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Multipartite entanglement detection with nonsymmetric probing
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We show that spin-squeezing criteria commonly used for entanglement detection can be erroneous if the
probe is not symmetric. We then derive a lower bound on squeezing for separable states in spin systems probed
asymmetrically. Using this we further develop a procedure that allows us to verify the degree of entanglement
of a quantum state in the spin system. Finally, we apply our method for entanglement verification to existing
experimental data, and use it to prove the existence of tripartite entanglement in a spin-squeezed atomic ensemble.
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Entanglement is a fundamental resource for proving the
nonclassicality of nature and is a key feature for developing
quantum technologies. It was first used experimentally for
proving the breakdown of local realism [1,2], and has now
become a practical ingredient in quantum information science
and metrology [3]. Therefore, it is crucial to discern between
separable and entangled systems. Unfortunately, this is not
always straightforward; even though several criteria exist
[4–6], it may be hard to experimentally verify that a state
is entangled. Hence, there is a need for simple, practical
procedures for proving that a system is entangled. An example
of such a criterion is spin squeezing [7–9], which has often
been used to probe entanglement in multiparticle systems [10].
One of its major advantages is that it relies on measuring
only two observables: the mean spin and the fluctuations
perpendicular to it. This makes it ideally suited for systems
where complete control over all degrees of freedom is hard to
achieve. Measuring that the noise is squeezed below a certain
bound is then a sufficient criterion for proving entanglement
[11–19]. Due to the simplicity of this approach, it has been
employed to show even multipartite entanglement in a wide
range of experiments [20–24]. However, an inherent assump-
tion in the entanglement criteria based on spin squeezing is
that all particles are probed with equal strength. In many
practical situations this is a very good approximation [21,23],
but in others this is far from reality. As an example, consider
a Gaussian beam probing a collection of trapped atoms. If
the waist of the laser beam is much smaller than the size
of the cloud, the atoms will have an asymmetric interaction
with the light. This asymmetry leads to minor modifications
of the interaction dynamics if suitable weighted operators
are introduced [25,26]. For entanglement detection in the
ensemble, however, the effect of such asymmetry may be much
more severe and has to be investigated.

In this Rapid Communication, we consider the effect of
asymmetric probing on the entanglement criteria. We first
consider a simple generalization of the standard squeezing
criterion and show that it is no longer a suitable method for
verifying entanglement. To overcome this problem we develop
entanglement criteria that can accommodate the asymmetric
probing of the particles. We show that our criteria are sufficient
for detection of bipartite entanglement as well as higher-order
multipartite entanglement. Finally, we apply these criteria to
a recent experiment [27] to show the existence of tripartite
entanglement in an atomic ensemble of cold, asymmetrically
probed Cs atoms.

In spin systems, the collective spin operator �J = ∑
i
�ji

is typically used to represent the observables of the system.
Here, operators �ji are the standard (pseudo)spin operators used
to describe the individual two-level systems with states |↑〉i
and |↓〉i (eigenstates of jz,i). In reality, however, the probing
may differ significantly from particle to particle, so that the
experimental setup rather measures the weighted spin operator

�S =
N∑

i=1

ηi
�ji, (1)

which accounts for the different probing strengths ηi of the N

particles.
To characterize spin squeezing, Wineland et al. [7] in-

troduced the squeezing parameter ξ 2, which describes the
improvement in spectroscopic resolution compared to using
coherent spin states |CSS〉 = ⊗N

i=1 |↑〉i . Generalizing the
derivation of Ref. [7], we find that in the case of asymmetric
coupling, the parameter ξ 2 takes the form

ξ 2
A = (�Sx)2

〈Sz〉2

[
(�Sx)2

CSS

〈Sz〉2
CSS

]−1

, (2)

where averages marked with “CSS” refer to the state
|CSS〉, and the subscript “A” stands for asymmetric. The
standard form ξ 2 = [〈Jz〉2

CSS/(�Jx)2
CSS]/[〈Jz〉2/(�Jx)2] =

N [(�Jx)2/〈Jz〉2] of the squeezing parameter is found by
setting all coefficients ηi = 1 in Eq. (1), so that �S → �J . Under
this constraint, ξ 2

A < 1 is a sufficient condition for proving
entanglement in the ensemble [11]. However, if the ηi are not
identical, the situation is different; to show this, we consider
the separable state

|ψ〉 =
N∏

i=1

|θi〉, (3)

where |θi〉 are single-particle states defined by |θi〉 ≡ eiθiJy |↑〉.
The average value of the spin along the z direction and the
variance along x are then given by 〈Sz〉 = ∑

i ηi〈ji,z〉 and
(�Sx)2 = ∑

i η
2
i 〈ji,z〉2, respectively. Employing the definition

of the CSS, we can derive the associated values to be 〈Sz〉CSS =∑
i ηi/2 and (�Sx)2

CSS = ∑
i η

2
i /4, so that we can express the

asymmetric squeezing parameter in terms of the mean spins
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and the ηi :

ξ 2
A({ηi}i ; {〈ji,z〉}i) =

(∑
i ηi

)2∑
i η

2
i

∑
i η

2
i 〈ji,z〉2(∑

i ηi〈ji,z〉
)2 . (4)

Now consider the distribution η1 = 1, ηi = ε 	 1 for all i =
2, . . . ,N and take a quantum state |ψ〉 such that ηi〈ji,z〉 =
ε for all i. Then, using Eq. (4) we get that to lowest order
in ε, ξ 2

A = 1
N

+ o(ε), meaning that there exists a separable
state for which ξ 2

A equals 1/N up to an infinitesimal quantity.
Moreover, this value can be shown to be the lowest possible
for a finite number of particles N . As a consequence of the
fact that ξ 2

A � 1 for a separable state, we conclude that the
simple squeezing parameter in Eq. (2) cannot be used for
verifying entanglement with asymmetric probing. To verify
entanglement in experiments, it is therefore essential to derive
new entanglement measures which are applicable to the actual
experimental setups.

In the following we develop new entanglement criteria for
spin systems probed asymmetrically. For this purpose we use
the Lagrange multiplier method of Ref. [12]. We are interested
in minimizing the variance of the spin along x for a given value
of the mean spin along z. We therefore minimize the Lagrange
function �(μ) ≡ (�Sx)2 − μ〈Sz〉, where μ is a Lagrange
multiplier. In this way a condition on entanglement can be es-
tablished by finding a lower bound on (�Sx)2 for a given value
of 〈Sz〉 for a separable state. To do this, the expectation values
of the operators Sx, S2

x , and Sz are evaluated for a separable
state density matrix defined by ρ = ∑

k pkρ
(k)
1 ⊗ · · · ⊗ ρ

(k)
N ,

where the pk are positive numbers such that
∑

k pk = 1. In
addition, for any k and i = 1, . . . ,N , ρ(k)

i is the density matrix
of the ith particle. Using this ρ, it is possible to derive the
average value for the spin 〈Sz〉 = ∑

k pk

∑N
i=1 ηi〈ji,z〉k and a

lower bound for the variance (�Sx)2 �
∑

k pk

∑N
i=1 η2

i 〈ji,z〉2
k .

For the latter, we have used 〈j 2
i,x〉 − 〈ji,x〉2 � 〈ji,z〉2 for spin 1

2
particles and Jensen’s lemma [28], which states that for a real
convex function f and normalized weights pk , f (

∑
k pkxk) �∑

k pkf (xk). We now minimize the Lagrange � function and
obtain the following entanglement criterion:

〈Sz〉 = 1

2

⎛
⎝∑

μ�ηi

μ +
∑
μ>ηi

ηi

⎞
⎠, (5a)

(�Sx)2 � 1

4

⎛
⎝∑

μ�ηi

μ2 +
∑
μ>ηi

η2
i

⎞
⎠. (5b)

The summations in the above two equations are to be taken
over {ηi}Ni=1 depending on whether they are smaller or bigger
than μ, as indicated explicitly. We emphasize that the found
minimum is tight in the sense that for every μ, there is an
associated state of the form given in Eq. (3), for which we
get the lowest possible variance (�Sx)2 associated with the
corresponding value of 〈Sz〉. This minimum is obtained by
having the weakly probed particles fully aligned along the
z axis, whereas the more strongly coupled particles have
their spins rotated away from this direction, such that they
point partially along the ± x axis. As a special case of this
result, we consider ηi = 1 for all i. Equations (5a) and (5b)

then give 〈Sz〉 = μN/2, (�Sx)2 = μ2N/4, and we recover the
standard quadratic curve (�Sx)2 � 〈Sz〉2/N used to define the
entanglement criterion ξ 2 < 1 with symmetric probing [12].

It is imperative to emphasize the importance of the
coefficients ηi . Even though Eqs. (5a) and (5b) give the
entanglement criterion we were aiming for, it strongly depends
on the distribution of ηi . This results in two important
consequences: first, since ηi depends on the experimental
setup, we cannot define a single squeezing parameter which
applies to all experiments. Second, we need to know each of
these coefficients or, alternatively, their probability distribution
p(η) to evaluate the entanglement criterion. Notice that if
the positions of the particles are fluctuating in time, their
contribution to the measurement will be proportional to the
average of the ensemble realizations. Hence Eqs. (5a) and
(5b) should be replaced by their average values, which can
be determined from the probability distribution function of
the coefficients. This in turn means that, as far as p(η)
remains unchanged during the measurement, fluctuations do
not represent a problem for our entanglement criteria.

To illustrate how Eqs. (5a) and (5b) can be used as an
entanglement criterion, we introduce a simple example for
p(η). Let us consider an atomic ensemble in a cylinder with
radius R. A Gaussian probing beam centered in the middle
interrogates the atoms along the axis of the cylinder. We
assume that the particles are uniformly distributed, so that

we have the probing coefficient η(x) = e
− x2

σ2 , where x is the

distance from the axis of the laser. In the interval η ∈ [e− 1
ν2 ,1]

we have p(η) = ν2/η, where ν = σ/R is the only parameter
characterizing such a model. Inserting this into Eqs. (5a) and
(5b) we find the entanglement criterion, shown by the solid
black line (first solid curve from the top) in Fig. 1(a). This curve
represents the lowest variance one can attain for a separable
state, and thus if a variance lower than this is measured for
the ensemble, it signifies that (at least) bipartite entanglement
is present in the system. Note that the mean spin and the
variance are normalized to the value obtained for the |CSS〉.
This corresponds to the procedure typically employed in the
experiments [24,29,30].

As evident from the plot, the dashed black line which
is obtained for symmetric probing of the atomic ensemble
significantly differs from the present case.

To better understand the dependence on the parameter ν,
we investigate the behavior in the extreme case ν 	 1, where
the probe is much narrower than the cylinder. Let us first
consider the limit 〈Sz〉/〈Sz〉CSS → 1. In this case the slopes
of the symmetric and asymmetric criteria will differ by a
factor of 2. This means that in this limit twice as much
squeezing is required to claim entanglement. In the other
extreme 〈Sz〉/〈Sz〉CSS → 0, the ratio between the minimal
noise in the symmetric and asymmetric case for a given 〈Sz〉
scales as 1/(2ν2), and can thus be arbitrarily large for ν → 0
(note that this limit also implies N → ∞, and hence this
does not contradict the lower limit of 1/N derived above).
This clearly shows the inadequacy of the squeezing parameter
ξ 2 as an entanglement criterion in the case of asymmetric
probing. The present example is motivated by the specific
physical systems of atomic ensembles probed by Gaussian
laser beams. However, spin squeezing is used in other physical
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FIG. 1. (a) Entanglement criteria for symmetric (dashed) and
asymmetric (solid) probing for an atomic ensemble in a cylinder
probed by a narrow Gaussian laser beam (ν = 0.3). The black,
red, magenta and blue (listed from the top) curves correspond,
respectively, to the minimum possible variance when allowing for
separable, n = 2, 5, and 20 particle-entangled states. The numbers
between the lines therefore express the smallest possible group of
entangled atoms in the corresponding regions. (b) Lower bounds
for the normalized variance with respect to the average spin for a
pair of atoms. The different curves correspond to different values of
the coefficients η2i−1 and η2i , and were determined using a general
wave function |ψ〉 = C↑↑| ↑↑〉 + C↑↓| ↑↓〉 + C↓↑| ↓↑〉 + C↓↓| ↓↓〉.
Along with η2i−1 and η2i , |ψ〉 fully specify the state of the system; we
can therefore use the complex numbers Ckl (k,l =↑ or ↓) as variables
in the Lagrange � function, and obtain the minimal noise for each
value of the mean spin, and η1 and η2. Letting the fraction η2i−1/η2i

vary continuously in the interval [0,1], we find that the minimal noise
is obtained for η1 = η2.

systems [31–33] as well, where the distribution may be even
more asymmetric, resulting in a larger difference between the
criteria.

Above we have established a criterion for showing the
existence of entanglement. We now extend this to multipartite
entanglement by allowing the particles to be entangled in
groups of n atoms. Thus, the violation of the minimum
obtainable variance for n particles will identify samples with
at least (n + 1) entangled atoms. Assuming for simplicity that
the total number of particles fulfill N = ln for some integer l,
we define the density matrix containing at most n entangled
particles to be given by

ρ =
∑

k

pk

N/n⊗
i=1

ρ
(k)
[n(i−1)+1],...,ni . (6)

As before, the pk’ represent probabilities, and ρ
(k)
n(i−1)+1,...,ni

is the density matrix of n entangled particles for any k,
i = 1, . . . ,N/n. In general, we should allow for permutations
between the atoms, but this does not change the result [34].
Moreover, generalizations to noninteger N/n can be done as
in Ref. [19]. As before, we evaluate the average spin 〈Sz〉 and
the variance (�Sx)2 for the density matrix in Eq. (6). We then

minimize the Lagrange function to find the (n + 1) particle
entanglement criterion.

We start by considering the simplest case of n = 2 entan-
gled atoms, for which ρ = ⊗N/2

i=1 ρ2i−1,2i . Generalizations to
any n can be done with minor adjustments which we specify
later. For clarity, we have omitted the summation over the
index k, which would in the end disappear from the equivalent
of Eqs. (9a) and (9b). Using this density matrix, it is possible
to obtain 〈Sz〉 = ∑

i〈Sz〉2i−1,2i and (�Sx)2 �
∑

i (�Sx)2
2i−1,2i .

Therefore a first expression for the minimization is given by

� =
N
2∑

i=1

{[
η2

2i−1 + η2
2i

4

]
(�Sx)2

2i−1,2i

(�Sx)2
CSS;2i−1,2i

−μ

[
η2i−1 + η2i

2

] 〈Sz〉2i−1,2i

〈Sz〉CSS;2i−1,2i

}
, (7)

where we have written it by renormalizing with respect to
the state |CSS〉, using (�Sx)2

CSS;2i−1,2i = (η2
2i−1 + η2

2i)/4 and
〈Sz〉CSS;2i−1,2i = (η2i−1 + η2i)/2. In Eq. (7), all contributions
in the sum refer to two (possibly entangled) particles only.
This means that by minimizing all of them independently,
we obtain a global limit for the whole state. Let us therefore
consider the contribution of a single pair described by the
coefficients η2i−1 and η2i . The minimum that the normalized
variance (�Sx)2

2i−1,2i/(�Sx)2
CSS;2i−1,2i can achieve for a given

value of the mean spin 〈Sz〉2i−1,2i/〈Sz〉CSS;2i−1,2i depends on
the ratio η2i−1/η2i . By minimizing the noise numerically we
find this minimum, shown in Fig. 1(b). As seen in the plot, the
minimum is achieved when the coefficients are equal: η2i−1 =
η2i . This in turn means that the corresponding minimization
curve is already known [12]

(�Sx)2
2i−1,2i

(�Sx)2
CSS;2i−1,2i

� 1 −
√

1 −
( 〈Sz〉2i−1,2i

〈Sz〉CSS;2i−1,2i

)2

. (8)

Inserting Eq. (8) into Eq. (7), and using that the minimum
is found for the coefficients ηi being pairwise equal, we can
rewrite the Lagrange � function for pairs of entangled atoms
and minimize it for a given μ. In this way we find that

〈Sz〉
〈Sz〉CSS

=
(

N/2∑
i=1

ηi

)−1 N/2∑
j=1

μ
2ηj√

η2
j + 4μ2

, (9a)

(�Sx)2

(�Sx)2
CSS

�
(

N/2∑
i=1

η2
i

)−1 N/2∑
j=1

η2
j

⎡
⎣1 − ηj√

η2
j + 4μ2

⎤
⎦ (9b)

is a lower bound on (�Sx)2/(�Sx)2
CSS for the given

〈Sz〉/〈Sz〉CSS, assuming that the particles are only entangled in
pairs. Hence the violation of this bound is a sufficient criterion
for proving tripartite entanglement. For the model introduced
above, we plot this criterion as the red solid line (second
solid curve from the top) in Fig. 1(a). Measurement results
below this line will therefore signify samples with at least
three-particle entanglement. The red dashed curve corresponds
to the case of symmetric probing of the ensemble. As for the
separable case, the difference between them is evident.

For higher multipartite entanglement (n > 2), the proce-
dure for obtaining the criteria is similar. The only differences
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reside in finding the condition on ηi for minimizing the
Lagrange function, and the analog of Eq. (8) for n > 2. To
do this, we need to determine the combination of coefficients
{η1, . . . ,ηn} which minimizes the Lagrange function for n

particles. For small n this can be done numerically by
minimizing the Lagrange function. The complexity of the
minimization, however, grows exponentially with n making
the problem intractable for large values. We have explicitly
done the minimization for all n � 8. We found that the
minimum is always obtained for the coefficients being equal,
similar to the n = 2 case. Assuming this to be a general
property valid for all n, we can seek the equivalent of Eq. (8).
For n > 2 a tight lower bound on the variance with respect to
the average spin is not known. However, since we consider all
ηi to be the same, we can use the results of Ref. [12], which
give two possible methods. The first one is to exploit the lower
bound:

(�Sx)2

(�Sx)2
CSS

� 1 + n

2

[
1 − 〈Sz〉2

〈Sz〉2
CSS

]

−
√[

1 + n

2

(
1 − 〈Sz〉2

〈Sz〉2
CSS

)]2

− 〈Sz〉2

〈Sz〉2
CSS

. (10)

This condition is not tight since in general one cannot find
a state which reaches the bound. For large n, however, the
bound in Eq. (10) is close to the true minimum. An alternative
method is to use a numerical procedure, which is efficient for
any even n and represents a tight lower bound [12]. With these
methods it is possible to rewrite the equivalent of Eq. (7) for
n entangled particles, as a function made of l = N/n n-uplet
contributions. These, in a similar way to the n = 2 case, can be
minimized one by one in order to find all the other multipartite
entanglement criteria, i.e., the equivalent of Eqs. (9a) and (9b)
for n > 2. Examples of these criteria are shown in Fig. 1(a) for
the simple model described above. The solid curves correspond
to the lower bounds for the variance that states with n = 5
(magenta, third solid line from the top) and n = 20 (blue,
bottom) entangled atoms cannot go below. The first one is
obtained through Eq. (10), the latter using the mentioned
numerical procedure.

As an application, we revisit the experimental results of
Ref. [27], and utilize our criteria to verify entanglement of
the atoms. In the experiment, an ensemble of �105 Cs atoms
was cooled and trapped in a far-off resonant trap (FORT).
These atoms were then probed with a two-color quantum
nondemolition scheme [26,35–38] that allows measuring the
variance and average spin. For applying our entanglement
criteria we need to know the atomic distribution in the
ensemble and the resulting statistics p(η) of the coefficients
ηi . We assume a thermal distribution of the atoms in the

ensemble of the form ρ(r,z) ∝ re
− V (r,z)

kbT [39]. Here, T is the
temperature, r represents the distance from the beam’s axis, kb

is the Boltzmann constant, and z is the longitudinal position.
The potential V (r,z) generated by the Gaussian FORT beam is

of the form V (r,z) = V0
ω2

t

t (z)2 exp [− 2r2

t (z)2 ]. In this equation,
V0 is the minimum of the potential, ωt the waist of the trapping

beam, and t (z) = ωt

√
1 + ( zλt

πω2
t

)
2

the spatially varying spot
size of the laser with wavelength λt . In the experiment the

FIG. 2. Entanglement and three-particle entanglement criteria for
the experiment described in Ref. [27]. The solid curves give bounds
on the variance assuming a separable state, while the dashed curves
give the bound when allowing for bipartite entanglement. The colors
blue (top), black (middle), and red (bottom) correspond respectively
to symmetric probing, asymmetric probing with no displacement, and
asymmetric probing with displacement between the FORT and the
probes. Parameters used are T = 50 μK, ωt = 50 μm, λt = 1032 nm,
ωp = 27 μm, λp = 852 nm, and V0/kB = 1.73 × 10−4 K.

sample was well described by a thermal distribution in the
radial direction r only, not in the longitudinal direction z,
since the atoms are loaded into the FORT at a well-defined
position and do not have time to expand to the full length of
the system. Thereby, the entanglement criteria we derive with
a thermal distribution are lower than the real ones, making
their violation harder. To find the coefficients ηi we use that
the intensity of the probe in the experiment was described by
a Gaussian profile [27]

η(r,z) = ω2
p

p(z)2
e
− 2r2

p (z)2 . (11)

The parameters ωp and p(z) are the waist and spot size
of the probing beam, and satisfy a similar relation as the trap
parameters ωt and t , except that the relevant wavelength here
is λp. We can now evaluate the coefficients ηi [34] according
to their probability distribution, and find the multipartite
entanglement criteria. This is shown in Fig. 2, where we also
include the experimental results of Ref. [27]. All of the required
parameters except the temperature can be directly derived from
the experiment [27]. To be conservative, we chose a value T =
50 μK, which is slightly higher than typical values in similar
setups [39]. This gives a more asymmetric distribution of the
coefficients ηi and thereby a more strict limit. Furthermore,
we consider a possible displacement d between the probe and
the FORT. Such a misalignment between the probing and the
trapping beams again results in lowering of the curve, making
it harder to detect entanglement. In the experiment the overlap
between the probe and the FORT was set by optimizing the
detected signal from the atoms. We therefore assign an upper
limit to the displacement of d = 11 μm, set by the requirement
that the signal is at least 90% of the maximal one.

As seen in Fig. 2 and highlighted in the inset, some
of the experimental points lie below the dashed (red and
black, lowest) curves. Since these curves correspond to the
lower limits obtained by allowing bipartite entanglement, this
signifies the presence of tripartite entanglement among the
atoms in the experiment.
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In summary, we have considered the problem of verifying
entanglement for spin systems subject to asymmetric probing.
In this case a naive generalization of the spin-squeezing entan-
glement criteria—derived for symmetric probing—cannot be
used to verify entanglement in the system. We have explicitly
derived new criteria for bipartite and multipartite entangle-
ment. A key feature of our procedure is that it can easily be
adapted to any setup once we know the probability distribution
of the coupling coefficients. We have demonstrated this by ap-
plying it to the experimental data of Ref. [27], proving tripartite
entanglement among the atoms in the ensemble. Our criteria
thus provide an effective means of detecting the degree of en-

tanglement in spin-squeezing experiments like atomic ensem-
bles. The procedure is, however, equally applicable to other
physical systems [21,31–33]. Moreover, since the improve-
ment of atomic clocks is related to the spin-squeezing parame-
ter, our results suggest that there exist unentangled states which
would give a better performance of atomic clocks than |CSS〉.
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