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In this paper we construct a type of cavity array, in each cavity of which multiple two-level atoms interact with
two independent photon modes. This system can be totally governed by a two-mode Dicke-lattice model, which
includes all of the counter-rotating terms and therefore works well in the ultrastrong coupling regime achieved in
recent experiments. Attributed to its special atom-photon coupling scheme, this model supports a global conserved
excitation and a continuous U(1) symmetry, rather than the discrete Z2 symmetry in the standard single-mode
Dicke-lattice model. This distinct change of symmetry via adding an extra photon mode strongly impacts the
nature of photon localization and delocalization behavior. Specifically, the atom-photon interaction features stable
Mott-lobe structures of photons and a second-order superfluid–Mott-insulator quantum phase transition, which
share similarities with the Jaynes-Cummings-lattice and Bose-Hubbard models. More interestingly, the Mott-lobe
structures predicted here depend crucially on the atom number of each site. We also show that our model can
be mapped into a continuous XX spin model. Finally, we propose a scheme to implement the introduced cavity
array in circuit quantum electrodynamics. This work broadens our understanding of strongly correlated photons.
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I. INTRODUCTION

Photons are excellent information carriers in nature and
generally pass through each other without consequence.
The realization of coherent manipulation and controlling of
photons allows us to achieve photon quantum information pro-
cessing [1] as well as to explore exotic many-body phenomena
of photons [2]. Cavity array [3–7], in which each single-mode
cavity interacts with a two-level atom, is a promising platform
to accomplish the required target and has now been considered
extensively [8–26]. This platform has a novel interplay
between strong local nonlinearities and photon hopping of
the nearest-neighbor cavities, which has a phenomenological
analogy to those of the Bose-Hubbard model [27–31] realized,
for example, by ultracold atoms in optical lattices [32]. More
importantly, however, compared with condensed-matter or
atomic physics, cavity array has the unique property that the
fundamental many-body phenomena depend crucially on the
intrinsic atom-photon coupling strength [3–7].

For the weak and moderately strong coupling regimes,
the counter-rotating terms of the single-site Hamiltonian are
usually neglected by employing the rotating-wave approxi-
mation. As a result, the property of cavity array is governed
by a Jaynes-Cummings-lattice model [3–7]. Since this Jaynes-
Cummings-lattice model preserves a global excitation number,
a series of Mott-insulator (MI) phases of photons forms a
lobe structure, and a second-order superfluid (SF)-MI zero-
temperature (T = 0) quantum phase transition takes place
across the edge of each lobe. This Mott-lobe structure makes
it a photonic counterpart of the Bose-Hubbard model [27–31],
which simulates massive bosons in lattice and also supports
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a similar lobe structure. However, it should be noticed that
a complete description of the light-matter interaction should
always incorporate the counter-rotating terms, especially
considering the fact that recent experiments of circuit quantum
electrodynamics (QED) have accessed the ultrastrong coupling
regime (i.e., the atom-photon coupling strength has the same
order of the photon frequency) [33–36], in which the rotating-
wave approximation totally breaks down. In such a case, a
proper description of the system dynamics should resort to a
Rabi-lattice model [37–41]. Since the counter-rotating terms
in the Rabi-lattice model break the conservation of excitation
number, there is, in principle, no similar MI as that of the
Bose-Hubbard model, and the transition between the SF and
MI should be replaced by the coherent and incoherent types
[38,39]. These essential changes of equilibrium properties
motivate us to ask a question: Could the Mott-lobe structure
still exist even though all of the counter-rotating terms of the
atom-photon coupling are taken into consideration?

In the present paper, we try to answer this question
by constructing a type of cavity array, in each cavity of
which multiple two-level atoms interact with two independent
photon modes. This system can be totally governed by a
two-mode Dicke-lattice (TMDL) model, which includes all of
the counter-rotating terms and therefore works well in the ultra-
strong coupling regime. Our focus is the ground-state property
of such a system. Unlike the single-mode Rabi-lattice model
[37–41], the considered TMDL model has a global conserved
excitation and a continuous U(1) symmetry. This distinct
change of symmetry via adding an extra photon mode induces
some interesting many-body physics of strongly correlated
photons. Specifically, the atom-photon interaction features
stable Mott-lobe structures of photons and a second-order SF-
MI quantum phase transition, which share similarities with the
Jaynes-Cummings-lattice [3–7] and Bose-Hubbard [27–31]
models. However, in contrast to these models, the Mott-lobe
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structures predicted here depend crucially on the atom number
of each site, reflecting its particularity among lattice models.
We also show that the TMDL model can be mapped into a
continuous XX spin model under proper parameter conditions.
Finally, motivated by recent experimental achievements of
cavity array [42–44] and multimode cavity [45–47] in circuit
QED, we propose a scheme to realize the TMDL model in a
two-mode superconducting stripline cavity array. This work
broadens our understanding of strongly correlated photons.

II. MODEL AND HAMILTONIAN

We study a photon lattice system composed of an array
of identical coupled cavities, inside each of which multiple
two-level atoms interact with two degenerate photon modes.
Such a system is governed by the TMDL Hamiltonian

ĤT =
∑

j

Ĥ TD
j − t

∑
〈j,k〉

∑
m=1,2

â
†
m,j âm,k, (1)

where the single-site Hamiltonian

Ĥ TD
j = ω

∑
m=1,2

â
†
m,j âm,j + ω0Ĵz,j

+ g[(â1,j + â
†
1,j )Ĵx,j + i(â2,j − â

†
2,j )Ĵy,j ]. (2)

In Hamiltonians (1) and (2), â
†
m,j and âm,j are the creation

and annihilation operators of the mth photon mode of site j ,
Ĵi,j (i = x,y,z) = ∑N

l=1 σ̂ l
i,j /2, with σ̂ l

i,j being the Pauli spin
operator, is the collective spin operator of site j , ω is the
frequency of the degenerate photon modes, ω0 is the atom
resonant frequency, g is the atom-photon coupling strength,
t is the hopping rate, and 〈j,k〉 denotes the photon hopping
between the nearest-neighbor sites j and k.

An intriguing feature of Hamiltonian (2) is that the spin
operator couples to the two independent photon modes via its
two orthogonal components Ĵx and Ĵy . It should be noticed that
this kind of atom-photon interaction is just the celebrated Jahn-
Teller E ⊗ e coupling in molecular and condensed-matter
physics [48], which has also been systematically studied from
the perspectives of cavity QED [49,50] and ion crystals [51].
Without the coupling term i(â2,j − â

†
2,j )Jy,j , Hamiltonian (2)

reduces to the standard single-mode Dicke model

Ĥ D
j = ωâ

†
1,j â1,j + ω0Ĵz,j + g(â1,j + â

†
1,j )Ĵx,j , (3)

and the corresponding Hamiltonian (1) is thus called the Dicke-
lattice model [52] (Rabi-lattice model for N = 1 [37–41],
with N being the atom number of each site). Obviously, since
the rotating-wave approximation is not employed, the TMDL
model is able to completely describe potential effects arising
from the counter-rotating terms and is therefore reasonable in
the ultrastrong coupling regime, which has been achieved in
current experiments of circuit QED [33–36].

The emergence of the so-called counter-rotating terms in
the Dicke Hamiltonian (3) reduces the conservation of its
excitation number, N̂s,j = Ĵz,j + â

†
1,j â1,j , to a parity � =

exp(iπN̂s,j ). However, by introducing an extra degenerate
photon mode â2,j , Hamiltonian (2) exhibits a special conserved

excitation [53],

N̂e,j = Ĵz,j + â
†
1,j â2,j + â

†
2,j â1,j , (4)

apart from the known conserved parity [54], even if the
rotating-wave approximation is not applied. When the photon
hopping is triggered on, this conserved local excitation N̂e,j is
replaced by a global one,

N̂e =
∑

j

N̂e,j =
∑

j

(Ĵz,j + â
†
1,j â2,j + â

†
2,j â1,j ), (5)

which manifests the U(1) symmetry of Hamiltonian (1). The
conserved global excitation N̂e and its induced U(1) symmetry
distinguish the TMDL model from the standard single-mode
Dicke-lattice model (with a discrete Z2 symmetry and without
conserved excitation). This complete change of symmetry is
expected to deeply impact many-body physics of strongly
correlated photons.

III. GROUND-STATE PHASE DIAGRAM

Since the knowledge of the single-site limit is crucial for
further understanding many-body physics, before proceeding,
we first catch some instructive insights into Hamiltonian (2). In
the absence of photon hopping (t = 0), the excitation density
commutes with Hamiltonian (1), i.e., [N̂e,j ,Ĥ

TD
j ] = 0, and

each eigenstate is thus characterized by a certain excitation
number. With an increasing system parameter, the level
crossings of the lowest eigenstates are expected to take place,
switching a definite excitation density of the ground state.
Armed with this argument, we plot the ground-state mean
excitation density, n = 〈N̂e,j 〉, of the single-site Hamiltonian
(2) as a function of g in Fig. 1. The evolution of n reflects a
conspicuous staircase, whose jump points are associated with
the crossover points of the lowest energy levels. For N = 1, n

remains a constant, whereas with increasing N , the staircase
appears and becomes more and more crowded, showing that
the level crossing occurs only for N � 2. This property is
remarkably different from the standard single-mode Dicke
model (3), where no staircase can be found for any N (see
the inset in Fig. 1), due to the nonconservation of its excitation
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FIG. 1. The ground-state mean excitation densities, n = 〈N̂e,j 〉,
of the two-mode Dicke model (2) as functions of g/ω for different
N . Inset: the mean excitation densities, ns = 〈N̂s,j 〉, of the standard
Dicke model. In these figures, we set ω0/ω = 1.
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density N̂s,j . Additionally, notice that n takes negative and
noninteger values, which is different from the known results
in the Bose-Hubbard model with only positive integer fillings.
This can be understood by investigating the definition of the
excitation density operator N̂e,j , which can be rewritten as
a more intuitive form, N̂e,j = Ĵz,j + b̂

†
1,j b̂1,j − b̂

†
2,j b̂2,j , with

respect to two new independent bosonic operators b̂1,j =
(â1,j + â2,j )/

√
2 and b̂2,j = (â1,j − â2,j )/

√
2. The minus

sign between b̂
†
1,j b̂1,j and b̂

†
2,j b̂2,j , together with the appear-

ance of the spin operator Ĵz,j , distinguishes N̂e,j from the
conventional particle operator in the Bose-Hubbard model,
and importantly, gives rise to the possibility of negative or
noninteger values of n. It is therefore more convenient to
visualize the lowest value of n, although negative, as zero
particle filling and so on for n with higher values.

We now pay attention to the TMDL Hamiltonian (1). By
applying a mean-field decoupling approximation [27], i.e.,
â
†
m,j âm,k = 〈â†

m,j 〉âm,k + 〈âm,k〉â†
m,j − 〈â†

m,j 〉〈âm,k〉, the many-
body Hamiltonian (1) reduces to an effective mean-field
Hamiltonian

ĤMF =
∑

j

Ĥ TD
j − zt

∑
j,m

[ψm(â†
m,j + âm,j ) − |ψm|2], (6)

where z denotes the number of nearest neighbors, and
ψm = 〈âm,j 〉 (m = 1,2) is the variational SF order parameter,
which is taken to be real for simplicity [8,55]. ψm can be
determined self-consistently by minimizing the ground-state
energy E(ψ1,ψ2) of the mean-field Hamiltonian (6) [8].
Notice that the explicit geometry of the lattice influences the
mean-field result only through the coordination number z. A
change of z amounts to a rescaling of the hopping rate t . For
clarity, in the following analysis we assume z = 3, which could
be, for example, a honeycomb lattice.

The effective mean-field Hamiltonian (6) reveals intimate
connections between the single-site Hamiltonian (2) and the
many-body properties. In general, even though the global
excitation N̂e is a conserved quantity, the excitation density
N̂e,j does not conserve, due to photon hopping. However,
as shown in Hamiltonian (6), if both ψ1 and ψ2 vanish, the
system dynamics is dominated by the single-site Hamiltonian
(2), and the photons at each site are thus effectively frozen
and characterized by a specific excitation number n. We
accordingly denote this case as a MI phase, in which the U(1)
symmetry is preserved. Whereas a U(1) symmetry-broken
phase, associated with the breaking of the conservation of N̂e,j ,
is symbolized by a nonzero value of ψm and can be anticipated
across a critical hopping rate tc(g). In this condition, the photon
mode m governs a macroscopic coherence over the lattice
and we have a SF phase of the mode m. It was generally
believed that the complete inclusion of the counter-rotating
terms would demolish the MI phase since they couple states
with different numbers of the dressed photons and therefore
inhibit the formation of photon blockade, which is crucially
necessary for the MI phase [37–40]. In such a case, the
notion “SF-MI” should be replaced by “coherent-incoherent”.
Nevertheless, the TMDL model we introduced here offers
a superb exception: although still breaking the conventional
conservation of N̂s,j , the counter-rotating terms in the TMDL

FIG. 2. Ground-state phase diagrams of Hamiltonian (6) in the
t − g plane with z = 3, when (a) N = 1, (b) N = 3, (c) N = 5,
and (d) N = 7. The MI phase is characterized by its lobes, each of
which supports a constant mean excitation density n = 〈N̂e,j 〉. For a
comparison, the phase boundaries of the Dicke-lattice model are also
shown by the red dashed curves. In these figures, we set ω0/ω = 1.

model preserve the hybridized two-mode excitation N̂e,j ,
attributed to the special atom-photon coupling scheme in
Hamiltonian (2), and thus retain the possibility to form the
SF-MI quantum phase transition.

Based on above considerations, we plot the ground-state
phase diagram in the t-g plane for different N in Fig. 2. These
results show two typical phases: the U(1) symmetry-preserved
MI with ψ1 = ψ2 = 0 and the symmetry-broken SF with
nonzero ψ1 and ψ2. A further analysis of ψm near the critical
point demonstrates that the transition between these two phases
is of second order. According to Landau’s theory [56,57], the
phase boundary of this continuous transition can be obtained
by a perturbation method, in which the ground-state energy
En(ψ1,ψ2) is expanded up to second order in ψm [14,39]. We
expand En(ψ1,ψ2) of the nth MI phase around the critical value
of the order parameter ψm = 0. The expanded ground-state
energy in powers of ztψ reads

En(ψ1,ψ2) = E(0)
n + E(2)

n + O(tzψ)4, (7)

where the second-order energy correction is

E(2)
n =

∑
m=1,2

(zt + z2t2Rm,n)|ψm|2 + 2z2t2Tnψ1ψ2. (8)

The coefficients Rm,n and Tn in Eq. (8) are derived from the
second-order perturbation theory by

Rm,n =
∑
k �=n

|〈n|(âm,j + â
†
m,j )|k〉|2

E
(0)
n − E

(0)
k

, (9)
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and

Tn =
∑
k �=n

[〈n|(â1,j + â
†
1,j )|k〉〈k|(â2,j + â

†
2,j )|n〉 + c.c]

2(E(0)
n − E

(0)
k )

, (10)

where E
(0)
k and |k〉 arise from the eigenequation Ĥ TD

j |k〉 =
E

(0)
k |k〉.
The critical hopping rate tc can be obtained by the following

procedure. (i) We first write a 2×2 Hessian matrix in terms of
Eq. (8), i.e., Mij = ∂2E(2)

n /∂ψi∂ψj , and then derive its two
eigenvalues ε1 and ε2. (ii) These two eigenvalues generate two
equations, ε1 = 0 and ε2 = 0, with respect to t . Each of these
equations, say εm = 0, supports a trivial solution tTm = 0 and
a nontrivial solution tNm �= 0. (iii) The critical transition point
is finally given by

tc = min
(
tN1 ,tN2

)
. (11)

The obtained boundaries are shown by the black solid
curves in Fig. 2. The most important finding, as expected,
is that the missing Mott lobes in the standard single-mode
Dicke-lattice model [37,38] (see the red dashed curve in Fig. 2)
reappear. More interestingly, our predicted Mott-lobe structure
depends crucially on the atom number N , which has no
counterpart in the Jaynes-Cummings-lattice [3–7] and Bose-
Hubbard [27–31] models (Note that the N -dependent phase
diagram for the Tavis-Cummings-lattice, which is nothing but
the Dicke-lattice after the rotating-wave approximation, has
been investigated previously [55,58,59]. In that case, the atom
number N only slightly shifts the phase boundary of each
lobe, rather than its total structure). Specifically, when N = 1,
the atom-photon coupling features only a single Mott lobe,
as shown in Fig. 2(a). With increasing N , however, more and
more Mott lobes emerge, as shown in Figs. 2(b)–2(d). This
N -dependent behavior of the Mott lobes is a direct legacy of
the N -dependent staircase of n governed by the single-site
Hamiltonian (2). In fact, since in the MI phase, the mean-field
Hamiltonian (6) equals the single-site Hamiltonian (2), there
exists a one-to-one correspondence between Figs. 1 and 2. As a
result, each Mott lobe is specified by a definite mean excitation
density n.

We emphasize that in the TMDL model, on the one hand,
no chemical potential is needed to engineer the Mott lobes,
which are here stabilized by the atom-photon coupling instead
[38,39]. This is in sharp contrast to both cases of the Jaynes-
Cummings-lattice [3–7] and Bose-Hubbard [27–31] models,
which are often studied within the framework of a grand-
canonical ensemble where a chemical potential is introduced
to fix the (conserved) number of excitations on the lattice
[8,14]. On the other hand, the standard single-mode Dicke- or
Rabi-lattice model does not support any conserved excitations,
due to the inclusion of the counter-rotating terms. This makes
the description of the grand-canonical ensemble irrelevant
to some extent and no well-defined chemical potential thus
exists [56,57]. However, the conserved excitation in the
TMDL model motivates us to introduce a chemical potential
μ and access a theory of the grand-canonical ensemble.
We now extend Eq. (1) to the following Hamiltonian in a

FIG. 3. (a) Ground-state phase diagram of Hamiltonian (12) in
the t-μ plane with z = 3 and (b) the corresponding mean excitation
density, n = 〈N̂e,j 〉, of the single-site limit as a function of μ/ω. In
these figures, we set g/ω = ω0/ω = 1 and N = 1.

grand-canonical ensemble:

ĤG = ĤC − μN̂e

=
∑

j

Ĥ GTD
j − t

∑
〈j,k〉

∑
m=1,2

â
†
m,j âm,k, (12)

where the on-site two-mode Dicke Hamiltonian becomes
Ĥ GTD

j = Ĥ TD
j − μN̂e,j . Following the same mean-field the-

ory, we plot the phase diagram in the t-μ plane in Fig. 3.
As shown in Fig. 3(a), the engineered chemical potential
μ still features the Mott lobes, which is a direct analog of
those of the Bose-Hubbard model [27–31]. Once again, a
clear interpretation of this lobe structure is still based on
the dynamics of the single-site limit, which is governed by
the Hamiltonian Ĥ GTD

j . As the chemical potential couples

to a conserved quantity N̂e,j in the Hamiltonian Ĥ GTD
j , the

eigenstates are independent of μ, due to the simultaneous
diagonalization of Ĥ TD

j and N̂e,j . Thus, the ground-state
competition leads to a staircase behavior of the excitation
density N̂e,j when varying μ, as shown in Fig. 3(b). And
accordingly, each Mott lobe in Fig. 3(a) is characterized by the
corresponding plateaus.

IV. EFFECTIVE SPIN MODEL: CONTINUOUS X X MODEL

It has been well established that the Jaynes-Cummings-
lattice model, respecting a U(1) symmetry, can be mapped
to a continuous XX spin model (the isotropic XY spin
model) [11,14], whereas the Rabi-lattice model with the
counter-rotating terms has been demonstrated to be in the
Ising universality class, owing to its discrete Z2 symmetry
[38,39,41]. As revealed in this paper, however, the inclusion
of the counter-rotating terms does not always break the
continuous symmetry. Especially, for our TMDL model,
the U(1) symmetry associated with the conserved excitation
number is a signature of its intimate connection with the
continuous spin model. To confirm this argument, we focus
on the system dynamics in the t-g plane, which is governed by
Hamiltonian (1). We first consider the case of N � 2, which
supports a multilobe structure in the phase diagram.

When parameters are tuned close to the degenerate point
in the MI phase with t � g, i.e., the boundary between two
nearest Mott lobes, we can truncate the Hilbert space to two
of the excitation number eigenstates |n〉 and |n + 1〉, where
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|n〉 denotes the eigenstate of the excitation density N̂e,j with
eigenvalue n (as verified numerically below, n varies only by
one across the degenerate point). Utilizing the commutation
relations between the photon annihilation operator âm,j and
the excitation number N̂e,j , we can map âm,j in the reduced
Hilbert space {|n〉,|n + 1〉} into

â1,j → α
̂−
j + β
̂+

j , â2,j → α
̂−
j − β
̂+

j , (13)

where 
̂+
j = |n〉〈n + 1| and 
̂−

j = |n + 1〉〈n| are the rede-
fined Pauli spin ladder operators, and the coefficients α and β

can be determined numerically (see Appendix A for details).
Therefore, the effective spin Hamiltonian of the TMDL model
reads

Ĥ = �

2

∑
i


̂z
i − J

∑
〈i,j〉

(

̂x

i 
̂x
j + 
̂

y

i 
̂
y

j

)
, (14)

where � is the energy gap between the two states |n〉
and |n + 1〉 and acts as a longitudinal field, and J =
2t(|α|2 + |β|2) is the isotropic exchange interaction. As
expected, we reproduce the continuous XX spin model even
though the counter-rotating terms are taken into account.

We now turn to the special case of N = 1, where only a
single Mott lobe exists. In this case, the mapping procedure
of N � 2 cannot be employed directly. However, similar to
Ref. [38], the energy gap between the two lowest energy levels
is of a higher-order small quantity, compared with the gap to
the next energy level in the ultrastrong coupling regime, and
the numerical calculation verifies that these two lowest levels
are still characterized by the two nearest excitation numbers
n and n + 1 (see Appendix B). Based on these facts, in the
ultrastrong coupling regime, we can still obtain the effective
Hamiltonian (14) in the subspace spanned by the two lowest
energy levels.

V. POSSIBLE EXPERIMENTAL IMPLEMENTATION

Having revealed some striking features of the two-mode
cavity array, we now turn to the experimental implementa-
tion of Hamiltonian (1). Motivated by recent experimental
achievements of cavity array [42–44] and multimode cavity
[45–47] in circuit QED, we propose a scheme, depicted
in Fig. 4, to implement the TMDL model. As shown in
Fig. 4(a), the structure we consider is a series of identical
circuit QED elements coupled through capacities. Each of
these elements simulates the single-site two-mode Dicke
model (2) and the capacitive coupling gives rise to the photon
hopping of different elements (the schematic diagram of cavity
array depicted here is a one-dimensional version for intuitive
reasons, but this coupling scheme is essentially applicable to
any other lattice geometries). The effective circuit diagram
of each element is shown in Fig. 4(b). A Josephson junction,
acting as an artificial two-level atom, is coupled to two different
superconducting stripline resonators.

We first focus on the circuit QED element labeled in
Fig. 4(a) with N = 1. According to the theory of circuit QED,
we can regard the flux φ and the charge Q as the canonical
coordinate and momentum, respectively. In this sense, the

Resonator A

Resonator B

atoms

Circuit QED element

(a)

t t

t t t

t

t

t

smotasmota

J

f

1L

2L
gC

JC

bL

aL

bC bC

aC aC
s
a

1s
b

s
b

i
b

i
a

Resonator B

Resonator A
aL aL

bC

bL

aC

bL

1s
b

FIG. 4. (a) Schematic diagram of our proposed two-mode cou-
pled circuit QED elements (black dashed line), one of which contains
a couple of superconducting stripline resonators and finite Josephson
junctions acting as artificial two-level atoms. The nearest two
elements are coupled through the series capacitance of the resonators
with a photon hopping rate t . (b) The effective circuit diagram of each
element. The fabricated artificial atom (black dashed line) is assumed
to be placed at a point, which is labeled by the superscript s of the
flux.

Lagrangian of a circuit QED element in Fig. 4(b) is written as

L =
∑

i

Cb

(
φ̇i

b

)2

2
+

∑
i �=s

[
Ca

(
φ̇i

a

)2

2
+ CJ

(φ̇J)2

2

+ C̃g

(
φ̇s

b + φ̇J

)2

2

]
−

∑
i �=s

[(
φi−1

a − φi
a

)2

2La

− (φf )2

2L1

− (φf − φJ )2

2L2
−

(
φs−1

a − φs
a − φf + φJ

)2

2La

]

−
∑

i

(
φi−1

b − φi
b

)2

2Lb

− EJ cos

(
φJ + φext

φ0

)
, (15)

where C̃g = Cg + Ca and φext is the external flux of the
Josephson junction. Notice that in deriving Eq. (15), the
relation φ̇s

a = φ̇s
b + φ̇J has been used. Moreover, in terms of

the Kirchoff’s law at the point, there exists an extra constraint
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relation φf = (L1La + L1L2)φJ /L
 + L1L2(φs−1
a − φs

a)/L
 ,
where L
 = L2La + L1La + L1L2.

Using Q
j

k = ∂L/∂φ̇
j

k , we obtain the expression of φ̇
j

k in
terms of Q

j

k , i.e.,(
φ̇J

φ̇s
b

)
= 1

C


(
Cb + C̃g, −C̃g

−C̃g, CJ + C̃g

)(
QJ

Qs
b

)
(16)

and

φ̇i �=s
m = 1

Cm

Qi �=s
m (m = 1,2 ), (17)

where C
 = C̃gCb + C̃gCJ + CJ Cb.
By means of Eqs. (15)–(17), together with the relation

between the Lagrangian and the Hamiltonian, we expand the
Hamiltonian of the circuit QED element as a sum of three
contributions, i.e.,

Hs = Hres + Hat + Hint. (18)

In Eq. (18), the Hamiltonian of the stripline resonator is given
by

Hres =
∑

i

[(
Qi

b

)2

2Cb

+
(
φi

b−φi−1
b

)2

2Lb

(
Qi

a

)2

2Ca

+
(
φi

a−φi−1
a

)2

2La

]

+
(

C̃g + CJ

2C


− 1

2Cb

)(
Qs

b

)2 −
(
Qs

a

)2

2Ca

+
(

L̃s

2L2

L2La

− 1

2La

)(
φs

a − φs−1
a

)2
. (19)

Since the last three terms in Hamiltonian (19) do not involve
a sum over sites, their contributions can be neglected in the
continuous limit, where the number of sites becomes infinite.
Based on this consideration, we obtain

Hres =
∑

i

[(
Qi

b

)2

2Cb

+
(
φi

b − φi−1
b

)2

2Lb

+
(
Qi

a

)2

2Ca

+
(
φi

a − φi−1
a

)2

2La

]
. (20)

The Hamiltonian of the artificial atom reads

Hat = C̃g + Cb

2C


(QJ )2 + L̃J

2L2

L2La

(φJ )2

−EJ cos

(
φJ + φext

φ0

)
. (21)

The interaction between the artificial atom and the resonator
is governed by the Hamiltonian

Hint = L̃c

2L2

L2La

φJ

(
φs

a − φs−1
a

) − C̃g

C


QJ Qs
b. (22)

In Eqs. (19)–(22), L̃J = L2
1L

3
2 + 3L2

1L
2
2La + 3L2

1L
2
2La +

3L2
1L2L

2
a + L2

1L
3
a + L1L

3
2La + 2L1L

2
2L

2
a + L1L2L

3
a −

2L
L1L
2
2 − 4L
L1L2La − 2L
L1L

2
a + L2


L2 + L2

La ,

L̃s = L2
1L

3
2 + L2

1L
2
2La + L1L

3
2La − 2L
L1L

2
2 + L2


L2,
and L̃c = 4L
L1L

2
2 + 4L
L1L2La − 2L2

1L
3
2 − 4L2

1L
2
2La −

2L2
1L2L

2
a − 2L1L

3
2La − 2L1L

2
2L

2
a − 2L2


L2.

We thus take the continuous limit of the canonical pa-
rameters in the superconducting stripline resonators, i.e.,
φi

m → φm(xi) and Qi
m → Qm(xi), and then promote them to

quantum operators obeying the canonical commutation rela-
tion [φ̂m(x),Q̂n(y)] = iδ(x − y)δm,n. Following the standard
quantization procedure in circuit QED [60], the quantized
canonical parameters are expressed as

φ̂m(xi) =
∑
no=1

√
ωm,no

LmD

noπ
cos

(noπxi

D

)(
âm,no

+ â†
m,no

)

+
∑
ne=2

√
ωm,ne

LmD

neπ
sin

(neπxi

D

)(
âm,ne

+ â†
m,ne

)
,

(23)

Q̂m(xi) = −i
∑
no=1

√
ωm,no

CmD

noπ
cos

(noπxi

D

)(
âm,no

− â†
m,no

)

− i
∑
ne=2

√
ωm,ne

CmD

neπ
sin

(neπxi

D

)(
âm,ne

− â†
m,ne

)
,

(24)

where ωm,n = nπ/(D
√

LmCm) is the eigenfrequency, D is the
length of the resonator, and no and ne are odd and even integers,
respectively.

When the external flux is set to φext/φ0 = π , the two-level
approximation of the Josephson junction gives that [61,62]

φ̂J ⇔ 〈↓|φ̂J |↑〉σ̂x, (25)

and

Q̂J ⇔ ω0

4eEQφ0
〈↓|φ̂J |↑〉σ̂y, (26)

with EQ = (C̃g + Cb)/(2C
), where ω0 is the resonant fre-
quency of the two-level system, | ↓〉 and |↑〉 are the two lowest
macroscopic states of the Hamiltonian Hat, and σ̂i (i = x,y,z)
is the Pauli spin operator spanned by these two macroscopic
states.

At low temperature, we only keep the mode resonant with
the artificial atom (i.e., n = 1) and neglect other nonresonant
terms. Under this single-mode approximation of the resonator
and the two-level approximation of the artificial atom, the
Hamiltonian of the considered circuit QED element is finally
expressed as

Ĥs = ω1â
†
1â1 + ω2â

†
2â2 + 1

2ω0σ̂z

+ g1(â1 + â
†
1)σ̂x + ig2(â2 − â

†
2)σ̂y, (27)

where

g1 = − L̃c

√
ω1/LaD sin(πxs/D)〈↓|φ̂J |↑〉

2L2

L2

, (28)

g2 = C̃gω0
√

ω2CbD cos(πxs/D)〈↓|φ̂J |↑〉
4πeEQφ0C


, (29)

ω1 = π

D
√

LaCa

, (30)

ω2 = π

D
√

LbCb

. (31)
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FIG. 5. (a) Phase boundaries for g2/g1 = 1, 1.02, 1.05, and 1.1,
when ω1/ω = ω2/ω = ω0/ω = 1. (b) Phase boundaries for ω2/ω1 =
1, 1.02, 1.05, and 1.1, when g1/g = g2/g = ω0/ω1 = 1. We set N = 3
and z = 3.

The tunability of the inductance and the capacitance of the
two superconducting stripline resonators allows us to set ω1 =
ω2 = ω and g1 = g2 = g0, under which Hamiltonian (27)
reduces to the single-site two-mode Rabi model. Using the
same procedure, Hamiltonian (27) can be extended straight-
forwardly to the case with several two-level artificial atoms,
i.e., the single-site two-mode Dicke Hamiltonian (2). When a
series of such circuit QED elements are coupled capacitively
with the hopping rate t [see Fig. 4(a)], the TMDL Hamiltonian
(1) can be achieved.

We emphasize that the improvement of current experimen-
tal techniques in the ultrastrong coupling circuit QED [33–36]
makes our proposal a promising candidate for exhibiting
relevant physics of the TMDL model.

VI. DISCUSSIONS

Up to now, our discussions have been restricted to the
cases of the degenerate photon modes (ω1 = ω2 = ω) and
the equal atom-photon coupling strengths (g1 = g2 = g). If
these conditions are not fulfilled, there would not be a strict
conservation law of N̂e, and an instructive question is whether
the Mott-lobe structure still exists in such a case or not. To
briefly show the influence of a slight deviation of these two
equalities, ω1 = ω2 = ω and g1 = g2 = g, we plot the phase
diagrams in the t-g plane for different ω2/ω1 [Fig. 5(b)] or
g2/g1 [Fig. 5(a)], when N = 3. It can be seen clearly from
these figures that a slight deviation of the ideal condition does
not break the Mott-lobe structure but merely shifts the phase
boundary.

VII. CONCLUSION

In summary, we have constructed a type of cavity array
system, which is governed by the TMDL model. This model
incorporates all of the counter-rotating terms of the atom-
photon coupling and therefore works well in the ultrastrong
coupling regime achieved in recent experiments. Unlike the
standard single-mode Dicke-lattice model, the TMDL has a
global conserved excitation and a continuous U(1) symmetry.
This distinct change of symmetry via adding an extra photon
mode strongly impacts the nature of photon localization
and delocalization behavior. Specifically, the atom-photon
interaction features Mott-lobe structures of photons and a

second-order SF-MI quantum phase transition, which share
similarities with the Jaynes-Cummings-lattice and Bose-
Hubbard models. However, the Mott-lobe structures predicted
here depend crucially on the atom number of each site,
reflecting its particularity among lattice models. We have also
shown that the TMDL model can be mapped into a continuous
XX spin model under proper parameter conditions. Finally, we
have proposed an experimentally feasible scheme to realize the
TMDL model in a two-mode superconducting stripline cavity
array.
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APPENDIX A: MAPPING â1, j AND â2, j

TO THE SPIN OPERATORS

We first notice that the commutation relations between
the photon annihilation operator and the excitation number
operator satisfy

[â1,j ,N̂e,j ] = â2,j , [â2,j ,N̂e,j ] = â1,j . (A1)

Taking these two equations into account, the matrix elements
of â1,j + â2,j and â1,j − â2,j in the basis of the excitation
eigenstates |n〉 and |m〉 are expressed respectively as

〈n|â1,j + â2,j |m〉 = 〈n|[â1,j + â2,j ,N̂e,j ]|m〉
= (m − n)〈n|â1,j + â2,j |m〉, (A2)

〈n|a1,j − a2,j |m〉 = −〈n|[â1,j − â2,j ,Ne,j ]|m〉
= (n − m)〈n|â1,j − â2,j |m〉. (A3)

To obtain a nonzero value of 〈n|â1,j + â2,j |m〉 (〈n|â1,j −
â2,j |m〉), we should have m = n + 1 (m = n − 1), and in the
reduced Hilbert space {|n〉,|n + 1〉}, the operators â1,j + â2,j
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FIG. 6. Low-lying spectrum of Hamiltonian (2) (in units of ω) as
a function of g/ω. Inset: the excitation numbers n of the two lowest
levels. We set ω0/ω = 1 and N = 1.
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and â1,j − â2,j thus read

â1,j + â2,j → 2α

(
0 0
1 0

)
⇔ 2α
̂−

j , (A4)

â1,j − â2,j → 2β

(
0 1
0 0

)
⇔ 2β
̂+

j , (A5)

from which we can straightforwardly obtain â1,j → α
̂−
j +

β
̂+
j and a2,j → α
̂−

j − β
̂+
j , i.e., Eq. (13) of the main text.

The coefficients α and β can be determined numerically.

APPENDIX B: NUMERICAL DEMONSTRATION OF
THE TWO-STATE SUBSPACE {|n〉,|n + 1〉} IN THE
ULTRASTRONG COUPLING REGIME FOR N = 1

Figure 6 shows the low-lying spectrum of Hamiltonian
(2) with N = 1, from which we can see clearly that the two
lowest energy levels become quasidegenerate in the ultrastrong
coupling regime. Moreover, as shown in the inset of this
figure, both of these levels support the well-defined excitation
numbers, whose difference remains one. This guarantees the
validity of the truncation of the Hilbert space to an effective
two-state subspace {|n〉,|n + 1〉} for a large g/ω.
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