperature de-
creases, and becomes non-Markovian for every time instant
during the period of qualitative evolution for an environment
at zero temperature. This effect recalls the case “eternal
non-Markovianity” theoretically proposed in [65]. We may
see now that the ubiquitous spin-boson model can behave very
similarly.

Furthermore, we find the time-dependent Lamb shift term,
describing a reversible exchange of energy between system
and environment. This is not detected by the standard weak-
coupling treatment where the environment leads only to
irreversibilities.

Besides the fundamental interest on these effects, the
large amount of controlled systems well described by the
paradigmatic spin-boson model provides this work with a
practical perspective. Thus the results here reported are very
suited to be verified experimentally in platforms of AMO and
solid-state physics.

Note added. While finalizing this work, L. Ferialdi obtained
a different master equation for the spin-boson model based on
an exact treatment [67].
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APPENDIX A: REFINED WEAK-COUPLING LOUIVILLIAN FOR THE SPIN-BOSON MODEL

The Schaller-Brandes exponent Z(t) is a linear combination of the operators Zz = [σz,·], Z+− = σ+(·)σ− − {σ−σ+,·}/2,
Z−+ = σ−(·)σ+ − {σ+σ−,·}/2, Z−− = σ−(·)σ−, and Z++ = σ+(·)σ+. These operators close a Lie algebra

[Z+−,Z−+] = Z+− − Z−+, [Z++,Z−−] = Zz/2, [Zz,Z−−] = 4Z++, [Zz,Z++] = −4Z−−, (A1)

with zero value for the rest of the cases. This, because of Eq. (7), leads immediately to Eq. (13). After a rather tedious but
straightforward algebra the coefficients in the Liouvillian can be computed to be

γ++ = 1

(�++ + �−−)2
{[(e−(�+++�−−) − 1](�++�̇−− − �̇++�−−) + (�̇++ + �̇−−)(�2

++ + �++�−−)}, (A2)

γ−− = 1

(�++ + �−−)2
{[e−(�+++�−−) − 1](�̇++�−− − �++�̇−−) + (�̇++ + �̇−−)(�2

−− + �++�−−)}, (A3)

γ+− = γ ∗
−+ = 1

2(|�+−|2 − �2)

{
2�+−[Re(�̇−+�+−) − �̇�] − i(�̇+−� − �+−�̇)[1 − cosh(2

√
|�+−|2 − �2)]

+ i
�+−Im(�−+�̇+−) + �(�+−�̇ − �̇+−�)√

|�+−|2 − �2
sinh(2

√
|�+−|2 − �2)

}
, (A4)


 = 1

2(|�+−|2 − �2)

{
2�[Re(�̇−+�+−) − �̇�] + Im(�̇−+�+−)[1 + cosh(2

√
|�+−|2 − �2)]

+ Re(�̇−+�+−)� − |�+−|2�̇√
|�+−|2 − �2

sinh(2
√

|�+−|2 − �2)

}
. (A5)

Here, for the sake of compactness, we have omitted the (t,T ) dependence of the coefficients and denoted dX/dt ≡ Ẋ.

APPENDIX B: FURTHER DETAILS ABOUT THE REFINED WEAK-COUPLING LIMIT

Consider the total Hamiltonian H = HS + HE + V with the usual product initial condition ρ(0) = ρS(0) ⊗ ρE , where ρE is
a stationary state of the environment [HE,ρE] = 0. In the interaction picture the reduced state at time t is

ρ̃S(t) = TrE[U (t,0)ρS(0) ⊗ ρEU †(t,0)], (B1)

where

U (t,0) = T e−i
∫ t

0 Ṽ (t ′)dt ′ (B2)

is the unitary propagator, X̃(t) stands for the operator X in the interaction picture, and T denotes the time-ordering operator. The
propagator to the first nontrivial order in Eq. (B1) gives

ρ̃S(t) = ρS(0) − 1

2
T

∫ t

0
dt1

∫ t

0
dt2TrE[Ṽ (t1),[Ṽ (t2),ρS(0) ⊗ ρE]] + O(V 3). (B3)

Here we have made the common assumption that the first-order term vanishes Tr[Ṽ (t)ρB] = 0 [9]. From the definition of the
time-ordering operation we obtain

T
∫ t

0
dt1

∫ t

0
dt2TrE[Ṽ (t1),[Ṽ (t2),ρS(0) ⊗ ρE]]

=
∫ t

0
dt1

∫ t

0
dt2θ (t1 − t2)TrE[Ṽ (t1),[Ṽ (t2),ρS(0) ⊗ ρE]] +

∫ t

0
dt1

∫ t

0
dt2θ (t2 − t1)TrE[Ṽ (t2),[Ṽ (t1),ρS(0) ⊗ ρE]]

≡ 2Z1[ρS(0)] + Z2[ρS(0)] + Z3[ρS(0)], (B4)
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where, after expanding the double commutators, we find three kind of terms, Z1, Z2, and Z3. The first one is given by

Z1[ρS(0)] = −
∫ t

0
dt1

∫ t

0
dt2θ (t1 − t2)TrE[Ṽ (t1)ρS(0) ⊗ ρEṼ (t2)] + θ (t2 − t1)TrE[Ṽ (t1)ρS(0) ⊗ ρEṼ (t2)]

= −
∫ t

0
dt1

∫ t

0
dt2TrE[Ṽ (t1)ρS(0) ⊗ ρEṼ (t2)]. (B5)

Defining W (t) := ∫ t

0 Ṽ (t ′)dt ′ we have

Z1[ρS(0)] = −TrE[W (t)ρS(0) ⊗ ρEW (t)]. (B6)

The factor 2 in front of Z1 in Eq. (B4) comes from another analogous term corresponding to the exchange t1 ↔ t2 inside the
double commutator. The second term goes like

Z2[ρS(0)] =
∫ t

0
dt1

∫ t

0
dt2θ (t1 − t2)TrE[Ṽ (t1)Ṽ (t2)ρS(0) ⊗ ρE] + θ (t2 − t1)TrE[Ṽ (t2)Ṽ (t1)ρS(0) ⊗ ρE]

=
∫ t

0
dt1

∫ t

0
dt2[θ (t1 − t2) + θ (t2 − t1)]TrE[Ṽ (t2)Ṽ (t1)ρS(0) ⊗ ρE]

+
∫ t

0
dt1

∫ t

0
dt2θ (t1 − t2)TrE{[Ṽ (t1),Ṽ (t2)]ρS(0) ⊗ ρE}

= TrE[W 2(t)ρS(0) ⊗ ρE] +
∫ t

0
dt1

∫ t

0
dt2θ (t1 − t2)TrE{[Ṽ (t1),Ṽ (t2)]ρS(0) ⊗ ρE}. (B7)

Similarly, the remaining term can be expressed as

Z3[ρS(0)] = TrE[ρS(0) ⊗ ρEW 2(t)] −
∫ t

0
dt1

∫ t

0
dt2θ (t1 − t2)TrE{ρS(0) ⊗ ρE[Ṽ (t1),Ṽ (t2)]}. (B8)

Thus everything together gives ρ̃S(t) ≡ ρS(0) + Z(t)[ρS(0)] + O(V 3) with

Z(t)[ρS(0)] = − 1
2 (2Z1[ρS(0)] + Z2[ρS(0)] + Z3[ρS(0)])

= −i[�(t),ρS(0)] + TrE
[
W (t)ρS(0) ⊗ ρEW (t) − 1

2 {W 2(t),ρS(0) ⊗ ρE}]. (B9)

Here, the self-adjoint operator �(t) is given by

�(t) = 1

2i

∫ t

0
dt1

∫ t

0
dt2θ (t1 − t2)TrE{[Ṽ (t1),Ṽ (t2)]ρE}

= 1

2i

∫ t

0
dt1

∫ t

0
dt2sgn(t1 − t2)TrE[Ṽ (t1)Ṽ (t2)ρE], (B10)

where we have used the relation θ (x) = [1 + sgn(x)]/2. By taking the spectral decomposition of ρE we immediately check that
for any fixed t , Z(t) has the GKSL form [59].

Since at first nontrivial order we have

ρ̃S(t) = [1 + Z(t)]ρA(0) + O(V 3) � eZ(t)ρA(0), (B11)

the refined weak-coupling dynamics given by eZ(t) is a completely positive dynamical map that approaches the exact one at the
short-time scale. Furthermore, Schaller and Brandes [39] proved that for large times eZ(t) provides a consistent second-order
approximation that becomes closer to the usual weak-coupling dynamics. For the sake of completeness we shall reproduce their
result in the following subsections.

1. Schaller-Brandes exponent in terms of the HS eigenoperators

The interaction Hamiltonian can always be written in the form

V =
∑

k

Ak ⊗ Bk, (B12)

where A
†
k = Ak , B

†
k = Bk are self-adjoint operators of system and environment, respectively [9]. Now, assuming for the sake of

simplicity that the system Hamiltonian HS has discrete spectra and |ε〉 are the associated eigenstates HS |ε〉 = ε|ε〉, we define

Ak(ω) =
∑

ε−ε′=ω

|ε〉〈ε|Ak|ε′〉〈ε′|, (B13)
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where the summation runs over every pair of energies ε and ε′ such that their difference is ω. The operators Ak(ω) so defined are
in fact eigenoperators of the superoperator [HS,·] with eigenvalue −ω:

[HS,Ak(ω)] = −ωAk(ω), (B14)

so that in the interaction picture Ãk(ω,t) = e−iωtAk(ω). Moreover, they satisfy the following properties (see, e.g. [9]):

A
†
k(ω) = Ak(−ω), (B15)∑

ω

Ak(ω) =
∑

ω

A
†
k(ω) = Ak, (B16)

[HS,A
†
k(ω)Al(ω)] = 0. (B17)

Thus the interaction Hamiltonian in the interaction picture can be written as

Ṽ (t) =
∑
ω,k

e−iωtAk(ω) ⊗ B̃k(t) =
∑
ω,k

eiωtA
†
k(ω) ⊗ B̃k(t). (B18)

Using these decompositions in Eq. (B10) we obtain

�(t) =
∑
ω,ω′

∑
k,l

�kl(ω,ω′,t)A†
k(ω)Al(ω

′), (B19)

with

�kl(ω,ω′,t) = 1

2i

∫ t

0
dt1

∫ t

0
dt2sgn(t1 − t2)ei(ωt1−ω′t2)Tr[B̃k(t1 − t2)BlρE]. (B20)

Here, we have assumed that the environment is in a stationary state [HE,ρE] = 0 so that the environmental correlation functions
just depend on the time difference (t1 − t2). Similarly, we can write the non-Hamiltonian part of (B9) in terms of eigenoperators
Ak(ω) so that Schaller-Brandes exponent yields

Z(t)[ρS(0)] = −i[�(t),ρS(0)] +
∑
ω,ω′

∑
k,l

�kl(ω,ω′,t)
[
Al(ω

′)ρS(0)A†
k(ω) − 1

2
{A†

k(ω)Al(ω
′),ρS(0)}

]
, (B21)

with

�kl(ω,ω′,t) =
∫ t

0
dt1

∫ t

0
dt2e

i(ωt1−ω′t2)Tr[B̃k(t1 − t2)BlρE]. (B22)

2. Long-time limit

In order to study the behavior of Z(t) for long times we first prove a preliminary lemma.
Lemma: The following identity holds true in the distributional sense:

lim
t→∞ t sinc

[
(ω + a)t

2

]
sinc

[
(ω + b)t

2

]
= 2πδa,bδ(ω + a). (B23)

Namely, for any (sufficiently well-behaved) test function f (ω), we have

lim
t→∞

∫
I

f (ω)t sinc

[
(ω + a)t

2

]
sinc

[
(ω + b)t

2

]
dω = 2πδa,bf (−a), (B24)

for −a ∈ I , and zero otherwise.
Proof. Let f (ω) be a differentiable function with compact support I = (−ω0,ω0). Suppose a �= b, using that sinc(x) = sin(x)/x

and decomposing in partial fractions we obtain

lim
t→∞

∫
I

f (ω)t sinc

[
(ω + a)t

2

]
sinc

[
(ω + b)t

2

]
dω

= lim
t→∞

4

(b − a)

∫
I

f (ω)

{
sin

[ (ω+a)t
2

]
sin

[ (ω+b)t
2

]
t(ω + a)

− sin
[ (ω+a)t

2

]
sin

[ (ω+b)t
2

]
t(ω + b)

}
dω. (B25)

Since | sin(x/2)
x

| � 1
2 each of both integrands on the right-hand side are dominated by |f (ω)|/2, which is integrable in I . Then

Lebesgue’s dominated convergence theorem [68] allows us to exchange the limit and the integral sign obtaining straightforwardly
zero integrals.
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Consider now the case a = b. Then, we have

lim
t→∞

∫
I

f (ω)t sinc2

[
(ω + a)t

2

]
dω = lim

t→∞

{∫
I

[f (ω) − f (−a)]t sinc2

[
(ω + a)t

2

]
dω + f (−a)

∫
I

t sinc2

[
(ω + a)t

2

]
dω

}
,

(B26)

where we have added and subtracted f (−a). Integrating by parts the last integral of the right-hand side yields

lim
t→∞

∫
I

t sinc2

[
(ω + a)t

2

]
dω = 2 lim

t→∞

{
cos[t(ω + a)] − 1

t(ω + a)

∣∣∣∣
ω0

−ω0

+
∫ t(ω+a)

0
sinc(x)dx

∣∣∣∣
ω0

−ω0

}
= 2π, (B27)

for −a ∈ I , as
∫ ∞

0 sinc(x)dx = π
2 . It is also straightforwardly checked that if −a /∈ I , the integral vanishes. Finally, the remaining

integral in Eq. (B26) is

lim
t→∞

∫
I

[f (ω) − f (−a)]t sinc2

[
(ω + a)t

2

]
dω = lim

t→∞ 4
∫

I

[f (ω) − f (−a)]

(ω + a)

sin2
[ (ω+a)t

2

]
(ω + a)t

dω. (B28)

The above integrand is dominated by the function | [f (ω)−f (−a)]
(ω+a) |, which has no problem in ω = −a because f (ω) is supposed to

be differentiable everywhere. Therefore, the exchange of the limit and the integral sign gives the zero value.
All of this is equally applicable to a sufficiently fast decaying function f (ω) but not necessarily with compact support. For that

case we may split the integration interval in three subintervals I = (−∞, − ω0) ∪ (−ω0,ω0) ∪ (ω0,∞) with −a ∈ (−ω0,ω0).
The integrals on (−∞, − ω0) and (ω0,∞) become zero due to Lebesgue’s dominated convergence theorem for sufficiently fast
decaying f (ω).

Let us now reproduce the Schaller and Brandes result [39] for the long-time limit of Z(t). Consider �kl(ω,ω′,t) in Eq. (B22),

�kl(ω,ω′,t) =
∫

dυ

∫ t

0
dt1

∫ t

0
dt2e

i[(ω−υ)t1−(ω′−υ)t2]Tr[Bk(υ)BlρE], (B29)

where we have used the decomposition Bk = ∫
dυ Bk(υ) in terms of eigenoperators Bk(υ) of HE with frequency υ. This is

similar to Eq. (B16) but the sum is here substituted by an integral since the environment is assumed to have an infinite (potentially
continuous) number of degrees of freedom. Performing the integrals

∫ t

0 ds eixs = t eixt/2sinc(xt/2) we obtain

�kl(ω,ω′,t) =
∫

dυ t2 exp

[
i
(ω − ω′)t

2

]
sinc

[
(ω − υ)t

2

]
sinc

[
(ω′ − υ)t

2

]
Tr[Bk(υ)BlρE]. (B30)

Therefore, due to the Lemma above, we can assert that

lim
t→∞

�kl(ω,ω′,t)
t

= 2πδω,ω′Tr[Bk(υ)BlρE]. (B31)

The quantity γkl := 2π Tr[Bk(υ)BlρE] is just the decay rate in the standard weak-coupling limit [9] and δω,ω′ performs the secular
approximation.

For the Hamiltonian part one needs a bit more effort. First, we introduce the decomposition Bk = ∫
dυ Bk(υ) in the expression

sgn(t1 − t2)Tr[B̃k(t1 − t2)BlρE], obtaining ∫
dυ sgn(τ )e−iυτ [Bk(υ)BlρE], (B32)

with τ = t1 − t2. Now we take Fourier transform with respect to τ ,∫
dυ

∫ ∞

−∞
dτ sgn(τ )ei(ϕ−υ)τ [Bk(υ)BlρE]. (B33)

A well-known result in distribution theory says that the Fourier transform of the sign function sgn(τ ) in the distributional sense
is 2i times the Cauchy principal value (Pv) distribution [68], namely

2iPv

∫
dυ

[Bk(υ)BlρE]

ϕ − υ
. (B34)

Therefore, by taking inverse Fourier transform, we find the relation

sgn(τ )Tr
[
B̃k(τ )BlρE

] = i

π

∫ ∞

−∞
dϕ e−iϕτPv

∫
dυ

[Bk(υ)BlρE]

ϕ − υ
. (B35)

This equality combined with Eq. (B20) yields

�kl(ω,ω′,t) = 1

2π

∫ ∞

−∞
dϕ

∫ t

0
dt1

∫ t

0
dt2e

i[(ω−ϕ)t1−(ω′−ϕ)t2]Pv

∫
dυ

[Bk(υ)BlρE]

ϕ − υ
. (B36)
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Finally, by following the same steps as in Eq. (B29) for �kl(ω,ω′,t), it is straightforward to prove that

lim
t→∞

�kl(ω,ω′,t)
t

= δω,ω′Pv

∫
dυ

[Bk(υ)BlρE]

ω − υ
. (B37)

Here Skl(ω) := Pv

∫
dυ

[Bk (υ)BlρE ]
ω−υ

are the shifts obtained in the standard weak-coupling limit [9] and δω,ω′ performs the secular
approximation, as commented.

Summarizing, we have obtained that limt→∞ Z(t)/t = LD , where LD is the Liouvillian of the standard weak-coupling limit
under the Born-Markov-secular approximation. Hence for long times both dynamics are the same eZ(t) � eLDt .

3. Schaller-Brandes exponent for the spin-boson model

The interaction Hamiltonian reads V = ∑
l Al ⊗ Bl = A1 ⊗ B1, for A1 = σx and B1 = ∑

k gk(ak + a
†
k). Moreover, we have

that

A1 = A1(−ω0) + A1(ω0), B1 =
∑

k

B1(ωk) + B1(−ωk), (B38)

with A1(∓ω0) = σ±, and B1(ωk) = gkak and B1(−ωk) = gka
†
k , the eigenoperators of [HS,·] and [HE,·], respectively.

Considering the environmental modes to be in thermal equilibrium, ρE = ρβ = e−βHS /Tr(e−βHS ), the bath correlation
functions become

Tr[B̃1(t1 − t2)B1ρE] =
∑

k

g2
k {e−iωk (t1−t2)Tr[aka

†
kρβ] + eiωk (t1−t2)Tr[a†

kakρβ]}

=
∫ ∞

0
dω J (ω){e−iω(t1−t2)[nT (ω) + 1] + eiω(t1−t2)nT (ω)}, (B39)

where n̄T (ω) = Tr(a†
kakρβ) = [exp(ω/T ) − 1]−1, and we have taken the continuous limit in the environmental modes by

introducing the bath spectral density J (ω) ∼ ∑
k g2

k δ(ω − ωk).
Thus the coefficient �(ω,ω′,t) for ω = ω′ = −ω0 in (B22) is

�(−ω0, − ω0,t) ≡ �++(t,T ) =
∫ ∞

0
dω J (ω)

∫ t

0
dt1

∫ t

0
dt2e

−iω0(t1−t2){e−iω(t1−t2)[nT (ω) + 1] + eiω(t1−t2)nT (ω)}

=
∫ ∞

0
dω t2J (ω)

{
[n̄T (ω) + 1]sinc2

[
(ω0 + ω)t

2

]
+ n̄T (ω)sinc2

[
(ω0 − ω)t

2

]}
. (B40)

Similarly, the remaining coefficients written in the main text are �−−(t,T ) = �(ω0,ω0,t) and �+−(t,T ) = �∗
−+(t,T ) =

�(−ω0,ω0,t).
For the shifts, we introduce (B39) in Eq. (B20) and use the Fourier transform to substitute the function sgn(t1 − t2) in terms

of the principal value of the integral as in Eq. (B35). Then by taking into account that σ+σ− = (1 + σz)/2,σ−σ+ = (1 − σz)/2,
and σ 2

+ = σ 2
− = 0, the Hermitian part of the Schaller-Brandes exponent can be written as

�(t) =
[
�(ω0,ω0,t) − �(−ω0, − ω0,t)

2

]
σz ≡ �(t,T )σz, (B41)

with

�(ω0,ω0,t) = 1

2π

∫ ∞

−∞
dω t2sinc2

[
(ω0 − ω)t

2

]{
Pv

∫ ∞

0
dυ J (υ)

[
n̄T (υ) + 1

ω − υ
+ n̄T (υ)

ω + υ

]}
, (B42)

�(−ω0, − ω0,t) = 1

2π

∫ ∞

−∞
dω t2sinc2

[
(ω0 + ω)t

2

]{
Pv

∫ ∞

0
dυ J (υ)

[
n̄T (υ) + 1

ω − υ
+ n̄T (υ)

ω + υ

]}
. (B43)
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