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Weak stochastic ratchets and dynamic localization in measurement-induced quantum trajectories

I. Babushkin
Institute of Quantum Optics, Leibniz University Hannover, Welfengarten 1, 30167 Hannover, Germany

and Max Born Institute, Max-Born-Strasse 2a, 10117 Berlin, Germany
(Received 9 June 2016; published 3 April 2017)

We consider a qubit governed by a sequence of weak measurements, with the measurement strength modified
in a time- and state-dependent manner. Here we show that the resulting trajectory of the qubit in the phase
space can be weakly controlled without any direct action on the qubit (control-free control), even if only one
fixed observable is measured. In particular, we demonstrate a possibility of a weak form of a stochastic ratchet,
allowing us to weakly push the qubit’s state without any net force in the effective potential. Furthermore, if the
weak measurement strength is significantly reduced in a way conditioned to some particular state, a dynamical
localization near this state takes place. If the measurement strength is reduced to zero, a singularity appears,
which behaves like an artificial basis state.
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I. INTRODUCTION

Dynamics of quantum systems with the states frequently
monitored by a measurement apparatus can be rather
controversial and is a subject of constant interest over the years
[1–15]. Every measurement in the measurement sequence
may be tuned to cause only a partial collapse of the system’s
wave function, with the collapse effect being arbitrarily weak
(so-called “weak measurements”) [4,8,16–18]. In another
context, the term “weak measurement” was introduced
by Aharonov, Albert, and Vaidman (AAV) [19] as being
attributed to a measurement of a continuous degree of freedom
(e.g., an electron position) coupled to a discrete one (spin) via
postselection. These two approaches were recently shown to be
equivalent [20,21]. As a result of repetitive application of weak
measurements—the situation which is sometimes referred to
as weak Zeno measurements (WZMs)—a kind of stochastic
“quantum trajectory” arises [3,14,22–24] due to unpredictable
character of every particular measurement outcome.

Just repeating the weak measurements, without any further
action on the system, allows us to control the system state in
various ways. For instance, one can achieve an arbitrary state
from any other one by repeating weak measurements in differ-
ent bases [2,5,6,12,13,25,26]. Alternatively, by allowing the
strength of the weak measurements (in the AAV sense) to de-
pend on the spatial coordinate, one can create a “potential wall”
which may reflect a particle [12,13]. It should be noted that
these control mechanisms work if the initial state is preknown.

In contrast, if we repeat a weak measurement of a single
qubit in a fixed basis, the resulting dynamics was up to now
believed to be very trivial. The resulting quantum trajectory
just stochastically approaches one of the two qubit’s basis
states |0〉 or |1〉. In this article we add an another dimension to
this seemingly trivial dynamics by allowing the measurement
strength to be changed in time and in a state-conditional
way.

We observe that the stochastic equations, describing quan-
tum trajectories in such a simple one-dimensional system,
are in fact quite similar to the ones describing motion of a
small Brownian particle in a fluid flow (overdamped Brownian
motion) [23,27–29]. One of the striking phenomena in such
flows as well as in many other stochastic systems are so-called
stochastic ratchets [27–50]. Namely, by varying the potential

acting on the Brownian particle in time and/or space in a
periodic way, it is possible to create an effective additional
force, despite that the potential introduces no average force.
Brownian ratchets are deeply connected to so-called Parrondo
games, when two or more lossy games are combined to give
a winning one [30,36–48]. Very recently, the notion of weak
Parrondo games and weak Brownian ratchets were introduced
in [30] to describe the situation when two or more lossy games
are played together to give a just less lossy (but not winning)
one. We remark that, although both Parrondo games and
Brownian ratchets were considered in the context of quantum
systems [28,38–41], this was up to now done via some direct
action on the system itself.

In contrast, in the present article the situation of control-
without-direct-action will be discussed. Here we show how
the effective potential arising in WZM dynamics can be
modified by changing the strength of the measurement
periodically in time and in a state-conditioned fashion (that is,
in dependence on the current system state). We demonstrate
that the stochastic ratchet effect, albeit weak, is possible in
such a situation. We also demonstrate a dynamic localization
of the state in the case when the measurement strength
vanishes at some particular system state. A “false basis state”
may appear, which “attracts” the stochastic trajectories in a
similar way as the true basis states do.

The article is organized as follows: In Sec. II we introduce
the system under consideration and derive the master equation
governing the probability distribution on the line between two
basis states. In Sec. III we derive the equation for the contin-
uous case taking into account conditionally dependent mea-
surement strength. In Secs. IV and V we investigate the effects
related to the conditionally modified measurements strength.
Finally, the conclusions and discussion are presented in
Sec. VI.

II. DISCRETE DYNAMICS

A. Setting

Our model of weak Zeno measurements is depicted in
Fig. 1(a) and uses projective measurements of ancilla qubit
|a〉 to realize the weak ones of |q〉. The system is prepared
in the state |q〉 ⊗ |0〉 with |q〉 = cos θ |0〉 + sin θ |1〉 for some
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FIG. 1. (a) The model of weak measurements of the qubit |q〉 using an ancilla |a〉 (initially in the state |0〉) and its rotations Ry , followed
by the measurement of |a〉. After the measurement, the process is repeated with the same or another ancilla in the state |0〉. In (b), several
exemplary stochastic trajectories induced by repeating application of (a) using θ coordinate (left y axis) and x coordinate given by Eq. (10)
(right y axis) vs measurement number n are shown. The x coordinates are obviously better suited to study the asymptotic behavior as n → ∞.

θ . First, we apply a rotation Ry(2δ) to the ancilla state; the
rotation Ry is conditioned to |q〉 = |1〉 and is defined as

Ry(δ)|0〉 �→ cos δ|0〉 + sin δ|1〉, (1)

Ry(δ)|1〉 �→ cos δ|1〉 − sin δ|0〉. (2)

Afterwards, we unconditionally apply the rotation Ry by some
angle α and finally measure the ancilla qubit. If α �= 0 and δ

is small, the resulting measurement modifies |q〉 only slightly.
After the measurement, we repeat the whole procedure using
another ancilla in the initial state |0〉 (or the same ancilla
returned to the state |0〉).

The state of the whole system |q〉 ⊗ |0〉 [see Fig. 1(a)] is
transformed by two Ry operators described above as

|q〉 ⊗ |0〉 �→ |q0〉 ⊗ |0〉 + |q1〉 ⊗ |1〉, (3)

|qi〉 =
∑

j

bij |j 〉, (4)

where bij are the (i + 1,j + 1)th element of the matrix b

defined as

b =
(

cos θ cos α sin θ cos (δ + α)

cos θ sin α sin θ sin (δ + α)

)
. (5)

If the measurement of |a〉 gives 0, the system state is reduced
to |q〉 = |q0〉/√p0 and in the opposite case to |q〉 = |q1〉/√p1,
where

p0 = cos2 α cos2 θ + sin2 θ cos2 (δ + α), (6)

p1 = cos2 θ sin2 α + sin2 θ sin2 (δ + α). (7)

The probabilities of the corresponding outcomes are p0 and p1.
The above description can be reformulated in the form of

a generalized measurement formalism, with the measurement
operators

B0 = b11|0〉〈0| + b12|1〉〈1|, (8)

B1 = b21|0〉〈0| + b22|1〉〈1|, (9)

so that
∑

j B
†
jBj = 1 and the state after the measurement with

the result j is transformed as |q〉 → Bj |q〉/√pj .
The resulting process is a (classical) one-dimensional

random walk along the axis θ as shown in Fig. 1(b). It spends
most of the time in the vicinity of the limiting states |q〉 = |0〉
and |q〉 = |1〉 (θ = 0, π/2). It is thus useful to introduce
parabolic coordinates [17] as

x = atanh {− cos(2θ )}; θ = arcsin

√
1 + tanh x

2
. (10)

In this coordinate system, θ = 0 corresponds to x = −∞ and
θ = π/2 corresponds to x = +∞ [(cf. Fig. 1(b)]. Using x

instead of θ allows us to expand these vicinities into semi-
infinite intervals. We also note that if we measure |q〉 directly
(instead of |a〉), the probability to find |q〉 in the state |1〉 will
be

�(x) = sin2 θ = (1 + tanh x)/2. (11)

B. Classical random-walk interpretation

Now, for the sake of simplicity, we exclude the situation
when |q〉 is exactly in one of the basis states |0〉 or |1〉
in the beginning of the process. In this case, the equations
above allow us to define the process as a one-dimensional
random walk on the line x ∈ (−∞, + ∞) in the following
way: assuming that at the nth iteration step the system is
in the point xn, at the n + 1 step it will be in the point
either xn+1 = xn + ε0 or xn+1 = xn + ε1 (depending on the
measurement outcome), every of two variants occurring with
the probabilities pi(xn), i = 0,1. A few realizations of this
random walk are shown in Fig. 1(b).

The probabilities pi(x) can be rewritten in x coordinates as

p0(x) = �(x) cos2 (δ + α) + [1 − �(x)] cos2 α, (12)

p1(x) = �(x) sin2 (δ + α) + [1 − �(x)] sin2 α, (13)

where �(x) is defined by Eq. (11). The step sizes εi ,
i = 0,1, do not depend on x and are given by (see details
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in Appendix A)

ε0 = atanh

(
2 cos2 (α + δ)

cos2 (δ + α) + cos2 α
− 1

)
, (14)

ε1 = atanh

(
2 sin2 (α + δ)

sin2 (δ + α) + sin2 α
− 1

)
. (15)

Equations (12)–(15) define obviously a Markovian random
walk.

C. Conditionally varied measurement parameters

Suppose we know exactly the initial state of the system
x0 and are able to make all the rotations also exactly. In this
case, the subsequent positions xn of the qubit on x line can
be also calculated exactly since we know the measurement
outcomes Mn = 0,1 and thus the step sizes εi at every n. We
may now introduce the state-dependent dynamics by allowing
the parameters δ, α to be dependent on the step number n and
the state of the system at the last step xn. That is, we may
take some (predefined) functions of two arguments α(n,x),
δ(n,x) and at every step select the parameters for the next step
αn+1, δn+1 as αn+1 = α(n,xn), δn+1 = δ(n,xn). In this way,
the parameters pi , εi of our random walk will be also some
predefined functions of n, xn [defined by Eqs. (12)–(15)].

The functions α(m,x), δ(m,x) may be quite arbitrary. They
add new degrees of freedom to our system, leading, as we
will see, to rather interesting dynamics. We remark also that
in quantum control schemes [14] the information about the
current state of the system is often used by feeding it back into
the system via modification of the system’s Hamiltonian. In
contrast, in our case, only the parameters of the measurement
itself, but not the parameters of the system, are changed.

D. Master equation

Using Eqs. (3)–(5) or Eqs. (8) and (9) it is easy to obtain
an equation governing the evolution of the probability density
function (pdf) P (n,x), describing the probability P of |q〉
to appear in the vicinity of x at the step n. Since our qubit
|q〉 always remains in a pure state which is fully described
by its coordinate x (or, equivalently, by θ ), such a master
equation is just another way to express the dynamics of |q〉.
It provides essentially the same information as Eqs. (3)–(5).
This reformulation will, however, be useful in the next sections
when we consider stochastic ratchet behavior.

We start from the general case with no assumption about
the particular coordinate system. We use the variable y by
which we may understand any of the coordinates x, θ , or
� mentioned before. We introduce furthermore the measure
dP(n,y) = P (n,y)dy which expresses the total probability to
find |q〉 in the interval [y,y + dy]. Then, by definition of our
process, using the Markov property and the formula for total
probability [42] we obtain the following relation:

dP(n + 1,y) = p0(y0(y))dP(n,y0(y))

+ p1(y1(y))dP(n,y1(y)), (16)

where yi(y), i = 1,2 are defined in an implicit way as y = yi +
εi(yi). This expression is valid for an arbitrary (also varying)
step size, that is, also for the state-conditioned trajectories as

they were defined above in the previous section. In the case of x

coordinates (y ≡ x) we obtain straightforwardly the following
expression for P (n,x):

P (n + 1,y) = p0(x0(x))x ′
0(x)P (n,x0(x))

+ p1(x1(x))x ′
1(x)P (n,x1(x)), (17)

where x = xi(x) + εi(xi(x)), x ′
i(x) = dxi(x)/dx. In particular,

for the constant measurement strength we have εi = const,
x ′

i(x) = 0, and therefore

P (n + 1,x) = p0(x − ε0)P (n,x − ε0)

+ p1(x − ε1)P (n,x − ε1). (18)

Very important are conserved quantities of Eq. (16) or
Eq. (17). The most obvious one is the average value of � on
nth step, 〈�〉n ≡ ∫ +∞

−∞ �(x)P (n,x)dx, which represents the a
priori probability to find |q〉 in the state |1〉 if we perform a
projective measurement of |q〉 after the nth step of our process.
One can show that from Eq. (18) it follows that

〈�〉n+1 = 〈�〉n, (19)

and thus for any n, 〈�〉n = 〈�〉0. Equation (19) can be
obtained by substituting Eq. (17) into the definition of 〈�〉n+1,
giving thus

〈�〉n+1 =
∫ +∞

−∞
�(x)P (n + 1,x)dx

=
∫ +∞

−∞
P (n,x){p0(x)�(x) + p1(x)�(x)}dx, (20)

where we made a replacement x ′
i(x)dx → dxi and the variable

change xi(x) → x in both parts of the resulting integral.
Since p0(x) + p1(x) = 1, this gives Eq. (19). We remark that
Eq. (19) is universal, that is, valid for any choice of the
measurement parameters, also if they vary in dependence on
the step n or current position xn.

III. CONTINUOUS DIFFUSIVE LIMIT

A. General equation

The continuous limit arises if we tend the measurement
strength to zero. In this case, instead of the discrete equation
(17), a continuous equation arises, with the step numbers n

being mapped to a continuous “time” t . If the measurement
strength is constant (independent on n) and if this constant
strength tends to zero, the corresponding limit is universal,
that is, does not depend on the measurement strength and
on the particular measurement procedure. The dynamics in
such an “unconditional” continuous limit is often described by
the stochastic Schrödinger equation or by the master equation
for the density matrix [14,17,18,22–24,43]. Nevertheless, to
our knowledge, a consideration general enough to include
time- and conditionally varied measurements were presented
only very recently in [44]. Earlier works dealt only with
the case of measurements of equal strength or at least the
strength which is not explicitly time dependent (but might
depend on time indirectly via the outcome of the previous
measurement) [17,18]. Instead of directly writing the resulting
equation according to [44] we will proceed, for the sake
of closeness of presentation, from the master equation for
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P (n,x), derived in the previous section, to the corresponding
continuous limit described by the so called Fokker-Planck (FP)
equation [28,42]. The FP approach used here is also different
from [44] where Ito calculus is used, but Ito and FP approaches
are, of course, equivalent [42]. We use the latter because of the
straightforward connection to the methods used in the theory
of stochastic ratchets [28].

That is, our goal here is to derive the FP equation in
the case which includes the walk with conditionally varying
measurement parameters δ, α which depend on the outcome
of all the previous measurements and also on n. The transition
to the continuous time can be done as follows: We introduce
“time” t such that each step of our process corresponds to
a small interval τn = τ (δn(n,xn−1),αn(n,xn−1)), that is, we
replace n = ∑n

i=1 1 by

t ≡
n∑

i=1

τi (21)

and allow τi(xi) to tend to zero for every i, xi . We do not
assume that all τi are equal. In our case, as τi(xi) → 0, we can
expect that P (t,x) ≡ P (n,x)|n→t changes at every step only
slightly and we can then decompose P (t,x) into series as

P (t + τn,x) � P (t,x) + τn∂tP (t,x). (22)

To be allowed to do this we must assume that, independently
on n, the step size εi,n = εi(δn(n,xn−1),αn(n,xn−1)) defined in
Eqs. (14) and (15) goes to zero as τn → 0. In particular, this is
the case if δn → 0, αn = const > 0 for all n. Thus, for small
enough δn, we may assume

αn = const(n,x), (23)

δn = δgδ(xn−1,n), (24)

τn = δ2gτ (xn−1,n), (25)

where we introduced the parameter δ → 0 which describes
how fast δn and τn approach zero; gτ (x,n) > 0, gδ(x,n) are
some functions which do not depend on δ and which we can
choose at will.

That is, we require that all τn, δn tend to zero as O(δ2) and
O(δ) respectively. This template is taken from consideration
of the case with the constant step size as shown in Appendix B.
The functions gτ (x,n) > 0 and gδ(x,n) provide “form factors”,
which determine the strength of measurement in dependence
on the system position x and n. Using Eqs. (21), (24), and (25),
we define a function g(x,t) as

g(x,t) = gδ(xn−1,n)

gτ (xn−1,n)

∣∣∣∣
n→t ; xn−1→x

. (26)

Using Eqs. (22) and (26) we derive, in a rather standard way,
the FP equation (see Appendix C for details and a description
of the general procedure in [42]):

∂tP (t,x) = −∂xJ (t,x), (27)

J (x,y) = μ(t,x)P (t,x) − ∂x(D(t,x)P (t,x)). (28)

Here

μ(x,t) = g(x,t)2 tanh (x), D(x,t) = g(x,t)2/2 (29)

FIG. 2. Diffusion D(x) (solid blue line), drift coefficient μ(x)
(dashed red line) and the effective potential V (x) (dotted yellow line),
normalized to a constant c = 0.1 for better visibility in dependence
on x according to Eq. (32). The asymptotic coordinates x �→, x�→
defined in Eqs. (34) and (35) are shown, with X = −10 in this case.
Asymptotic coordinates are useful when |x| is large, that is, as n→∞:
D(x), μ(x), and V (x) are significantly simplified in this case.

have now the meaning of the drift and diffusion coefficients,
respectively. In different coordinates, like θ or � the FP
equation conserves its form; only the drift and diffusion
coefficient are modified (see Appendix D).

This FP equation, as said, describes the dynamics of the
pure state |q〉 whose position on the line between |0〉 and |1〉
is described by the coordinate x. Stochastic distribution of the
position x is due to the unpredictable character of the weak
measurement sequence. The same FP equation describes also,
for instance, a Brownian heavily damped particle moving in
the potential

V (x,t) = −
∫ x

0
μ(x ′,t)dx ′ (30)

[28,45]. The average drift velocity 〈ẋ(t)〉 ≡ ∫ +∞
−∞

dx
dt

P (x,t)dx

can be obtained also as an average of J (x,t):

〈ẋ(t)〉 =
∫ +∞

−∞
J (x,t)dx. (31)

Note that here the spatial average is assumed, and 〈ẋ(t)〉 can
depend on t . For the case of g(x) = 1, that is, if the step size
in our random walk is state independent, we have

μ(x) = tanh(x), V (x) = ln [cos (x)], D = 1
2 . (32)

The corresponding functions μ, D, V are shown in Fig. 2.
The solution of Eqs. (27), (28), and (32) with the initial
condition P (0,x) = δ(x − X), where δ(x − X) is the Dirac
δ function localized at the arbitrary point X, can be found
analytically [23]:

P (t,x) = 1√
2πt

cosh x

cosh X
exp

(
− t2 + (x − X)2

2t

)
. (33)

B. Asymptotic FP equation

To make a semianalytic approach described in [28] working
(as described in the next section) we have to find the condi-
tions where, assuming g = const in Eq. (32), we have also
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μ = const. In our equations this is generally not the case
because of the tanh(x) factor. However, as one can see
from Fig. 2 and from Eq. (32), the deviation from this
condition decreases exponentially with |x| because | tanh(x)|
exponentially fast approaches 1. Also, as one can see from
Eq. (33), if we take the initial starting point X far away from
the origin X = 0, P (t,x) behaves very much like a normal
Gaussian distribution which shifts with time with the constant
unit speed away from x = X, and expands with the variance
σ 2 = t .

This allows us to consider the asymptotic behavior, as the
initial point X and thus x are far enough from the origin x = 0.
We thus introduce “shifted” coordinates x �→, x�→ as (see also
Fig. 2)

x �→= x + X, (34)

x�→ = x − X, (35)

where X  0 is a large arbitrary number. We will call
them “asymptotic coordinates”. For such defined variables,
neglecting the terms which are exponentially small with |X|
we have from Eq. (29)

μ(x �→,t) = −g(x �→,t)2, μ(x�→,t) = g(x�→,t)2, (36)

D(x �→,t) = g(x �→,t)2/2, D(x�→,t) = g(x�→,t)2/2, (37)

that is, the factor tanh (x), which was present in the diffusion
coefficient in Eq. (32), disappears. In the following, we will
consider only the case when x → −∞, and, correspondingly,
we restrict ourselves to the variable x �→(cf. Fig. 2). The
dynamics for the case of x → +∞ is obviously analogous,
only the overall drift direction will be the opposite as Eq. (36)
indicates. The asymptotic FP equation for this case coincides
with the original one, Eqs. (27) and (28), only written for the
asymptotic coordinate x → x �→:

∂tP (t,x �→) = −∂xJ (t,x �→), (38)

J (x �→,y) = μ(t,x �→)P (t,x �→) − ∂x �→(D(t,x �→)P (t,x �→)).

(39)

C. FP equation for periodically varying potential

In this section we focus on the case when g(x �→,t) changes
in space and time periodically. We assume g to have period L in
space x �→. In our new asymptotic coordinates, reformulation of
the FP equations (39)–(39) allows us to take advantage of such
periodicity [28]. Namely, we define the reduced quantities:

P̃ (x �→,t) =
+∞∑

j=−∞
P (x �→+ jL,t), (40)

J̃ (x �→,t) =
+∞∑

j=−∞
J (x �→+ jL,t). (41)

Obviously, P̃ (x �→,t) and J̃ (x �→,t) are finite and defined in the
range x �→∈ [−L/2,L/2]. Moreover, from Eqs. (40) and (41)
one can see that P̃ , J̃ are periodic in x �→:

P̃ (x �→,t) = P̃ (x �→+ L,t), J̃ (x �→,t) = J̃ (x �→+ L,t). (42)

In the asymptotic variables {x �→,t}, as it follows from
Eqs. (36) and (37), μ(x �→,t) and D(x �→,t) are periodic in space
with the same period L. Under these circumstances the FP
equation written for P̃ , J̃ remains the same as for P , J . That
is, we have

∂t P̃ (t,x �→) = −∂x �→J̃ (t,x �→), (43)

J̃ (x �→,t) = μ(t,x �→)P̃ (t,x �→) − ∂x �→(D(t,x �→)P̃ (t,x �→)),
(44)

where the coefficients remain the same as before, that is,
are given by Eqs. (36) and (37). The advantage of such
reformulation is that now we can consider only the finite
interval in x �→from, say, −L/2 to L/2. The equation for the
average drift velocity Eq. (31) also retains its form:

〈ẋ �→(t)〉 =
∫ L/2

−L/2
J̃ (x �→,t)dx. (45)

Remarkably, the direct definition of 〈ẋ �→(t)〉 as the average
of ẋ �→with the probability distribution P̃ (x �→,t) is not valid
anymore.

As an illustration of the dynamics appearing in the reduced
equations, we show in Fig. 3 the dynamics of P̃ (x �→,t), J̃ (x �→,t)
for the case of g(x �→,t) = const = 1 obtained using direct
numerical simulations of Eqs. (43) and (44) with the initial
condition P (x �→,t) ∝ exp (−x2 �→/0.1) and periodic boundary
conditions. The figure shows rather rapid homogenization of
P̃ (x �→,t), J̃ (x �→,t) in space because of the action of diffusion.
This homogenization illustrates an important peculiarity of the
reduced quantities: although the initial variables J , P have no

FIG. 3. The dynamics of the reduced asymptotic probability den-
sity P̃ (t,x �→) (a) and the current density J̃ (t,x �→) (b) for g(t,x �→) = 1
obtained by direct simulations of Eqs. (40) and (41), assuming
periodic boundary conditions and initial conditions described in text.
In contrast to the variables P , J , the FP equation in reduced variable
P̃ , J̃ do have a steady state, which is in this case a homogeneous
distribution.

042101-5



I. BABUSHKIN PHYSICAL REVIEW A 95, 042101 (2017)

steady state in their dynamics, the reduced quantities J̃ , P̃ do
have a steady state. In the case of Fig. 3 it is simply a constant
which does not depend either on t or on x �→.

IV. BROWNIAN RATCHETS

One of the most interesting phenomena in Brownian
flows is a possibility of so-called stochastic ratchets [27,28].
Namely, by manipulating dynamically the potential V (x,t) in a
Brownian flow, one can have nonzero average motion 〈ẋ〉 �= 0
even if the average force 〈μ〉 ≡ ∫

μ(x,t)dx is exactly zero (for
every t). Here, to simplify notations, we used the denotation
〈ẋ〉 for the time- and space average defined as

〈ẋ〉 ≡ 〈 ¯̇x(∞)〉, (46)

where

〈 ¯̇x(t)〉 ≡ 1

t

∫ t

0
〈ẋ(τ )〉 dτ (47)

is the “moving average” in time of the space average.
Alternatively, one can speak about a ratchet effect if a nonzero
initial force μ �= 0 can be canceled or even reversed by
introducing some periodic modulations of the potential. Both
of these definitions are visualized in Fig. 4.

In our case it is quite clear that the average flow defined
by μ = −1 (in the asymptotic case x → x �→) cannot be

FIG. 4. Schematic representation of the Brownian ratchet effect.
Without a ratchet effect (g = 1), a constant drift force μ leads to a net
movement 〈ẋ〉 = μ (black thin line). In contrast, when g changes in
space and/or time (but still 〈g〉 = 1), 〈ẋ〉 can be modified even though
the average force 〈μ〉 remains the same (blue solid and black dotted
lines). Although in many other systems the Brownian ratchet effect
can change the average direction of motion (see black dotted line), it
is not possible in the present case—the type of ratchet which we call
“weak ratchet.” In this latter case, 〈ẋ〉 can be modified but its sign is
not reversed (see blue line). The asymptotic values of μ and 〈ẋ〉 for
x → −∞ (that is, assuming asymptotic coordinates x �→) are marked
by dashed lines. Weak ratchet effect in the asymptotic case is marked
by a red arrow.

reversed. Otherwise, one would have a possibility to violate
the conservation law of 〈�〉 given by Eq. (19) by tuning, for
every particular trajectory, the potential in such a way that the
current system state is forced to move in the direction opposite
to μ and thus bring our system to any of the states |0〉, |1〉,
which would obviously violate Eq. (19).

Nevertheless, one can try to find a Brownian ratchet effect in
a weak sense, that is, to find such a function g(x �→,t) that the
the asymptotic value of 〈ẋ �→〉 > −1, despite 〈μ〉 = −1. The
notion of a weak ratchet effect, in comparison to a “normal”
stochastic ratchet, is visualized in Fig. 4 (blue line). Weak
ratchets are in close correspondence to the weak Parrondo
games, where the combination of lossy games leads to a less
lossy one, but still not to a winning one [30]. Of course, one
can always obtain zero movement velocity by simply putting
g = 0, that is, by reducing step size of the random walk to
zero. Here we want however to investigate the effects which
are independent on such raw step size reduction. To ensure this
we will always normalize g so that

〈g(t)2〉 = 1, (48)

where we define 〈g(x �→,t)2〉 as

〈g(t)2〉 ≡ 1

L

∫ L/2

−L/2
g(x �→,t)2dx �→. (49)

This condition excludes the possibility to reduce 〈ẋ �→〉 by
reducing the measurement strength globally. That is, if one
reduces the measurement strength near some point, one has to
increase it in the vicinity of some other one.

We will now try to construct a periodic in time and space
function g which allows us to reduce |〈ẋ �→〉|, making it as small
as possible.

We remark that several various types of stochastic ratchets
have been considered in the literature (see [28,29] and refer-
ences therein); their classification is based on the functional
form of D and μ. In many commonly studied hydrodynamic
Brownian flows μ and D can be varied quite independently—
in contrast to our situation where independent variation of D

and μ is impossible because of the common factor g. Our
situation closely resembles hydrodynamic Brownian ratchets
with varying friction [28,46–48]. The most studied class of
ratchets is so-called pulsating ones, where μ may vary in space
and time, whereas D is a constant. On the other hand, the
situations when both μ and D vary in space or, alternatively,
in time, were also considered under the names Seebeck or
temperature ratchets, correspondingly. They can be mapped,
by suitable change of variable, to the pulsating ratchets.

In our case, as one can see, the situation when g is changing
in time but not in space provides no possibility for any ratchet
effect. Namely, in this case Eq. (45) can be calculated directly
by integrating Eq. (44) with the boundary conditions Eq. (42),
giving 〈ẋ �→(t)〉 = −1. We have then P̃ → const = 1/L, that
is, full homogenization of P̃ will take place, exactly as in the
case of g = 1.

We can therefore consider the cases when μ and D change
both in time and space or only in space. For the presence of
the ratchet effect, the symmetry of the μ and D are of critical
importance. In general, “almost all” functions except the ones
processing certain particular symmetry properties allow the
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FIG. 5. Brownian ratchet effect for g(x �→,t) varying in space and time. (a) g(x �→,t), as given by Eqs. (50)–(53). (b),(c) Reduced asymptotic
probability density P̃ (x �→) and the current density J̃ (x �→) obtained by direct simulations of Eqs. (43) and (44) with periodic boundary conditions
and initial conditions as in Fig. 3. (d) Averaged current 〈ẋ �→(t)〉 in dependence on time.

ratchet effect [28,29]. Nevertheless, no analytical symmetry
relation is known, to our knowledge, for the case when both
μ and D are arbitrary functions of space and time. For the
case when μ and D are only space dependent, the situation is
simpler and is discussed in the next section.

One of the most well-known types of ratchets is an on-off
tilting ratchet, were the diffusion D is constant and the
asymmetric potential V is switched on and off. At the on
stage, the particle moves to the minimum of the potential
and therefore becomes well localized. When the potential is
switched off, diffusion leads to a broadening of the particle’s
wave packet. Switching the potential on again makes the
particle feel the force. If the potential is asymmetric, the force
is also asymmetric, leading to an average current.

Having in mind the above, we first probe functions g(x �→,t)
which have the following exemplary form:

g(x �→,t) = C(t){1 + F (x �→)f (t)}, (50)

where the function f (t) is periodic in time which models the
switch-on and -off behavior, and F (x) is periodic in space, but
might be asymmetric. The normalizing factor C(t) is obtained
from Eq. (48). To start with, we will try the following functions:

f (t) = {sgn[sin (t)] − 1}/2, (51)

F (x �→) = a[sin (x �→) + b sin (2x �→)], (52)

a = −0.6, b = −0.5. (53)

Here, f (t) works as a switcher which is active only half of the
period, a determines the “amplitude” of the periodic potential,
whereas b is selected here in such a way that the shape of
g resembles a “sawtooth” one, in order to introduce some
spatial asymmetry into the profile g. Indeed, this shape of
F is simply the decomposition of the ideal sawtooth shape
Fs(x) = ∑∞

n=1(−1)n sin nx/n which is cut after the second
term.

The resulting dynamics are plotted in Fig. 5. Namely,
the shape of g is presented in Fig. 5(a) whereas Fig. 5(b)
and Fig. 5(c) show the temporally and spatially resolved
probability and current. To calculate Fig. 5, the boundary
and initial conditions were taken as in Fig. 3. One can see
from Fig. 5(b) that when the space-varying potential is on,
the probability density P̃ concentrates in the regions where
g (and thus D, μ) is minimal. When it is off, the wave
packet starts to diverge (and at the same time is moving to the
negative direction of x �→). This behavior is thus different from
typical pulsating ratchets in the sense that when the potential
is switched on, the particle is localized in the minima of g (and
thus in the minima of D and μ, and not of the potential as it
happens in pulsating ratchets). In Fig. 5(d) one can see that the
current 〈ẋ �→(t)〉 approaches, after a short transition process, a
stationary regime of oscillations in time with a period 2π . The
long time behavior of 〈 ¯̇x �→(t)〉 [Eq. (47)] is shown in Fig. 6,
where it is seen that this average approaches ≈−0.86 instead
of −1 as in the case of constant g = 1, μ = −1, thus clearly
showing the ratchet effect.
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FIG. 6. Dependence of the moving temporal average 〈 ¯̇x �→〉 given
by Eq. (47) on the averaging time interval t . In the case of constant
g = 1 (orange dashed line) this quantity quickly approaches −1 (no
ratchet effect), whereas in the case of varying measurement strength
with the parameters Eqs. (50)–(53) (blue solid line) it approaches
≈ −0.86, demonstrating a weak Brownian ratchet. The effect strength
depends on the function shape. For instance, the green dotted line
shows the case Eq. (50) with the spatial dependence F (x) given by
Eq. (52) with a = −0.8, b = 0, and f (t) = sgn sin t .

To check the stability of the effect, simulations were made
for different functions f (t), F (x). For instance, in Fig. 6 the
case with b = 0 and f (t) = sgn[sin (t)] is also plotted. In this
case, the ratchet effect is definitely smaller but still persists. As
said, the condition Eq. (48) excludes the effect of bare step size
reduction in this random walk, demonstrating that the ratchet
effect is a dynamical phenomenon independent from the step
size.

V. SEEBECK RATCHETS AND DYNAMICAL
LOCALIZATION

In general, the ratchet effect can appear if D, μ change only
in space. In this case, one may have the diffusion D and the
potential V defined by Eq. (30) being not in phase [28], which
in our case is typically fulfilled, since D ∼ μ, μ = −∂xV

(that is, if D ∼ sin x, then V ∼ cos x; see also Fig. 8).
Such ratchets are typically known as Seebeck ones [28].
For Seebeck ratchets, an analytical condition exists which
determines the absence of the ratchet effect. In particular, if
we consider the case with no average force (〈μ〉 = 0) and if∫ L/2
−L/2 μ(x)/D(x)dx = 0, no ratchet effect is present [49,50].

In our case, 〈μ〉 �= 0 so that the condition above cannot be
applied directly. Nevertheless, we can, using the replacement
x �→→ x �→, t → t − x �→, reduce our equation to the case with
〈μ〉 = 0. In this case we have 〈ẋ �→〉 → 〈ẋ �→〉 + 1. Afterwards,
we can apply the above formula, which gives us the criterion
for the absence of the ratchet effect for our case in the form

1

L

∫ L/2

−L/2

1

g2(x �→)
dx �→= 1. (54)

That is, for a typical function g [which satisfies Eq. (48)] we
should expect the presence of a ratchet effect, unless Eq. (54)
is also valid. An exemplary profile of g which we use to test the
Seebeck ratchet numerically is given by Eq. (50) with f (t) = 1
and F (x �→) defined by Eq. (52) with

a = −0.8, b = 0, (55)

and is shown in Fig. 7(a). For such a function g, as one can
see in Fig. 7(b), the average current 〈ẋ �→〉 can be also larger
than −1; in the case of Fig. 7 it approaches ≈−0.2 as one can
see in Fig. 7(d). In this case, the initial distribution is quickly
rearranged to a stationary (but inhomogeneous) one.

Now, again, the system is located mostly near the minimum
of g. This allows interpretation of the Seebeck ratchet effect
in the present case in the terms of a “dynamical localization”.
Namely, let us observe the potential V (x �→) as shown in Fig. 8
(solid blue line). One can see that V (x �→) approaches a flat
region (where it is almost constant) close to x �→= π/2. That
is, there is almost no effective force at that point. If our
effective “particle” approaches this region, it nearly stops.
Nevertheless, the particle experiences some small drift to the
negative direction of x �→.

Going one step further, we consider now the case when
g = 0 at some point. In this case we also expect localization
shown in the previous example. But more interesting dynamics
will also appear as we will see below. In general, to observe
localization, it is not necessary to take the periodic potential
as it was in the previous example. We now consider the global
dynamics related to localization, and therefore we return back
from “asymptotic coordinate” x �→to the initial coordinate x

and thus to the FP equation as written in Eqs. (27) and (28).
We assume also for simplicity that g(x) approaches zero only
in one single point X, that is, g → 0 as x → X. Returning to
our initial qubit, the state |X〉 is given by

|X〉 = A|0〉 + B|1〉; (56)

A =
√

�(X), B =
√

1 − �(X), (57)

where �(X) is given by Eq. (11). As we will see later the
trajectory cannot cross |X〉 in this case. A state |x〉 located
between of |0〉 and |X〉 will approach either |0〉 or |X〉 as
t → ∞. Analogously, a state located initially between |X〉
and |1〉 will approach either |X〉 or |1〉 [see Fig. 9(b)]. We note
a similarity to the initial system with the state-independent
coupling strength g = 1 in this limiting dynamics [where
the limiting states are |0〉 and |1〉, see Fig. 9(a)]. One can
make this analogy exact by considering the FP equation in
coordinates �(x) defined in Eq. (11) which is given by (see
also Appendix D)

∂tP (t,�) = ∂��(D(�)P (t,�)) (58)

D(�) = 2(� − 1)2�2g2(�), (59)

so that the diffusion coefficient μ = 0 in these coordinates. We
remark that for |0〉 and |1〉 (� = 0 and � = 1 correspondingly)
D(�) = 0.

Let us make the denotation �(X) ≡ �X; we have thus
g(�X) = 0. We also consider only one case when the initial
state is in between |0〉 and |X〉, that is, x(t = 0) < X and
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FIG. 7. Seebeck ratchet and dynamical localization effect for g(x �→) dependent only on spatial coordinate. (a) g(x �→,t) given by Eq. (50)
with C(t) = const, f (t) = 1, and other parameters defined by Eqs. (52) and (55). (b),(c) Reduced asymptotic probability density P̃ (x �→) and
the current density J̃ (x �→) obtained by direct simulations of Eqs. (43) and (44) with periodic boundary conditions and initial conditions as in
Fig. 3. (d) Spatially averaged current 〈ẋ �→〉 in dependence on time.

�(t = 0) < �X [see Fig. 9(b), red lines]. In this case we can
obviously define such a function g̃(�) that

g(�) = �X − �

1 − �
g̃(�), (60)

FIG. 8. Diffusion D(x) (solid blue line), shift μ(x) (dashed red
line), and the effective potential V (x) (dotted yellow line, normalized
to a constant c = 0.1 for better visibility) in dependence on x �→with
g(x �→) being time independent, that is, given by Eq. (50) with C(t) =
const, f (t) = 1, and other parameters defined by Eqs. (52) and (55).

which is possible without singularities since 1 − � > 1 −
�X > 0. Here, g̃ � 0 does not anymore necessarily approach
zero as � → �X. Now, by making a variable change

�̃ = �/�X, t̃ = �2
Xt, (61)

FIG. 9. The limits t → ∞ of the weak measurement sequence in
the case of g = 1 (a) and in the case of g(x,t) such that g(x) → 0 as
x → X (b); the coordinate X corresponds to the qubit state |X〉. In
the former case, an arbitrary state |q〉 approaches either to |0〉 or |1〉,
whereas in case (b) the state may also have |X〉 as a limiting point.
Some states (such as |q〉) tend to either |0〉 or |X〉, the others (as |q ′〉)
approach |1〉 or |X〉.
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we arrive at a new FP equation:

∂t̃P (t̃ ,�̃) = ∂�̃�̃(D̃(�̃)P (t̃ ,�̃)), (62)

D̃(�̃) = 2(�̃ − 1)2�̃2g̃2(�̃), (63)

where g̃(�̃) = g̃(��X). One can see that Eqs. (58) and (59)
and Eqs. (62) and (63) are completely equivalent. That is, the
dynamics of the random walk between |0〉 and |X〉 and between
|0〉 and |1〉 can be one to one mapped to each other. In particular,
the dynamics of the random walk with g̃ = 1, that is, with
g(�) = (�X − �)/(1 − �), is completely equivalent to the
dynamics of the simplest random walk with g = 1. The system
with g̃ = 1 behaves near |X〉 in the same way as the system
with g = 1 near the state |1〉, for instance, the time of arrival
to the point |X〉 is infinite. This is obviously true for any other
bounded functions g̃ obeying Eq. (48) and such that g > 0.

This allows us also to calculate straightforwardly the
probability of the outcomes |0〉 or |X〉 (respectively |X〉 or
|1〉) as t → ∞. In our initial system with g = 1 the a priori
probabilities to have |0〉 or |1〉 would be given by �(x) and
1 − �(x), correspondingly, and, according to Eq. (19), also
do not depend on the measurement strength g(x,t) (unless g

approaches zero somewhere). By rescaling the latter situation
using Eq. (61) we see that starting from the state |x〉 we
reach |0〉 or |X〉 (respectively |X〉 and |1〉) with the probabili-
ties �̃(x) = �(x)/�X and 1 − �̃(x) = 1 − �(x)/�X. These
probabilities also do not depend on the measurement strength
(unless it approaches zero somewhere else at x < X). In the
same way, if |x〉 is in between |X〉 and |1〉, we obtain that the
probabilities to reach |X〉 or |1〉 are [�(x) − �X]/(1 − �X)
and [1 − �(x)]/(1 − �X) respectively.

VI. CONCLUSIONS

In the present article we have considered quantum tra-
jectories resulting from a sequence of weak measurements,
in the simplest one-dimensional settings, but assuming the
measurement strength depending on the step number n and
on the current state of the system described by the coordinate
x on the line. Of course, the current state cannot be inferred
from the measurement directly, in contrast to classical systems.
Nevertheless, if the initial state and the parameters of the weak
measurements are known, all the subsequent positions of the
system can be inferred from the sequence of the measurement
outcomes, and thus the conditional measurement strength can
be well defined.

Such measurement process, in the limit of infinitely small
steps, leads to a diffusive dynamics with both drift and
diffusion depending on the coordinate x and time t . In fact,
the dynamics arising in such a case is quite similar to, for
instance, an overdamped Brownian particle in a flow with a
varying friction coefficient. In this article we discussed the
nontrivial dynamics arising due to this analogy.

For instance, an exciting phenomenon arising in Brownian
flows is the stochastic ratchet effect, which allows us to “rec-
tify” Brownian motion using periodically varying potential.
Such potential does not introduce any net force by itself,
nevertheless allowing to push particles in the direction opposite
to the flow. As it has been shown here, in our case we can
achieve only a weak form of the stochastic ratchet effect.

That is, we cannot reverse the overall drift direction of the
quantum trajectories, but only slow down this motion. The
ratchet effect manifests itself in the localization of the particle
in the areas where the measurement strength is reduced and
thus the effective force is minimal.

Finally, we considered the case when the step size ap-
proaches zero as the system approaches some state |X〉. No
quantum trajectory can cross the singularity point arising in
this case. Moreover, the trajectories approach such singularity
in the infinite time in a similar way as they approach the “nor-
mal” basis states. The FP equation demonstrates remarkable
self-similarity in this case: the arbitrary quantum walk between
any subsequent zeros can be mapped to a quantum walk be-
tween |0〉 and |1〉 with the nonvanishing measurement strength.

The effects predicted here can be tested in the measurement-
only quantum control settings, such as, for instance, the
one recently realized experimentally using defect-in-diamond-
based qubits [2], but also in other setups where weak quantum
measurements or control, based on weak measurements, were
realized, for instance for photon-based [25], ultracold-atom-
based [1,9], or superconducting-based [3] qubits.

ACKNOWLEDGMENTS

The author is thankful to Niedersächsisches Vorab, Project
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APPENDIX A: DERIVATION OF THE EXPRESSION
FOR STEP SIZE

To derive the step size εi(xn) ≡ xn+1 − xn on the nth step
of our random walk, we use Eqs. (3)–(7) and the relation

sin2 θn = 1 + tanh xn

2
. (A1)

For instance, in the case when the measurement of the ancilla
|a〉 gives |0〉, we have from Eqs. (3)–(7)

sin θn+1 = sin θn cos (δ + α)/
√

p0, (A2)

and thus, using Eq. (A1):

1 + tanh xn+1

2
= (1 + tanh xn) cos2 (δ + α)

2p0
. (A3)

Hence, the expression for ε0(x) (redefining xn as x since xn is
arbitrary) is

ε0(x) = atanh

(
(1 + tanh x) cos2 (δ + α)

p0(x)
− 1

)
− x. (A4)

In the same way, if |a〉 collapses to |1〉 upon the measurement,
we have

sin θn+1 = sin θn sin (δ + α)/
√

p1, (A5)

and thus we obtain for ε1(x)

ε1(x) = atanh

(
(1 + tanh x) sin2 (δ + α)

p1(x)
− 1

)
− x. (A6)

Now we can calculate analytically the expression for
dεi(x)/dx, which, after some algebraic transformations, can
be shown to be zero. Thus, εi(x) = εi(0) ≡ εi and we can take
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x = 0 in Eqs. (4) and (6), thus obtaining expressions (14) and
(15).

APPENDIX B: QUANTUM TRAJECTORIES WITH
CONSTANT MEASUREMENT PARAMETERS

In the case of a constant x-independent step (and only in
this case) it is constructive to analyze εi , pi on a more general
level by introducing the “average step” μ(x):

μ(x)=μ0(x) + μ1(x), μi(x)=εipi(x), i =0,1. (B1)

μ defines an “average direction” of evolution: towards +∞ or
−∞.

Equations (B1) are simplified when δ is small (assuming
fixed α > 0), so we can decompose Eqs. (12)–(15) in series in
δ. In this case, up to the second order of δ we have

μ(x) = δ2 tanh (x) + O(δ3), (B2)

2μ0(x)=δ sin (2α)+δ2[4�(x) sin2 α−1]+O(δ3), (B3)

2μ1(x) = −δ sin (2α) + δ2[4�(x) cos2 α − 1] + O(δ3),

(B4)

where �(x) is given by Eq. (11). Since sgn x = sgn tanh x

Eq. (B2) demonstrates a “weak attraction” of the dynamics
to the nearest state as shown in Fig. 2. We also can define in
this case a quantity D, which has the meaning of a diffusion
coefficient:

D(x) = 1

2

∑
i

pi(x)ε2
i . (B5)

It is easy to see that in the limit of small δ (assuming α = const)
we have

D(x) = 1
2δ2 + O(δ3). (B6)

APPENDIX C: DERIVATION OF THE
FOKKER-PLANCK EQUATION

We derive the FP equation using the standard integral
approach [42]. Namely, we consider an arbitrary function
h(x) which has a finite support, that is, localized inside the
integration area and is zero together with all of its derivatives
for large enough |x|. We also assume that it is smooth enough.
Then, we write the expression for

∫
h(x)∂tP (t,x)dx, assuming

integration over the whole real axis:

τn

∫
h(x)∂tP (t,x)dx �

∫
h(x)[P (t + τ,x) − P (t,x)]dx,

(C1)

Expressing P (t + τn,x) through P (t,x) using Eq. (17) and
assuming t = ∑

n τn, replacing variables in two integral parts
as x → xi(x) followed by redefining xi → x, and finally
expanding h(x + ε) � h(x) + εh′(x) + ε2h′′(x)/2, we trans-
form the later expression into∫

P (t,x)

(∑
i

pi

(
h′(x)εi(x) + h′′(x)ε2

i (x)/2
)
)

dx. (C2)

Applying integration by parts we have finally∫
h(x){−∂tP (t,x) − ∂x[μ(x,t)P (t,x)]

+ ∂xx[D(x,t)P (t,x)]}dx = 0, (C3)

where

μ(x,t) =
∑

i

pi(x,n)εi(x,n)

τn

∣∣∣∣∣
n→t

, (C4)

D(x,t) =
∑

i

pi(x,n)ε2
i (x,n)

2τn

∣∣∣∣∣
n→t

. (C5)

For small δ and αn being constant for every n we have, up to
the second order of δ,∑

i

pi(x,t)εi(x,t) = δn(x)2 tanh (x) + O(δn(x)3), (C6)

∑
i

pi(x,t)ε2
i (x,t) = δn(x)2 + O(δn(x)3). (C7)

Taking into account Eq. (24), we finally arrive at Eqs. (26)–
(29).

APPENDIX D: FP COEFFICIENTS μ AND
D IN DIFFERENT COORDINATES

We may easily change the variables x → y(x) in the FP
equation by the known rule [51]

μ(y) = μ(x)∂xy(x) + D(x)∂xxy(x), (D1)

D(y) = D(x)[∂xy(x)]2. (D2)

In θ coordinates, given by Eq. (10), we have

μ(θ ) = −g2(θ ) sin (4θ )

8
, D(θ ) = g2(θ ) sin2 (2θ )

8
. (D3)

For the coordinates �(x) we obtain

μ(�) = 0, D(�) = 2(� − 1)2�2g2(�). (D4)

The last equation for μ(�) reflects the conservation of 〈�〉 as
given by Eq. (19).
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