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Spin-one-half particles in strong electromagnetic fields: Spin effects and radiation reaction
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Various classical models of electrons including their spin degrees of freedom are commonly applied to describe
the electron dynamics in strong electromagnetic fields. We demonstrate that different models can lead to different
or even contradicting predictions regarding how the spin degree of freedom modifies the electron’s orbital motion
when the electron moves in strong electromagnetic fields. This discrepancy is rooted in the model-specific energy
dependency of the spin-induced Stern-Gerlach force acting on the electron. The Frenkel model and the classical
Foldy-Wouthuysen model are compared exemplarily in the nonrelativistic and the relativistic limits in order to
identify parameter regimes where these classical models make different predictions. This allows for experimental
tests of these models. In ultrastrong laser setups in parameter regimes where effects of the Stern-Gerlach force
become relevant, radiation-reaction effects are also expected to set in. We incorporate the radiation reaction
classically via the Landau-Lifshitz equation and demonstrate that although radiation-reaction effects can have a
significant effect on the electron trajectory, the Frenkel model and the classical Foldy-Wouthuysen model remain
distinguishable also if radiation-reaction effects are taken into account. Our calculations are also suitable to verify
the Landau-Lifshitz equation for the radiation reaction of electrons and other spin-1/2 particles.
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I. INTRODUCTION

The concept of spin was introduced by Uhlenbeck and
Goudsmit [1,2] as an internal angular momentum degree of
freedom of elementary particles in order to explain some
experimental findings such as the emission spectra of alkali
metals. A charged particle with spin can interact with external
electromagnetic fields via a coupling to its charge as well as via
its spin degree of freedom. In addition to the Lorentz force,
the particle experiences a spin-dependent force induced by
the gradients of the electromagnetic fields. Thus, a theoretical
description of such particles, e.g., electrons, must model how
the electromagnetic fields affect the dynamics of the spin (spin
precession) as well as the electron’s orbital motion, which
in general also depends on the spin. Such a spin-dependent
motion is realized in the seminal Stern-Gerlach experiment
[3] and variants thereof [4–8]. Effects of a spin-dependent
force can be found, e.g., in astrophysical systems [9] and in
quantum plasmas [10–12]. Stimulated by the advent of high-
intensity laser facilities, the interplay between spin precession
and electron motion has also been studied for electrons in
strong electromagnetic fields [13–17]. The role of the spin
may become significant in similar regimes where also the
radiation reaction sets in. For strongly laser-driven electrons,
the radiation reaction has been investigated intensely by use
of the Landau-Lifshitz equation [18–21] but also by quantum
mechanical methods [22–29].

The electron’s spin degree of freedom appears naturally in
the framework of relativistic quantum mechanics governed
by the Dirac equation [30]. A classical description of the
electron spin may be found phenomenologically or via a
correspondence principle, which is applicable when the typical
length scale of the electromagnetic fields is larger than the
position uncertainty of the particle. In this way, various
classical models have been devised. From a mathematical
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point of view, classical models of charged point particles with
spin are appealing because they are usually simpler and easier
to interpret than relativistic quantum theory. Furthermore,
a classical description of spin may be incorporated into
classical many-particle theories and classical many-particle
simulations, e.g., particle-in-cell codes [31,32].

A fully relativistic classical description of the spin preces-
sion in the presence of static homogeneous electromagnetic
fields was provided by Thomas [33,34], Bargmann, Michel,
and Telegdi [35]; see also Ref. [36]. This is today a commonly
accepted classical model, which has been applied in many
studies. For the question how the spin modifies the electron’s
trajectory in electromagnetic fields the situation is not as clear.
Two fundamentally different approaches to the incorporation
of spin-dependent forces into classical theories can be found
in the literature. On the one hand, one may start from a
classical theory and include possible Stern-Gerlach forces by
accounting for quantum effects or by classical considerations.
On the other hand, it is also possible to derive a classical model
from quantum theory by examining the classical limit. The
first classical theory including a covariant spin-induced Stern-
Gerlach force was proposed by Frenkel [37,38]. The Frenkel
model and similar classical models [9,39–49] are mainly
based on classical considerations. For example, the Frenkel
model has been derived from different fundamental laws as
the principle of least action [41], the conservation of energy
[50–55], and the on-shell condition [39,55–58]. Bearing in
mind that the spin was introduced as an intrinsic quantum
feature of the electron [59,60], it may appear more appropriate
to start from the Dirac equation to find classical models of
charged particles with spin [61]. Such a classical model with a
spin-dependent force can be derived from relativistic quantum
theory by applying the correspondence principle to the von
Neumann equation in the Foldy-Wouthuysen representation
of the Dirac equation [62–65]. We call this the classical
Foldy-Wouthuysen model below.

Spin-induced Stern-Gerlach forces in the classical Foldy-
Wouthuysen model and the Frenkel model, which are
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representatives of the two families of classical models with
spin-dependent forces as indicated above, have been bench-
marked against the Dirac theory in our recent publication [66].
Currently, radiation-reaction effects are investigated in many
publications, where the electron’s spin is usually neglected
assuming that this is appropriate for unpolarized electron
beams [67] as well as for the radiation-pressure-dominated
regime of extreme optical laser intensities >1023 W/cm2

and highly relativistic electrons [20]. In general, however,
both spin-induced Stern-Gerlach forces and radiation-reaction
effects must be anticipated in light-matter interaction at
relativistic intensities.

In the present paper, we extend the study of classical
models by identifying spin effects in trajectories of electrons
with different spin states taking into account also classical
radiation reactions via the Landau-Lifshitz force [68]. This
article is organized as follows: In Sec. II, we introduce all
required notations and specify the classical Foldy-Wouthuysen
and the Frenkel models as well as the Landau-Lifshitz force.
These two models are applied to various setups with strong
electromagnetic fields in Sec. III. Examining homogeneous
static magnetic fields first, we continue with setups of
increasing complexity: inhomogeneous static magnetic fields,
time-dependent electromagnetic plane waves, and focused
pulses. Regimes are identified where the classical models
yield different trajectories. Furthermore, the models are bench-
marked to relativistic quantum theory by comparing classical
trajectories to the center-of-mass motion as predicted by the
Dirac theory for regimes where a solution of the Dirac equation
is feasible. Our main results are summarized and discussed
in Sec. IV.

II. QUANTUM AND CLASSICAL MODELS
OF SPIN ONE-HALF PARTICLES

In the following, the theoretical foundations of our study
are established and all required notations are introduced. We
summarize various semiclassical and quantum models for
electron motion that take into account also the electron’s spin
degree of freedom as well as radiation-reaction effects.

A. Basic notations

The state of an electron at time t is described by its position
r(t), its velocity v(t), and its spin orientation S(t), where S(t)
is a vector of length h̄/2, with h̄ denoting the reduced Planck
constant. Sometimes it is convenient to specify the electron’s
kinematic momentum pkin(t) = mγ v(t) instead of the velocity
v(t), where m denotes the electron’s rest mass and γ is the
relativistic Lorentz factor. Introducing the speed of light c, it
may be expressed as a function of the electron’s velocity or,
equivalently, by its momentum:

γ = 1√
1 − v(t)2/c2

=
√

1 + pkin(t)2

m2c2
. (1)

The electron couples via its charge q to the electromagnetic
fields, which are denoted E(r,t) and B(r,t). These may be
expressed in terms of the electromagnetic potentials ϕ(r,t)

and A(r,t) as

E(r,t) = −∇ϕ(r,t) − ∂ A(r,t)
∂t

, (2a)

B(r,t) = ∇ × A(r,t). (2b)

B. Dirac equation

A fully relativistic quantum mechanical description of the
evolution of an electron of mass m and charge q in the
potentials A(r,t) and ϕ(r,t) is provided by the Dirac equation
for the electron’s four-component wave function �(r,t):

ih̄
∂�(r,t)

∂t
= (cα · ( p̂ − q A(r,t))

+mc2β + qϕ(r,t))�(r,t). (3)

Here, p̂ = −ih̄∇ denotes the canonical momentum operator
and α = (αx,αy,αz)T and β indicate the Dirac matrices
[69,70]. In the standard representation, these 4×4 matrices
are given by

αx =
(

0 σx

σx 0

)
, αy =

(
0 σy

σy 0

)
,

αz =
(

0 σz

σz 0

)
, β =

(
1 0
0 −1

)
, (4)

with σx , σy , and σz denoting the three 2×2 Pauli matrices
in their standard representation. The electron’s dynamics is
completely determined by the wave function �(r,t). The time-
dependent expectation values of the electron’s position, its
kinematic momentum, and its spin vector are given by

〈r̂〉 (t) = 〈�(r,t)|r|�(r,t)〉, (5)

〈 p̂kin〉 (t) = 〈�(r,t)| p̂ − q A(r,t)|�(r,t)〉, (6)

〈Ŝ〉 (t) = 〈�(r,t)|h̄�/2|�(r,t)〉, (7)

with � = (	x,	y,	z)T and

	x =
(

σx 0
0 σx

)
, 	y =

(
σy 0
0 σy

)
,

	z =
(

σz 0
0 σz

)
. (8)

The standard operators for the position and the spin as
employed in (5) and (7) are the straightforward generalizations
of the position and spin operators of nonrelativistic quantum
theory to the relativistic domain. They exhibit some defects,
however [71,72]. For example, the operator r leads to a
velocity operator that is not conserved under free motion, and
similarly, the spin operator h̄�/2 is also not conserved under
free motion. To remedy these issues, Foldy and Wouthuysen
[73] introduced new position and spin operators, by which the
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expectation values of the position and the spin vector become

〈r̂〉(t) =
〈
�(r,t)

∣∣∣∣ r + ih̄

(
i� × p̂

2p̂0(p̂0 + mc)
− β(α · p̂) p̂

2p̂2
0(p̂0 + mc)

+ βα

2p̂0

) ∣∣∣∣�(r,t)
〉
, (9)

〈Ŝ〉(t) =
〈
�(r,t)

∣∣∣∣ h̄

2
� + ih̄β

2p̂0
p̂ × α − h̄ p̂ × (� × p̂)

2p̂0(p̂0 + mc)

∣∣∣∣�(r,t)
〉
, (10)

where p̂0 =
√

m2c2 + p̂2 . Expressions (9) and (10) are not
gauge invariant and therefore only meaningful for a vanishing
vector potential. The Foldy-Wouthuysen position and spin
operators would become gauge independent by the substitution
p̂ → p̂ − q A(r,t).

In general, the expectation values for the position (5) and
(9) yield different numerical values as well as expectation
values for the spin (7) and (10). For the parameters applied
here, however, the differences are insignificant. Thus,
we mainly employ (5) and (7) when calculating position
and spin expectation values as a function of time. As the
Foldy-Wouthuysen spin operator commutes with the free Dirac
Hamiltonian, it is possible to superimpose positive-energy
free-particle states to a wave packet with well-defined spin.
Thus, for the construction of initial (free) wave packets the
Foldy-Wouthuysen spin operator is more advantageous.

C. Thomas-Bargmann-Michel-Telegdi equation

For a covariant classical description of the electron’s
spin, the spin is characterized in the laboratory frame by
the four-vector 
α = (
0,�)T [36]. It is related to the spin
four-vector in the electron’s rest frame ξα = (ξ 0,ξ )T = (0,ξ )T

via the Lorentz transformation


0 = γ

c
v · ξ , (11a)

� = ξ + γ 2

(γ + 1)c2
(v · ξ )v. (11b)

The classical description of an electron’s spin vector in the
rest frame ξ = h̄π/2 has the same definition as the standard
quantum spin (7) [74]; both of them are proportional to the
polarization π . In nonrelativistic quantum mechanics, it is cal-
culated by π = 〈�|σ |�〉, with � denoting the normalized two-
component spinor. A classical description of the spin preces-
sion of relativistic electrons in homogeneous time-independent
electromagnetic fields was first given by Thomas [33,34]; this
was later also derived by Bargmann, Michel, and Telegdi [35]
taking into account also the anomalous magnetic moment [75].
Using the antisymmetric electromagnetic-field tensor

Fαβ =

⎛
⎜⎝

0 −Ex/c −Ey/c −Ez/c

Ex/c 0 −Bz By

Ey/c Bz 0 −Bx

Ez/c −By Bx 0

⎞
⎟⎠, (12)

Bargmann, Michel, and Telegdi derived, by classical
arguments, the equation

d
α

dτ
= gq

2m

(
Fαβ
β + 1

c2
uα
λF

λμuμ

)
− 1

c2
uα
λ

duλ

dτ
,

(13)

which is known today as the Thomas-Bargmann-Michel-
Telegdi (TBMT) equation. Here τ denotes the proper time of
the electron with dτ = dt/γ , four-velocity uα = γ (c,v), and
g identifying the gyromagnetic factor.

Assuming homogeneous electromagnetic fields or neglect-
ing forces due to the electron’s spin, which are functions of
the field gradients, the motion of the electron is described by
the Lorentz force

duα

dτ
= q

m
Fαβuβ (14)

only. Then the TBMT equation for 
α simplifies to

d
α

dτ
= q

m

(
Fαβ
β + 1

c2

(
g

2
− 1

)
uα(
λF

λμuμ)

)
. (15)

Thus, for g �= 2 the spin dynamics depends on the electron’s
velocity. An analytical solution of (15) can be obtained for
the motion in uniform fields [76]. In agreement with the Dirac
theory, we set g = 2 in the following. Then the corresponding
equation for the rest-frame spin vector ξ (t), which follows
from (15), is given by

dξ (t)

dt
= q

m
ξ (t) ×

(
1

γ
B − 1

γ + 1

v × E
c2

)
, (16)

where E and B denote here the constant homogeneous
electromagnetic fields in the laboratory frame and v is the
electron’s velocity. Introducing generalized classical Poisson
brackets as in Ref. [77], Eq. (16) may be written as

dξ (t)

dt
= {ξ (t),HTBMT}, (17)

with the TBMT Hamilton function [74,78]

HTBMT = − q

m
ξ (t) ·

(
1

γ
B − 1

γ + 1

v × E
c2

)
. (18)

D. Frenkel’s equation of motion

Soon after Thomas derived his equation of motion for a
spin-1/2 particle [33], Frenkel published his investigation on
the same problem but also including forces due to the spin
[38]. He utilized the antisymmetric tensor 
αβ as a relativistic
generation of the spin vector. It is defined in terms of the
electron’s electric dipole moment d and its magnetic moment
m in the laboratory frame

d = γ

c
v × ξ , (19a)

m = γ ξ − γ 2

(γ + 1)c2
(v · ξ )v (19b)
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as


αβ =

⎛
⎜⎝

0 dx dy dz

−dx 0 mz −my

−dy −mz 0 mx

−dz my −mx 0

⎞
⎟⎠. (20)

Frenkel’s equations of motion may be written as (neglecting
possible terms proportional to h̄2 and higher order corrections)
[38,55]

M
duα

dτ
= qFαβuβ + q

2m

μνD̂

αFμν, (21a)

m
d
αβ

dτ
= q
μ

αFβμ − q

μ
βFαμ, (21b)

where

M = m − q

2mc2

αβFαβ (22)

represents the effective mass of the electron in electromagnetic
fields and

D̂α = − ∂

∂rα

+ uαuβ

c2

∂

∂rβ
(23)

[with the four-vector rα = (ct, − r)T] denotes the covariant
generalization of the nabla operator, which may be found by
enforcing conformance with the on-shell condition uαuα = c2

[55] or by applying the method of geometric perturbation
theory [79]. Because for the Lorentz force uαFαβuβ = 0
holds and furthermore uαD̂α = 0, it follows from the orbital
equation of motion (21a) that this model satisfies the on-shell
condition uαuα = c2. For actual calculations it is convenient
to express Eq. (21) in terms of the position, momentum, and
spin vectors [39]. With the magnetic field in the rest frame of
the electron,

B′(r(t),t) = γ B(r(t),t) − pkin(t) × E(r(t),t)
mc2

− ( pkin(t) · B(r(t),t)) pkin(t)

(γ + 1)m2c2
(24)

and
q

2mc2

αβFαβ = q

mc2
ξ (t) · B′(r(t),t), (25)

the Frenkel’s equations of motion can be written as

d r(t)

dt
= pkin(t)

mγ
, (26a)

dpkin(t)

dt
= qm

M

(
E(r(t),t) + pkin(t) × B(r(t),t)

mγ

)

+ q

γM
D̂(ξ (t) · B′(r(t),t)), (26b)

dξ (t)

dt
= q

m
ξ (t) × Beff(r(t),t), (26c)

where the operator D̂ = ∇ + γ 2v(t)(∂t + v(t) · ∇)/c2 acts on
the electromagnetic fields only and

Beff(r,t) = 1

γ
B(r,t) − 1

γ (γ + 1)

pkin(t) × E(r,t)
mc2

. (27)

E. Classical model via Foldy-Wouthuysen transformation

The Foldy-Wouthuysen transformation [73] is a unitary
transformation of the Dirac equation into a block diagonal form
yielding some transformed Hamilton operator ĤFW. In this
representation, operators for the position, the momentum, and
the spin have the same form as in the nonrelativistic quantum
theory. Except for the case of free particles and some other
special cases, the Foldy-Wouthuysen transformation cannot be
carried out exactly. If the electromagnetic fields do not vanish,
one can, however, construct a series of unitary transforms,
where each transform implements the Foldy-Wouthuysen
transformation up to some order in 1/c. In this way, one may
study low-order relativistic corrections of the Dirac equation to
the nonrelativistic Pauli equation or weakly relativistic effects
in quantum plasmas [80].

A block diagonal Hamilton operator ĤFW, which is exact
in all orders of 1/c but accounts only for effects that are
linear in the electromagnetic fields, can be derived from a
relativistic generalization of the standard Foldy-Wouthuysen
transformation [62,81–83]. The resulting representation of the
Dirac equation is applicable to highly relativistic particles.
Silenko [62] derived equations of motion for the quantum me-
chanical operators for the position, the kinematic momentum,
and the spin by employing the transformed Dirac Hamiltonian
and the Heisenberg picture. More precisely, the time evolution
of some observable, which is represented by some possibly
explicitly time-dependent operator Ô(t), is given by

dÔ(t)

dt
= 1

ih̄
[Ô(t),ĤFW] + ∂Ô(t)

∂t
. (28)

Substituting for Ô in Eq. (28) the operators r , −ih̄∇ −
q A(r,t), andh̄�/2, respectively, which are the position (9), the
kinematic momentum, and the spin in the Foldy-Wouthuysen
representation (10) gives the quantum mechanical equations
of motion for these observables. The classical equations of
motion then follow from these equations by applying the
correspondence principle. This means considering the limit
h̄ → 0 and replacing operators with commuting numbers in the
quantum mechanical equation of motion (28). In this way, the
evolution equations of the classical Foldy-Wouthuysen model
[84] for the position, the kinematic momentum, and the spin
result in (in our notation)

d r(t)

dt
= pkin(t)

mγ
, (29a)

dpkin(t)

dt
= q

(
E(r(t),t) + pkin(t) × B(r(t),t)

mγ

)

+ q

m
∇(S(t) · Beff(r(t),t)), (29b)

dS(t)

dt
= q

m
S(t) × Beff(r(t),t) ; (29c)

see Ref. [62] for details. These equations have also been
derived by other means in Ref. [61]; see Eq. (5.16) there.
For homogeneous electromagnetic fields the Stern-Gerlach
force ∼∇(S(t) · Beff(r(t),t)) vanishes, and consequently
Eqs. (29a)–(29c) reduce to the Lorentz equation plus the
TBMT equation (16) for the spin [63].
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F. Lorentz and Stern-Gerlach forces in the Frenkel
and the classical Foldy-Wouthuysen models

Comparing the classical equations of motion (26) and (29),
we see that the spin follows the TBMT equation (16) in both
cases, in the Frenkel model as well as in the classical Foldy-
Wouthuysen model. Note that the Frenkel equations of motion
(26) are formulated in terms of the electron’s spin ξ (t) in its rest
frame, whereas the classical Foldy-Wouthuysen model (29)
describes the spin S(t) in the laboratory frame. Both vectors
correspond to the polarization of the particle as claimed in the
respective models.

The forces that determine the electron’s orbital motion are
different in the considered classical models. These forces can
be split into a spin-independent and a spin-dependent part.
Equation (29b) may be written as the sum dpkin/dt = F1, FW +
F2, FW with

F1, FW = q

(
E(r(t),t) + pkin(t) × B(r(t),t)

mγ

)
(30a)

and

F2, FW = q

m
∇(S(t) · Beff(r(t),t)), (30b)

where the spin-independent force F1, FW equals the standard
Lorentz force and the spin-dependent force F2, FW represents
the relativistic Stern-Gerlach force within the classical Foldy-
Wouthuysen model. In the case of the Frenkel model, Eq. (26b)
may be written as the sum dpkin/dt = F1, F + F2, F of the
modified Lorentz force

F1, F = qm

M

(
E(r(t),t) + pkin(t) × B(r(t),t)

mγ

)
(31a)

and the Stern-Gerlach force

F2, F = q

γM
D̂(ξ (t) · B′(r(t),t)). (31b)

The forces F1, FW and F1, F are equal up to the factor
m/M . Note that it renders the modified Lorentz force of the
Frenkel model spin dependent via the additional prefactor
m/M in Eq. (31a) [55,85,86]. The effective mass (22) has
been explained by a magnetic-energy contribution to the
electron’s total relativistic energy [87]. The Lorentz force
(31a) is a consequence of Eq. (21a). Here, we have on
the right-hand side the standard Lorentz four-force qFαβuβ

(plus the spin-dependent term) but on the left-hand side the
modified four-momentum M duα/dτ instead of the stan-
dard four-momentum m duα/dτ . In the weak-field limit,
i.e., |q|h̄(γ |B| + | pkin×E|/(mc2))/(m2c2) → 0, the modified
Lorentz force of the Frenkel model goes to the standard Lorentz
force. Further possible discrepancies between the two models
originate from the forces F2, FW and F2, F, which represent the
model-dependent Stern-Gerlach forces. It may be instructive
to compare the four-vector forms of the Stern-Gerlach forces
F2, FW and F2, F. These are

Fα
2, FW = − q

m

∂

∂rα

UFW (32a)

and

Fα
2, F = q

M
D̂αUF = − q

M

∂

∂rα

UF + q

M

uαuβ

c2

∂

∂rβ
UF, (32b)

respectively, with the scalars UFW = S(t) · Beff(r(t),t) and
UF = ξ (t) · B′(r(t),t)/γ . Here D̂α is defined in Eq. (23),
which may be found by enforcing conformance with the on-
shell condition uαuα = c2 via uαFα

2, F = 0. Note that Eq. (32a)
does not hold the on-shell condition because uαFα

2, FW does
not vanish identically. Furthermore, in order to identify the
origins of possible discrepancies in the trajectories of the
classical Foldy-Wouthuysen model and the Frenkel model, it
is instructive to write the Stern-Gerlach forces more explicitly.
For the classical Foldy-Wouthuysen model the force is

F2, FW = q

γm
∇(S(t) · B(r(t),t)) − q

γ (γ + 1)m2c2

×∇(S(t) · ( pkin(t) × E(r(t),t))), (33)

and for the Frenkel model we obtain

F2, F = q

M
∇(ξ (t) · B(r(t),t)) − q

γMmc2
∇(ξ (t) · ( pkin(t) × E(r(t),t)))

− q

γ (γ + 1)Mm2c2
∇(ξ (t) · ( pkin(t) · B(r(t),t)) pkin(t)) + q pkin(t)

Mmc
·
(

γ
∂

∂t
+ pkin(t)

m
· ∇

)
(ξ (t) · B(r(t),t))

− q pkin(t)

γMm2c3
·
(

γ
∂

∂t
+ pkin(t)

m
· ∇

)
(ξ (t) · ( pkin(t) × E(r(t),t)))

− q pkin(t)

γ (γ + 1)Mm3c3
·
(

γ
∂

∂t
+ pkin(t)

m
· ∇

)
(ξ (t) · ( pkin(t) · B(r(t),t)) pkin(t)). (34)

Comparing (33) and (34) term by term, we find that the first
summands of both forces are almost equivalent but differ by a
factor γm/M . In particular, the approximation M ≈ m holds
if |B′| is small compared to 2m2c2/|qh̄|, which is ≈ 1010 T

for electrons (corresponding to an electromagnetic wave with
an intensity of about 1030 W/cm2). Consequently, the first
term of the spin force is decreased by the factor 1/γ in the
classical Foldy-Wouthuysen model compared to the Frenkel
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model in this regime. Thus, the discrepancy between these
models becomes large if the electron’s velocity approaches
the speed of light. Similarly, the second terms differ by a
factor M/m/(γ + 1). The further terms in the Stern-Gerlach
force (34) of the Frenkel model do not have a counterpart
in the classical Foldy-Wouthuysen model. Also these terms
become particularly large if the electron’s velocity approaches
the speed of light, leading to completely different dependencies
of F2, FW and F2, F on γ . Consequently, the classical Foldy-
Wouthuysen model and the Frenkel model differ mainly in
the high-velocity limit. Thus, we study in the following the

interaction of relativistic electrons in strong electromagnetic
fields.

G. Radiation reaction via the Landau-Lifshitz equation

For a highly relativistic electron motion driven by an
ultraintense laser not only are spin effects expected to set
in, but also the radiation reaction may become important.
The electron’s emission of radiation can be incorporated into
the classical modeling via an additional force. The radiation
reaction force as it has been derived for spinless particles is
given by the Landau-Lifshitz force [68]

FRR = q3

6πε0mc3
γ

((
∂

∂t
+ pkin(t)

γm
· ∇

)
E(r(t),t) + pkin(t)

γm
×

(
∂

∂t
+ pkin(t)

γm
· ∇

)
B(r(t),t)

)

+ q4

6πε0m2c3

((
pkin(t)

γm
· E(r(t),t)

c

)
E(r(t),t)

c
+

(
E(r(t),t) + pkin(t)

γm
× B(r(t),t)

)
× B(r(t),t)

)

+ q4

6πε0m2c5
γ 2

((
pkin(t)

γm
· E(r(t),t)

c

)2

−
(

E(r(t),t) + pkin(t)

γm
× B(r(t),t)

)2
)

pkin(t)

γm
, (35)

where ε0 denotes the vacuum permittivity. Heuristically this
radiation-reaction force can be incorporated into Eq. (26b) and
Eq. (29b) as an additional force term, yielding the equation of
motion

dpkin

dt
= F1, F/FW + F2, F/FW + F3, F/FW, (36)

with F3, FW = FRR for the classical Foldy-Wouthuysen model
and F3, F = FRR m/M for the Frenkel model. In the latter
case, the prefactor m/M in the radiation reaction has been
introduced in analogy to the modified Lorentz force of the
Frenkel model. Here, we have assumed that the electron’s
effective mass M affects the force on an electron irrespective
of the nature of the force.

One may compare the orders of magnitude of the different
Lorentz, Stern-Gerlach, and radiation-reaction forces in the
equation of motion (36) by considering an electron in an
electromagnetic field with wavelength λ and comparing
the constant of proportionality between the forces and the
applied fields. For example, the constant of proportionality
of the (modified) Lorentz force [Eqs. (30a) and (31a)] to
the electric field is in leading order q. The constants of
proportionality of the Stern-Gerlach forces (33) and (34) and
the Landau-Lifshitz force (35) can be written as q̃S = qλe/(2λ)
and q̃R = 2qαλe/(3λ), respectively, where λe ≈ 2.4×10−12 m
denotes the Compton wavelength of the electron and α is
the fine-structure constant. When the wavelength of the field
is long, i.e., λ 
 λe, coefficients are |q| 
 |q̃S| ≈ 102|q̃R|.
In this regime the Lorentz force is the dominating force,
while the Stern-Gerlach force and Landau-Lifshitz forces are
subordinate forces. Furthermore, one may also incorporate
additional force terms into the equation of motion (36) with
mixed contributions by the spin and radiation reactions as in
Ref. [58], whose coefficient of proportionality, which is of
the order of |q̃Sq̃R/q|, is even much smaller than those of
the Stern-Gerlach and the Landau-Lifshitz forces. Therefore,

possible terms of the spin radiation-reaction are neglected in
this paper.

III. DYNAMICS OF SPIN-1/2 PARTICLES

In Sec. II F it is demonstrated that the (generalized)
Lorentz forces, the spin-induced Stern-Gerlach forces, and the
Landau-Lifshitz forces differ in the Frenkel and the classical
Foldy-Wouthuysen models in leading order by factors of m/M ,
γm/M , and m/M , respectively. Setups with static magnetic
fields as well as electromagnetic waves are examined in
the following, where the classical models lead to different
predictions in these setups. A comparison of the classical
models with the Dirac theory is made for parameters where
a numerical solution of the time-dependent Dirac equation is
computationally feasible. For an adequate rating, radiation-
reaction effects are excluded in these comparisons from
the classical models because radiation-reaction effects are
also beyond the Dirac theory. For experimentally relevant
systems with strong laser pulses, however, both spin forces
and radiation reactions are expected to have nonnegligible
effects and both are investigated in detail in the following.

A. Model-dependent trajectories of electrons in a homogeneous
magnetic field: Effective mass effects

In the case of homogeneous electromagnetic fields the
gradient forces of the classical Foldy-Wouthuysen model and
the Frenkel model vanish and the electron’s motion depends
only on the Lorentz force, which is modified by a factor
m/M within the Frenkel model as outlined in Sec. II F. If the
electron moves in the plane perpendicular to the homogeneous
magnetic field and if the electric field vanishes, the effective
mass is given by

M = m − qγ

mc2
ξ (t) · B. (37)
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FIG. 1. Trajectories of an electron with initial momentum 3.65mc

in an ultrastrong homogeneous magnetic field (perpendicular to
the plane of projection) of strength 2000 a.u. = 4.7×108 T as
predicted by the Dirac equation (solid gray line), the classical Foldy-
Wouthuysen model (dotted red line), and the Frenkel model (solid
blue and dashed blue lines). The electron’s initial spin orientation is
parallel or antiparallel to the magnetic field. Trajectories of electrons
with parallel spin (solid blue line) differ from trajectories of electrons
with antiparallel spin (dashed blue line) within the Frenkel model,
whereas the Dirac theory and the classical Foldy-Wouthuysen model
do not lead to spin-dependent trajectories for homogeneous fields. In
order to illustrate radiation-reaction effects, the dot-dashed green line
shows the trajectory for the classical Foldy-Wouthuysen model with
radiation damping included via the Landau-Lifshitz equation. As an
illustration the density of the electron’s quantum mechanical wave
packet is also indicated at five points in time.

Consequently, the Lorentz force is modified by a fac-
tor 1/(1 − qγ /(m2c2) ξ (t) · B) and therefore it depends on
the electron’s spin orientation relative to the magnetic
field. Thus, the Frenkel theory predicts that trajectories
of electrons with parallel spin differ from trajectories of
electrons with antiparallel spin as illustrated in Fig. 1.
Note that the factor 1/(1 − qγ /(m2c2) ξ (t) · B) may become
negative for qγ /(m2c2) ξ (t) · B > 1 or even diverge for
qγ /(m2c2) ξ (t) · B = 1, which requires magnetic field
strengths of the order of 2m2c2/|qh̄|.

In the following, we consider setups where the electron’s
spin is initially parallel or antiparallel to the direction of
the homogeneous magnetic field, which maximizes possible
spin-dependent effective-mass effects. As a consequence of
Eqs. (26c) and (29c) the spin component in the magnetic-field
direction is conserved. In the Foldy-Wouthuysen representa-
tion [62], it can be easily shown that the Dirac Hamiltonian
with A(r) = 1

2 B×r commutes with the z component of
the spin operator if the magnetic field B is directed in
the z direction. The spin is also conserved in the quantum
mechanical description of this setup. Although the effect of

the spin-dependent effective mass [55,85,87] including the
possibility of a negative mass [86] has been considered in
the literature, this behavior is in contrast to the predictions of
the classical Foldy-Wouthuysen model as well as the quantum
mechanical Dirac theory. In the classical Foldy-Wouthuysen
model the force on the electron does not depend on its
spin orientation in the case of homogeneous electromagnetic
fields. Consequently, homogeneous fields cannot lead to spin-
dependent trajectories. In the classical Foldy-Wouthuysen
model electrons with different spin orientations, i.e., parallel
or antiparallel to the magnetic-field direction, follow the same
simple cyclotron gyration trajectory; they move in a circle
with the gyroradius m| pkin|/|γ q B|. Similarly, an electron’s
center-of-mass trajectory, which follows from a quantum
mechanical description of the electron motion via the Dirac
theory, does not depend on the electron’s spin state as also
indicated in Fig. 1. The two-dimensional electron wave packet
shown in Fig. 1 was initially composed of a superposition
of positive-energy eigenstates of the free Dirac Hamiltonian
and the z component of the Foldy-Wouthuysen spin operator
[71,73] such that the wave-packet’s center of mass lies at the
origin of the coordinate system. The numerically obtained
[88] center-of-mass trajectories for electron wave packets
with parallel and antiparallel initial spin are indistinguishable
on the scale of Fig. 1. Differences are of the order of the
estimated numerical errors. This numerical result can also be
substantiated by the analytical solution of the Dirac equation
for the electron in a homogeneous magnetic field, which allows
one to construct coherent wave packets with a center-of-mass
motion that follows the classical Lorentz equation irrespective
of the spin state [89,90]. Note that the quantum mechanical
wave packet does not have a sharp kinematic momentum,
thus the center-of-mass trajectory of the whole quantum wave
packet does not follow a circular motion with constant radius
[91]. Since the gyroradius is proportional to the velocity, the
part of the packet with a higher momentum moves faster with a
larger radius, while the slower part moves on a smaller radius.
Thus the spatial distribution of the packet shrinks radially and
extends azimuthally as indicated in Fig. 1.

In order to allow for direct comparison of the Frenkel model
and the classical Foldy-Wouthuysen model, radiation-reaction
effects have been neglected so far. This is also justified because
the electron energy is not in a strongly relativistic regime,
and radiation-reaction effects remain small in the chosen
parameter regime as shown in Fig. 1. It illustrates radiation-
reaction effects for the classical Foldy-Wouthuysen model with
radiation damping included via the Landau-Lifshitz force (35)
in addition to the Stern-Gerlach force. The dot-dashed green
line shows how the electron trajectory deviates slightly from
circular motion due to the radiation reaction, which decreases
the electron’s energy. Note that deviations from circular motion
in the cases of the center-of-mass motion of the quantum
mechanical wave packet and of the Foldy-Wouthuysen model
with radiation damping are of completely different physical
origins. Radiation-reaction effects on the trajectory within
the framework of the Frenkel model are of the same small
magnitude as for the classical Foldy-Wouthuysen model and
therefore are not shown in Fig. 1.

The fact that the electron center-of-mass trajectory does not
depend on the spin orientation suggests that the equivalence
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principle is violated on the quantum level; i.e., the inertial
mass, which enters the Lorentz equation, does not equal the
gravitational mass, which enters the Einstein field equations
via the energy-density component T00 of the stress-energy
tensor. Note that the spin-dependent effective mass (22) of
the Frenkel model results from postulating that the on-shell
condition m2uαuα = (E − qϕ)2/c2 − p2

kin = m2c2 (with E
denoting here the total energy) for spinless charged particles
also holds for electrons with spin. In the realm of relativistic
quantum mechanics and in the presence of magnetic fields,
however, one cannot just replace physical quantities that
enter the classical on-shell condition by their corresponding
quantum mechanical operators to get the quantum me-
chanical formulation of the on-shell condition. In fact, the
Dirac equation yields the operator relation (ih̄∂t − qϕ)2/c2 −
[α · (−ih̄∇ − q A)]2 = m2c2, not (ih̄∂t − qϕ)2/c2 − (−ih̄∇ −
q A)2 = m2c2.

In summary, the Frenkel model predicts a spin-dependent
effective-mass effect, which becomes observable in principle
in ultrastrong magnetic fields. Such an effect is predicted nei-
ther by the quantum mechanical Dirac theory nor by the clas-
sical Foldy-Wouthuysen model. Therefore, one may argue that
the classical Foldy-Wouthuysen model is the superior classical
model for the electron in the investigated regime. In homoge-
neous magnetic fields, electron trajectories may be modified
by the radiation reaction but not by Stern-Gerlach forces.

B. Spin-induced trajectory splitting in inhomogeneous
magnetic fields

Electrons moving in inhomogeneous magnetic fields ex-
perience a spin-dependent Stern-Gerlach force in addition to
the Lorentz force. The effect of the Stern-Gerlach force is
usually difficult to observe due to the much larger Lorentz force
and spreading of electron bunches. In Refs. [6] and [7] it has
been demonstrated that in a longitudinal Stern-Gerlach setup
the effect of the Stern-Gerlach force can become observable.
Electrons traveling though a current-carrying circular loop
(with radius �/π ) along the symmetry axis experience a Stern-
Gerlach force (anti-)parallel to the direction of motion. As a
consequence, spin-forward electrons are delayed relatively to
spin-backward electrons. The separation of spin-forward and
-backward electrons depends on the Stern-Gerlach force and
whether it has the form of (33) or (34) or is even of another
kind.

Let us consider an electron moving in an inhomogeneous
magnetic-field configuration where the magnetic-field vectors
point in a constant direction. The electron travels parallel
to the magnetic-field direction with the initial velocity v0.
In this setup, radiation-reaction effects are absent because
the radiation-reaction force (35) vanishes. Due to the Stern-
Gerlach force this electron moves in front or behind an
electron moving freely at a constant velocity v0 by the distance
�x↑/↓ = x(t) − v0t , where the index in �x↑/↓ indicates the
electron’s initial spin orientation. To estimate the dependence
of this separation on the magnetic-field gradient we examine
the case of a constant field gradient ∇xBx = ±B̂/� over the
range x ∈ [−�,�] as indicated in Fig. 2(a) by black curves,
where B̂ denotes the maximal field strength. The asymptotic
spin splitting between electrons of different initial spin states

FIG. 2. (a) Inhomogeneous magnetic field Bx with gradient
∇xBx = ±B̂/� in the range x ∈ [−�,�] (solid black curve) and the
field B ′

x = B̂/(1 + π 2x2/�2)3/2 (solid gray curve) generated by a
single-loop solenoid with radius �/π . Their gradients are shown by
dashed curves of the respective colors. (b) Trajectories of electrons
with spin up and spin down predicted by the nonrelativistic spin
model (indicated by the index NR). Electrons propagate in magnetic
field Bx along the x axis with an initial velocity v0 = 105 m/s. The
right (x − v0t) coordinate in SI units corresponds to a maximum
magnetic field B̂ = 10 T and the characteristic length �/π = 1 cm,
similar to those presented in Ref. [6]. (c) The same trajectories of
electrons predicted by the nonrelativistic spin model, classical the
Foldy-Wouthuysen model (indicated by the index FW), and Frenkel
model (indicated by the index F), respectively. The initial velocity of
electrons is v0 = 2×108 m/s.

can be estimated as

�x = |�x↓ − �x↑| ≈ |q|h̄
γm2v2

0

B̂�fNR/FW/F. (38)

In this equation, we introduced the model- and γ -dependent
coefficient f . It is fNR = 1 in the nonrelativistic (NR) case
[with Stern-Gerlach force F2, NR = (q/m)∇(S · B)], fFW =
1/γ in the classical Foldy-Wouthuysen model, and fF = γ in
the Frenkel model, respectively. For nonrelativistic velocities
v0 both fFW and fF reduce to the nonrelativistic limit fNR. In
the relativistic limit, however, the classical Foldy-Wouthuysen
model and the Frenkel model differ in their predictions for
the considered setup. As a consequence of (38), the trajectory
splittings in the various models have different dependencies on
the electron’s Lorentz factor, i.e., �xNRv2

0 ∼ 1/γ , �xFWv2
0 ∼

1/γ 2, and �xFv
2
0 is independent of γ , respectively.
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Figures 2(b) and 2(c) show the distance �x↑/↓ for the
nonrelativistic and relativistic electron velocities for the var-
ious classical models and the inhomogeneous magnetic field
of a circular current. The chosen nonrelativistic parameters
yield a spin splitting �x ≈ 634 μm as shown in Fig. 2(b),
which coincides with that discussed in Ref. [6]. In the
relativistic regime, this scheme shows small but valuable nu-
merical differences �x↑/↓ � 10−10 m among different models;
see Fig. 2(c).

It should be noted that measuring the distances �x↑/↓ or
�x becomes very challenging in the relativistic limit due to the
1/v2

0 dependency. However, the differences that we have found
between the Stern-Gerlach forces of the different classical
models will help us to understand the effects of the different
forms of the Stern-Gerlach force in more complicated field
configurations, e.g., strong electromagnetic waves. One may
not attempt to amplify the spin splitting by enhancing the
Stern-Gerlach force via decreasing �. A possible interpretation
of Eq. (38) is that while the Stern-Gerlach force dominated by
the field gradient ∇ · B ∼ 1/� decreases with the characteristic
length scale of the field variation �, the time to cover the
distance � is �t ≈ �/v0, where v0 is the velocity in the
direction of the field gradient. Thus, �x ∼ (∇ · B)(�t)2 is
proportional to �.

Compared to gradients in static magnetic fields, much
stronger field gradients can be produced by the fast-developing
x-ray and infrared high-intensity laser facilities. Due to the
short wavelength the separation �x that can be created during
a single cycle tends to be small. It can, however, become large
(depending on the model) for relativistic electrons as we show
in the following section.

C. Electron dynamics in strong laser pulses

Ultrastrong laser fields are promising candidates for sys-
tems in which effects of Stern-Gerlach forces or of the
radiation reaction may be observed [92]. Thus, in the following
we study the motion of free electrons in ultrastrong laser
pulses within the frameworks of the Dirac equation, the
classical Foldy-Wouthuysen model, and the Frenkel model.
Spin effects and radiation-reaction effects are enhanced at
short wavelengths in the x-ray regime, which is applied in
the following. Nevertheless, spin effects and radiation-reaction
effects may become detectable also in the optical or even in
the near-infrared regime as will be shown.

The electric-field component of a linearly polarized
sin2-shaped plane-wave laser pulse with linear polarization
along the y direction and propagating along the x axis is
given by

E(r,t) = Ê H
(−ψ

n

)
H

(
ψ

n
+ π

)
sin2

(
ψ

n

)
sin (ψ)ey,

(39)

with Ê denoting the peak amplitude, the Heaviside step func-
tion H(ψ), the phase ψ = 2π (x − ct)/λ, the wavelength λ,
and the pulse width n measured in laser cycles. The magnetic-
field component follows via B(r,t) = ex×E(r,t)/c. At time
t = 0, the front of the laser pulse reaches the electron at the
origin of the coordinate system. The electron’s initial spin
orientation is parallel or antiparallel to the z axis, i.e., along

FIG. 3. Trajectories of electrons in a plane-wave laser pulse
(39) with the initial spin orientation parallel to the z direction
and initial momentum pkin(0) = (−mc,0,0)T as predicted by the
various considered models. Laser parameters are Ê = 5000 a.u. =
2.57×1015 V/m, λ = 20 a.u. = 1.06 nm, and n = 6. In the case of the
Dirac equation the wave packet had a width of 0.5 a.u. = 0.026 nm
initially.

the direction of the magnetic field. Note that as a consequence
of Eqs. (26c) and (29c) the spin remains in its initial state for
all times for the considered setup.

We solved the time-dependent Dirac equation as well as
the equations of motion of the classical Foldy-Wouthuysen
model and the Frenkel model for the setup described above.
As a consequence of the Stern-Gerlach forces, the electron’s
trajectory depends on the electron’s spin orientation. Although
the influence on the shape of the trajectory can be resolved
within the numerical accuracy, it is very small as shown in
Fig. 3. The trajectories as obtained by the three models are
indistinguishable from each other at the scale of Fig. 3. Note
that the three trajectories in Fig. 3 are also indistinguishable
from the trajectory predicted by the pure Lorentz force (not
shown in Fig. 3), which is independent of the electron’s
spin. For a substantial effect of the Stern-Gerlach forces on
the electron trajectory, the Stern-Gerlach forces must reach
the same order of magnitude as the Lorentz force, as it is the
case when the wavelength of the laser field is of the order of
the Compton wavelength. At this scale, however, also other
quantum effects due to the nonzero width of the electron wave
packet are expected to set in.

Although the spin effect on the trajectories of spin-1/2
particles is not discernible at the scale of Fig. 3, it is possible
to determine and to compare the spin-induced Stern-Gerlach
forces predicted by the Dirac theory, the Frenkel model,
and the classical Foldy-Wouthuysen model in this parameter
regime where the radiation reaction is negligibly weak as
we have shown in Ref. [66]. It was demonstrated that the
two considered classical models feature different dynamics
during the interaction with a plane-wave x-ray laser field.
The net effect is, however, too small to distinguish between
the two models. In contrast, the interaction of electrons with
focused infrared laser pulses of finite transverse size leads
to a distinguishable net dynamics of the classical Foldy-
Wouthuysen and the Frenkel models, as demonstrated in this
section. Thus, it is potentially possible for the classical models
to be tested experimentally by employing infrared laser pulses
of upcoming high-power laser facilities. While the key results
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of this regime have been presented in Ref. [66], in this section
we extend this investigation by including the radiation reaction
via the Landau-Lifshitz force (35). Numerical solutions of the
Dirac equation are not feasible in this regime due to the long
time scale of infrared laser pulses [93] and are not suitable, as
radiation reaction effects are now substantial.

In order to reach a high intensity, the laser pulse is
often tightly focused to a spot of several laser wavelengths.
The pulse profile is modeled as a Gaussian beam with the
transversal focus radius w0. Introducing the Rayleigh length
xr = πw2

0/λ and the diffraction angle ε = w0/xr = λ/(πw0),
the components of the electromagnetic fields are expressed to

the fifth order of the small diffraction angle ε as (see Eqs. (1)–(9) in Ref. [94])

Ex = Eν

(
εC1 + ε3

(
−C2

2
+ ρ2C3 − ρ4C4

4

)
+ ε5

(
−3C3

8
− 3ρ2C4

8
+ 17ρ4C5

16
− 3ρ6C6

8
+ ρ8C7

32

))
, (40a)

Ey = E

(
S0 + ε2

(
ν2S2 − ρ4S3

4

)
+ ε4

(
S2

8
− ρ2S3

4
− ρ2(ρ2 − 16ν2)S4

16
− ρ4(ρ2 + 2ν2)S5

8
+ ρ8S6

32

))
, (40b)

Ez = Eνζ

(
ε2S2 + ε4

(
ρ2S4 − ρ4S5

4

))
, (40c)

Bx = Eζ

c

(
εC1 + ε3

(
C2

2
+ ρ2C3

2
− ρ4C4

4

)
+ ε5

(
3C3

8
+ 3ρ2C4

8
+ 3ρ4C5

16
− ρ6C6

4
+ ρ8C7

32

))
, (40d)

By = 0, (40e)

Bz = E

c

(
S0 + ε2

(
ρ2S2

2
− ρ4S3

4

)
+ ε4

(
−S2

8
+ ρ2S3

4
+ 5ρ4S4

16
− ρ6S5

4
+ ρ8S6

32
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. (40f)

Here, we have introduced the functions

E = Êw‖

(
− ψ

2n

)
w0

w⊥(x)
exp

(
− r2

w⊥(x)2

)
, (41a)

Sj =
(

w0

w⊥(x)

)2

sin

(
ψ + j arctan

(
x

xr

))
, (41b)

Cj =
(

w0

w⊥(x)

)2

cos

(
ψ + j arctan

(
x

xr

))
(41c)

for integer j , the sin2-shaped longitudinal profile w‖(η) =
H(−η)H(η + π ) sin2 (η), the pulse width n measured in laser
cycles, and the radius along the propagation axis w⊥(x) =
w0

√
1 + (x/xr )2. The phase ψ is defined as

ψ = 2π

(
ct − x

λ

)
− πr2/λ

x + x2
r /x

+ arctan

(
x

xr

)
(42)

and the equations above depend on the parameters ν = y/w0,
ζ = z/w0, ρ = r/w0, and r =

√
y2 + z2.

An electron that is initially directed towards the focus of
the counterpropagating high-intensity laser pulse is displaced
transversely due to the (modified) Lorentz force F1, FW ≈
F1, F, which is induced by the transverse electric-field compo-
nent Ey . When the oscillating field changes sign, the force
drives the electron back to its initial transverse position.
However, this force is smaller than the expelling force due
to the longitudinal focusing inhomogeneity. As illustrated by
the thin black line in Fig. 4, the oscillation center of a spinless
charged particle drifts radially from the spot center, which
is called ponderomotive scattering [95,96]. The deflection of
a spinless charged particle in the ponderomotive potential of
the focused laser pulse is defined by the angle between the

final transverse momentum and the longitudinal momentum
θ = − arctan(pkin,y/pkin,x) after the particle is separated from
the laser fields. As shown in Fig. 5(a), the ponderomotive
deflection θ increases with increasing initial energy of the
electron and increasing field strength, which was chosen to
scale as Ê = 4πmc2

√
γ 2 − 1/(|q|λ). This particular scaling

causes a strong acceleration of the electron opposite to
its initial velocity but without reflecting it, i.e., |θ | < π/2.
However, this nonreflecting condition can be broken due to
damping when the relativistic motion leads to strong radiation
[19]. The classical radiation-reaction force (35) leads, in the
high relativistic limit, to a reflection angle |θR| > π/2, as can
be seen by comparing the thin and the thick black lines in Fig. 4.
The total reflection angle θR sensitively depends on the electric-
field strength. The electrons cannot be reflected even when
the radiation reaction is considered when the electric field is
reduced by a factor of 2, i.e., with the field-strength scaling
Ê = 2πmc2

√
γ 2 − 1/(|q|λ). In this case, the deflection angles

in all models are less than π/2 in the applied energy region,
as shown in Fig. 5(b).

In addition to the deflection of a charged particle in the
ponderomotive potential of the laser fields, the spin may induce
a further deflection via the Stern-Gerlach forces (33) and
(34) if the electron is polarized along the direction of the
magnetic-field component. For the laser pulse (40) this means
that the electron is polarized along the positive or negative
z axis, representing spin-up (indicated by ↑) and spin-down
(indicated by ↓) states. Note that the electron’s spin is initially
parallel to the z axis in the above considered setup and it
travels towards the center of the focused laser pulse; i.e., it
moves along z = ζ = 0, where Ez/c = Bx = By = 0. Thus
Beff,⊥z = 0 in the x-y plane, and consequently, the electron
remains in the x-y plane and the spin of the electron is frozen
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FIG. 4. Trajectory of a highly energetic electron with the
initial γ = 100 in a focused laser pulse with wavelength λ =
1.51×104 a.u. = 800 nm, amplitude of strength Ê = 1056 a.u. =
8.03×1014 V/m, duration (number of cycles) n = 20, and focus
radius w0 = 2λ. Black curves denote the trajectories of a spinless
particle and dashed dark blue and dashed light red curves correspond
to those described by the Frenkel model (34) for electrons with the
spin parallel (spin up) and antiparallel (spin down) to the z axis.
Trajectories without radiation-reaction force (thin black and dashed
dark blue curves) show a smaller reflection angle than those with
radiation reaction (thick black and dashed light red curves). Inset:
Definition of the extra deflection angles �θ↑,F and �θ↓,F for spin-up
and spin-down electrons. All trajectories shown start from position
(0,0), where the electron hits the front of the laser pulse. Note that the
field gradient is three orders of magnitude lower than for the setup
in Fig. 3.

in its initial state. Moreover, because of the smallness of the
field gradients around the laser pulse’s center, the motion of
an electron bunch is still limited to the x-y plane when the
transversal initial distance between each electron and the focus
center is much smaller than the size of the focus spot w0. The
trajectories (given by the Frenkel model) of electrons with spin
up and down are indicated by the dashed dark blue curves in
Fig. 4. The Stern-Gerlach force (34) enhances or decreases
the deflection by the extra angle �θ↑/↓,F = θ↑/↓,F − θ , where
θ↑/↓,F denotes the deflection angle within the Frenkel theory for
spin-up electrons and spin-down electrons, respectively. The
magnitude of �θ↑/↓,F increases with the electron’s energy and
reaches the magnitude of 10−2 rad for relativistic electrons in
high-intensity laser fields of the applied parameters as shown
in Figs. 5(a) and 6(a).

The classical Foldy-Wouthuysen model behaves qualita-
tively similarly to the Frenkel model and is therefore not
considered in Fig. 4. The two spin models lead, however, to
quantitatively different extra deflection angles compared to
the spinless case. This means that we find for the classical
Foldy-Wouthuysen model extra deflection angles that are
much smaller than those for the Frenkel model shown in
Fig. 4. The red and blue curves in Figs. 5 and 6(a) correspond
to energy-dependent deflections from the classical Foldy-
Wouthuysen model and the Frenkel model, respectively. In
contrast to the Frenkel model, the deflection as predicted by
the classical Foldy-Wouthuysen model does not vary with the

FIG. 5. Ponderomotive deflection angle θ and extra angles �θ

induced by the radiation-reaction force and spin forces of the Frenkel
and the classical Foldy-Wouthuysen models as functions of the
particle’s initial energy, represented by the Lorentz factor γ , with the
electric-field-strength scaling Ê = 4πmc2

√
γ 2 − 1/(|q|λ) in (a) and

Ê = 2πmc2
√

γ 2 − 1/(|q|λ) in (b). Dotted black curves correspond to
the deflection of spinless particles without accounting for the radiation
reaction. Dashed green lines correspond to the extra deflection �θ

induced by the radiation reaction only, while dashed red and blue
curves correspond to the extra deflection �θ induced by the spin
force within the classical Foldy-Wouthuysen model and the Frenkel
model, respectively. Solid orange and cyan curves correspond to extra
deflections from the classical Foldy-Wouthuysen and Frenkel models
including the radiation reaction. In all cases, electrons in the spin-up
state (parallel to the magnetic field) are considered.

electron’s initial energy γ monotonically. It may even change
sign, as indicated in Fig. 6(a). Furthermore, the absolute
value of the spin-induced additional deflection angle �θ↑/↓,FW

from the classical Foldy-Wouthuysen model remains under
the magnitude of 10−6 rad and decreases with the electron’s
initial energy γ in the relativistic parameter regime shown in
Fig. 6(a). In an experiment, the reference angle θ cannot be
measured, because it corresponds to a hypothetical spinless
electron. But the total deflection angles θ↑, FW/F and θ↓, FW/F

of oppositely polarized electrons can be determined. The
difference |θ↑, FW/F − θ↓, FW/F| is about twice the value of
|�θ↑, FW/F| and |�θ↓, FW/F| in magnitude.

For completeness, we also considered the case where
radiation-reaction effects are included in the Frenkel and the
classical Foldy-Wouthuysen models as shown in Figs. 5 and
6(b). Comparing the curves for spin-1/2 particles with and
without the radiation reaction in Fig. 5, one sees that the total
effect on the deflection angle of a radiating spin-1/2 electron
is dominated by the Stern-Gerlach forces in the low-energy
region and it is dominated by the radiation reaction in the
high-energy region. The size of the spin-force-dominated
energy region depends on the applied scaling between the field
strength and the electron’s energy. It becomes larger for weaker
fields as shown in Figs. 5(a) and 5(b). Although the total
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FIG. 6. Spin- contribution to the deflection angle as a function
of the initial energy of the particle represented by γ for spin-up and
spin-down electrons. (a) The difference in the deflection angles of a
spinless particle and a spin-1/2 electron for the Frenkel vs the classical
Foldy-Wouthuysen models, i.e., �θ↑/↓, FW/F = θ↑/↓, FW/F − θ . (b) The
difference in the deflection angles of a spinless particle and a
spin-1/2 electron for the Frenkel and the classical Foldy-Wouthuysen
models taking into account the radiation-reaction force (35) for the
spinless particles as well as for the electron, i.e., �θR

↑/↓, FW/F =
θ↑/↓, FW/F, R − θR. In both panels, the laser parameters are the same
as in Fig. 4 but the electric-field strength scales with the initial γ as
Ê = 4πmc2

√
γ 2 − 1/(|q|λ). Note the different scales on the y axes

for the Frenkel and the classical Foldy-Wouthuysen models.

deflection angle can be rather sensitive to radiation-reaction
effects in the high-energy region, the spin contributions to
the deflection angle are not sensitive to the radiation reaction.
Including also radiation-reaction effects in the Frenkel and the
classical Foldy-Wouthuysen models yields spin-induced addi-
tional deflection angles of a similar magnitude to those without
the radiation reaction, which can be identified by comparing
Figs. 6(a) and 6(b). As discussed above, the radiation reaction
as well as the spin effects may alter the trajectory of electrons in
strong focused laser pulses compared to the classical dynamics
caused by the Lorentz force. Spin effects and the radiation
reaction become relevant in similar parameter regimes. Pure
spin effects can be isolated by comparing the dynamics of elec-
trons with opposite spin states. The spin-induced contribution
to the deflection predicted by the classical Foldy-Wouthuysen
model, <10−6 rad, for the applied parameters is too small to
be demonstrated experimentally. However, the Frenkel model
leads to a total deflection via the ponderomotive potential
of the order of 10−1 rad and an additional spin-induced
deflection of the order of 10−2 rad if an electron beam with
an energy of tens of MeV and an infrared laser of intensity
∼1022 W/cm2 as discussed above can be applied. Considering
that electron bunches with an emittance as low as 10−3 rad
have been prepared [97], the deflection via the ponderomotive
potential of the order of 10−1 rad and also the spin-induced
deflection of the order of 10−2 rad are potentially measurable
in experiments. In such an experiment, polarized electron
bunches of low emittance would be employed to measure the

deflection angle as a function of the polarization direction.
In current head-on experiments, however, with focused fields
of high inhomogeneities and energetic electrons, e.g., [98]
and [99], no significant spin effect in orbital motion was
observed. The lack of experimental evidence of a nonnegligible
spin-induced deflection may be seen again as the superiority
of the classical Foldy-Wouthuysen model regarding the issue
of spin-modified dynamics.

In common experimental setups, unpolarized electron
beams are often employed rather than polarized beams.
The (theoretical) deflection angle for a beam of unpolarized
electrons can be determined by averaging over trajectories
(with or without radiation reaction) of electrons with initial
spin states evenly distributed in all directions. The spin
contribution to the deflection angle is almost symmetric under
spin inversion as shown in Fig. 6. Thus, for our parameters
spin effects average out for unpolarized electron beams and the
beam trajectory is mainly determined by the Lorentz force and
radiation-reaction forces. This means that experimental tests
for radiation-reaction effects via the Landau-Lifshitz force
without spin terms may be realized by employing unpolarized
electron beams [67]. In addition, considering, e.g., Fig. 6, the
radiation-reaction terms in the Landau-Lifshitz equation may
also be tested via our spin-dependent descriptions by utilizing
spin-polarized electrons.

IV. DISCUSSION AND CONCLUSIONS

Classical theories of charged particles with spin and
radiation reaction are valuable for describing light-matter
interaction at high intensities when quantum effects are not
important. They are appealing because classical models can
be employed to describe many-particle systems where fully
quantum mechanical models become intractable. We have
investigated the dynamics of spin-1/2 particles in various
setups by applying two classical spin models, the classical
Foldy-Wouthuysen model and the Frenkel model, which are
both supplemented by a classical radiation-reaction model,
the Landau-Lifshitz equation. The Frenkel model and the
classical Foldy-Wouthuysen model have been introduced to
describe the fully relativistic dynamics of electrons in strong
electromagnetic fields and both are commonly applied in
various branches of physics. The predictions of these classical
models have been compared to each other and to predictions
by the Dirac equation, when a solution of the Dirac equation
was feasible. Discrepancies in the predictions of the two
classical models may become experimentally detectable in
light-matter interactions in strong, highly focused electron
beams, where the radiation reaction is also expected to set in.

According to the Frenkel model, the potential energy of a
spin in a magnetic field induces a spin-dependent effective
mass (22) which leads to a Stern-Gerlach-like splitting of
trajectories of electrons with different spin states even in homo-
geneous magnetic fields. This effect, however, is not predicted
by the more fundamental Dirac equation. Thus, one may argue
that the spin-dependent effective mass effect is not physical.

In the setup of the longitudinal Stern-Gerlach effect, where
radiation-reaction effects are absent, the Frenkel model and
classical Foldy-Wouthuysen model lead, in the relativistic
limit, to qualitatively different spin effects on the electron

042102-12



SPIN-ONE-HALF PARTICLES IN STRONG . . . PHYSICAL REVIEW A 95, 042102 (2017)

trajectory. Furthermore, we have demonstrated that in tightly
focused beams in the near-infrared the effect of the Stern-
Gerlach force of the Frenkel model becomes sufficiently large
to be potentially detectable in an experiment. Depending on the
electron’s energy and the electromagnetic-field configuration
the radiation-reaction effect on the electron dynamics may
be stronger than possible spin effects. Nevertheless, the
spin-induced contributions can be identified by employing
electrons of opposite spin state. Modifications of the electron
motion due to the spin are almost symmetric under spin
inversion, at least for the considered setups (see Fig. 6). Thus,
for unpolarized electron beams spin effects average out on
the level of the trajectory of the whole beam. This means
that radiation-reaction effects are identifiable by comparing
the spin-averaged electron trajectory to the (hypothetical)
trajectory of a charged spinless particle for the considered
parameters as given by the Lorentz force only.

Among the classical spin models, the Frenkel model
is certainly prominent for its long history and its wide
application. Our results, however, suggest that the classical
Foldy-Wouthuysen model is superior, as it is qualitatively
in better agreement with the quantum mechanical Dirac
equation. An experimental evaluation of the classical spin
theories with currently available electron energies of tens
of mega electronvolts and a laser intensity ∼1022 W/cm2 as
suggested in this paper would provide valuable support for or
disagreement with the classical spin theories complementary
to our comparison to the Dirac equation.
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