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Nonlinear spectral phase induced by optical parametric chirped-pulse amplification
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Optical parametric phase (OPP), inherently induced in optical parametric chirped-pulse amplification (OPCPA),
will significantly degrade pulse compression in the few-cycle pulse regime. While OPP is a well-known nonlinear
phenomenon, its nonlinearity origin has remained unclear in physics. Here, we present a systematic theoretical
investigation on OPP and demonstrate that OPP originates from the cascaded quadratic nonlinearity in a broadband
OPCPA with intrinsic phase-mismatch. Because the intrinsic phase-mismatch is frequency dependent, OPP
manifests itself as a nonlinear spectral phase. We show that OPP increases with the parametric gain, approaches
to half the intrinsic phase-mismatch in the high-gain limit, and thus directly links with the crystal dispersion. We
also find that the effect of OPP in the spatial domain is typically negligible, which makes the OPP compensation
necessary only in the spectral domain. The results presented in this paper are of importance to guide the design
of few-cycle intense OPCPA systems.
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I. INTRODUCTION

The generation of few-cycle optical pulses has enabled
rapid progress in ultrafast science and attosecond physics
[1–3]. Further attractive developments in these areas would
benefit from the availability of intense few-cycle laser sources.
Therefore, there is a strong quest for broadband amplification
schemes to amplify few-cycle pulses. One promising scheme
is optical parametric chirped-pulse amplification (OPCPA)
[4,5], which combines the technologies of optical parametric
amplification (OPA) and chirped-pulse amplification (CPA).
The bandwidth of OPCPA can be typically made as large as
100–200 nm, in the visible and near-infrared region, by using
the noncollinear phase-matching (PM) configuration [6–8].
So far, sub-three-cycle OPCPA systems have been widely
demonstrated in both near-infrared and mid-infrared wave-
length regions [9–11]. To further enhance the amplification
bandwidth and efficiency, several variants of OPCPA have been
also explored, which include frequency domain OPA [12], adi-
abatic OPA [13,14], and quasiparametric amplification [15].

In contrast to traditional Ti:sapphire CPA lasers, the
amplified signal pulses from OPCPA inherently suffer excess
spectral-phase distortions besides the accumulated linear
phase from the crystal dispersion. In a broadband OPCPA,
only the central frequency of the signal satisfies the perfect
PM condition, and other frequency components will inevitably
experience a frequency-dependent phase-mismatch (intrinsic
phase-mismatch). This intrinsic phase-mismatch adds an ex-
cess spectral-phase distortion to the signal in OPCPA [16–20].
Such optical parametric phase (OPP) hampers ideal com-
pression of chirped signal pulses and necessitates additional
dispersion control on signal pulses. OPP was first theoretically
suggested by Ross et al. [16] and later on observed in OPCPA
experiments [17–19]. OPP exists only under a nonideal PM
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condition, varies with the pump intensity, and behaves as a
nonlinear spectral phase. Several crucial questions are then
raised: (1) what is the source of nonlinearity that governs
the OPP induced in a broadband OPCPA; (2) whether OPP is
space dependent or not when the pump intensity is nonuniform
across the beam profile; and (3) whether there is a quantitative
relationship between OPP and the linear phase shift, both of
which are related with the crystal dispersion. Answers to
these questions are essential to a deep understanding and
experimental compensation of OPP, which have not been
reported so far.

In this paper, we present a detailed theoretical investi-
gation on OPP, including its nonlinear origin, feature, and
compensation. We attribute OPP to the cascaded nonlinear
phase in a broadband OPCPA, and also link the magnitude
of OPP with the crystal dispersion. The paper is organized
as follows. In Sec. II, we begin with the numerical model
and the cascaded quadratic nonlinearity and then focus on
discussing the nonlinear origin of OPP. In Secs. III and IV, we
give detailed results for the feature and compensation of OPP,
respectively. Finally, we summarize all the results in Sec. V.

II. NONLINEAR ORIGIN OF OPP

As a large linear chirp is imposed on the broadband
signal pulse before it is launched onto the amplifier, OPCPA
is a fairly special case in which all the three interacting
waves are quasimonochromatic at each temporal slice. The
local approximation stays satisfied under the condition of
noncollinear PM (i.e., the group-velocity mismatch is negligi-
ble) [21,22]. A broadband OPCPA can be temporally sliced
into a group of independent narrowband OPAs with their
own instantaneous frequencies of signal and idler, while an
integration of these narrowband OPAs gives the performance
of broadband OPCPA. Naturally, the slowly varying envelope
approximation, valid for narrowband OPAs, can be well
applied to a broadband OPCPA. To numerically study OPP,
here we adopt the standard coupled-wave equations derived
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under the slowly varying envelope approximation [23]. In fact,
most numerical studies of broadband OPCPAs were based on
such a standard approach [16–19,24–26], whose validity has

been proven by experiments [17,18]. By taking the dispersion
terms up to the fifth order, the coupled-wave equations that
govern the OPCPA are given by
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In these equations, all the linear effects of diffraction and
dispersions are included in the left-hand side, and the quadratic
nonlinear interactions are described in the right-hand side. In
addition, both the temporal and spatial walk-off are neglected
in the Eq. (1) because the broadband noncollinear PM config-
uration and relative thin crystal are assumed. The signal, idler,
and pump are represented by s,i, and p, respectively, and their
angular frequencies satisfy a relation of ωp = ωs + ωi due
to energy conservation. �k0 = ks + ki − kp is the mismatch
among their wave vectors at central frequencies. n is the crystal
refractive index that follows the Sellmeier equation [27]. A is
the electric field envelope scaled by n1/2. deff is the effective
nonlinear coefficient, determined by the quadratic nonlinear
susceptibility χ (2)(ωp; ωs,ωi) in OPA. In the simulations, up
to the fifth-order dispersions are considered. The j th-order
(j = 2 − 5) dispersion coefficient βj = ∂ (j )k/∂ω(j ) represents
the group-velocity dispersion (GVD), third-order dispersion
(TOD), fourth-order dispersion (FOD), and fifth-order disper-
sion, respectively.

To quantitatively study the performances of OPA and
OPCPA, Eq. (1) was solved using the symmetric split-
step Fourier algorithm [28]. Since the essential physics
of OPP can be well revealed by a one-dimensional (1D)
model in the time domain, we performed most of the
following simulations with a simplified 1D model, except
that the spatial effects have to be considered. In the sim-
ulations, the pump laser was assumed to be Ip(x,t) =
Ip0exp[−(4 ln 2)(x/σp)2m]exp[−(4 ln 2)(t/τp)2m], where Ip0

is the peak intensity and σp = 5 mm(τp = 30 ps) is the beam
width (pulse duration). Specifically, a temporally super-
Gaussian (m = 4) pump pulse was adopted in the 1D model,
whereas a spatiotemporally Gaussian (m = 1) pump laser
was adopted in the two-dimensional model. In the broadband
OPCPA, a Gaussian seed pulse with a FWHM bandwidth of
�ν = 70 THz was chirped to a duration of τs = 10 ps. In the
conventional monochromatic OPA, a Gaussian pump pulse
with a duration of τp = 10 ps was used. In both cases, we
assumed deff = 2 pm/V and the crystal length of L = 5 mm.
The pump intensities were set to Ip0 = 4 and 15 GW/cm2,
corresponding to small-signal parametric gains of G0 = 103

and 107, respectively. For the calculations in Secs. II and III, the
GVD and TOD values are assumed as |β2| = 150 fs2/mm and
|β3| = 2000 fs3/mm, both of which are typical for β-BBO or
LiNbO3 crystals in the commonly utilized wavelength regions.

The three-wave nonlinear interactions based on quadratic
nonlinearity χ (2) are usually associated with frequency conver-
sion applications, such as second-harmonic generation (SHG)
and OPA. Notably, the effective χ (3) (3ω; ω, ω, ω) due to
cascading of χ (2) (3ω; 2ω, ω):χ (2) (2ω; ω, ω) has widely been
used in generating the third harmonic of laser beams using
two crystals. On the other hand, it was identified that quadratic
nonlinear processes can also induce nonlinear phase shifts
[29–32]. For example, an equivalent nonlinear refraction χ (3)

(ω; ω, ω, ω) can be obtained through χ (2) (ω; 2ω, −ω):
χ (2) (2ω; ω, ω) cascading, a combination of SHG based on
χ (2) (2ω; ω, ω), and its back-conversion of χ (2) (ω; 2ω,
−ω). Such a cascaded nonlinearity can simply be achieved
in a single crystal where both the processes of SHG and
its back-conversion take place under the phase-mismatched
situation. Because it involves sequential or cascaded quadratic
processes, this is referred to the cascaded nonlinearity. In an
OPA with phase-mismatch on the center frequencies (�k0 �=
0), the cascaded nonlinearity at signal frequency χ

(3)
eff (ωs) can

be obtained through χ (2)(ωs ; ωp,−ωi): χ (2)(ωp; ωs,ωi) cas-
cading, a combination of OPA based on χ (2)(ωs ; ωp,−ωi), and
its back-conversion of χ (2)(ωp; ωs,ωi). The cascaded nonlinear
phase at signal �ϕNL(ωs) can be analytically expressed by [31]

�ϕNL(ωs) ≈
{−�k0L

2 +tan−1
{
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2g

}
, (�k0 < 2g)

− g2L

�k0
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, (2)

where g = deffAp(0)
√

ωsωi/(c
√

nsni) is the gain coefficient,
and Ap(0) is the incident pump field. As clearly shown
in Eq. (2), the cascaded nonlinearity is resulted from
phase-mismatch and depends on the OPA gain.

To prove above analysis, we calculated and compared the
induced phases at signal in both a narrowband and a broadband
OPA according to Eq. (1). Note that the induced phase in a
phase-mismatched narrowband OPA is the so-called cascaded
nonlinear phase. The induced phases on signal are calculated
by subtracting the linear dispersion phase from the total output
signal phase. In other words, the induced phases are the phase
imposed on the signal in the presence of a pump, which is
vanished in the absence of a pump. In a narrowband OPA
with negligible dispersion effects, the cascaded nonlinear
phase only exists under the condition of phase-mismatch
(�k0 �= 0). In the case of �k0 < 2g, the cascaded nonlinear
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FIG. 1. Numerical results of the nonlinear phases produced in a narrowband OPA (a) and a broadband OPA (b). In both cases, the calculations
are performed under two gain levels of 103 (red solid curves) and 107 (black dashed curves), respectively. The intrinsic phase-mismatch �k(ωs)
in the broadband OPA is only contributed by idler dispersion (β3i = 2000 fs3/mm). Throughout the calculations, the crystal length L is fixed
at 5 mm and the incident signal intensity is set to be 10−10 of the pump intensity Ip0. The gain values of G0 = 103 and G0 = 107 are obtained
by adjusting the pump intensities Ip0 from 4 to 15 GW/cm2.

phase increases with �k0 and also increases with the OPA
gain, as suggested by Eq. (2) and shown in Fig. 1(a). In
a broadband (�ν = 70 THz) OPA with �k0 = 0, however,
the similar nonlinear phase still presents, increases with the
frequency deviation from the center frequency �k(ωs), and
also increases with the gain [Fig. 1(b)]. When �k0 > 2g, the
nonlinear phases in both a narrowband OPA and broadband
OPA decrease with the increase of the phase-mismatches, as
shown by the red solid curves in Fig. 1 and also implied
by Eq. (2). In contrast to the phase-mismatch for the center
frequencies �k0, we refer the phase-mismatch �k(ωs) due to
crystal dispersions to the “intrinsic phase-mismatch.” Such an
intrinsic phase-mismatch �k(ωs) can be simply expressed by

�k(ωs)=�k0+ ∂�k
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We neglect both the zero-order and the first-order terms in
above equation because a typical broadband OPA in the non-
collinear PM configuration satisfies both the phase matching
(�k0 = 0) and the group-velocity matching (∂�k/∂ωs0 = 0)
conditions [33,34]. �ω denotes the frequency detuning of the
signal and can be expressed as �ω = at for linearly chirped
pulses with a chirp coefficient a. As shown in the Eq. (3), the
intrinsic phase-mismatch �k(ωs) is contributed by the linear
crystal dispersions at both signal and idler wavelengths. Even
if there is no linear crystal dispersion at the signal wavelength
(i.e., βjs = 0,j = 2,3 . . .), the signal may still experience a
nonlinear phase due to the intrinsic phase-mismatch induced
by the linear idler dispersion [Fig. 1(b)]. As a narrowband
pump pulse was assumed (�ωp < �ω), the idler frequency
(ωi0 − �ω) has a one-to-one correspondence to the signal
frequency (ωs0 + �ω), which ensures an equal spectrum for
the idler and signal. Because the intrinsic phase-mismatch
�k(ωs) is frequency dependent, the nonlinear phase manifests

itself as a nonlinear spectral phase [Fig. 1(b)]. Notably, the
nonlinear spectral phase in a broadband OPA exhibits a same
value to the cascaded nonlinear phase in a narrowband OPA
with �k0 = �k(ωs), which suggests that the nonlinear spectral
phase induced by the intrinsic phase-mismatch �k(ωs) can be
attributed to the cascaded nonlinear phase.

From the above discussions, it is clear that both the
phase-mismatch for center frequencies (�k0 �= 0) and intrin-
sic phase-mismatch [�k(ωs) �= 0] can induce the cascaded
nonlinear phase shift in OPA. Next, we discuss the OPP
in a broadband OPCPA and link OPP with the cascaded
nonlinearity. The OPP in OPCPA was identified as the
cascaded nonlinear phase in the following procedure: first,
the OPP in a broadband phase-matched OPCPA (�k0 = 0),
as defined by previous works [16], was directly calculated by
using Eq. (1) with a seed signal in the form of chirped pulses;
second, as suggested by the local approximation [21,22], a
broadband OPCPA was viewed as an integration of a series
of narrowband OPAs in the domain of time (t) or frequency
(ωs), each of which corresponds to an incident signal with an
instantaneous frequency ωs(t), a slice of pump pulse Ap(t), and
a phase-mismatch given by Eq. (3). The cascaded nonlinear
phases of these OPAs were then calculated and compared with
the OPP. In the numerical calculations, the OPP and cascaded
nonlinear phase were obtained by subtracting the initially
imposed phase (chirp) from the one after amplification.

To simplify the discussion on OPP, we first consider the
crystal case with only idler TOD (β3i = 2000 fs3/mm) where
the signal will not experience a linear propagation phase from
the crystal dispersion. Both the OPP and cascaded nonlinear
phase were studied for two different parametric gains, as
shown in Figs. 2(a) and 2(b). By viewing OPCPA as a series
of narrowband OPAs as mentioned above, it is clear that
there is a spectral distribution of cascaded nonlinear phases
contributed by the intrinsic phase-mismatch [�k(ωs) �= 0].
On the other hand, the OPP in OPCPA, directly calculated
by solving Eq. (1), also presents as a spectral phase with a
zero value at the signal center frequency, where the phase
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FIG. 2. Comparison of OPP (green solid curves) and cascaded nonlinear phase (red scatters). (a) The calculated OPP and cascaded
nonlinear phase in an OPCPA with a third-order dispersion of idler (β3i = 2000 fs3/mm) and low gain (G0 = 103). (b) Same as (a), but in
the case of high gain (G0 = 107). (c) The calculated OPP and cascaded nonlinear phase in an OPCPA with a second-order dispersion of idler
(β2i = −150 fs2/mm) and low gain (G0 = 103). (d) Same as (c), but in the case of high gain (G0 = 107). The intrinsic phase-mismatch of
OPCPA is also labeled in all figures, which is directly related to the cascaded nonlinear phase. In all the calculations, the bandwidth of incident
signal is fixed at 70 THz, and other parameters are the same as their counterparts in Fig. 1.

matching is exactly satisfied [�k(ωs0) = 0], and increases
with the intrinsic phase-mismatch [�k(ωs) �= 0] as well as
the parametric gain G0. It is interesting that the OPP in
OPCPA matches exactly to the cascaded nonlinear spectral
phase in the quantity, and both their signs are opposite to the
intrinsic phase-mismatch as suggested by Eq. (2). The above
discussions lead us to conclude that the OPP induced in a
broadband OPCPA can be attributed to the cascaded nonlinear
phase. We further studied the crystal case with a GVD at idler
(β2i = −150 fs2/mm) and confirmed the conclusion again
[Figs. 2(c) and 2(d)].

In the crystal case with only idler dispersion, such as those
considered above, the amplified signal does not experience
a linear crystal dispersion. For a better understanding of the
signal phase after amplification, here we consider a crystal
situation with only signal dispersion, where the amplified
signal will experience both the crystal dispersion and OPP.
The simulation results are summarized in Fig. 3. We first
calculated the total output signal phase after amplification,
which has an identical sign and a smaller quantity compared
to the linear propagation phase. The difference between them
is OPP resulting from the cascade nonlinearity in a broadband
OPCPA. In the crystal case with a normal GVD [Fig. 3(a)]
and TOD at the signal [Fig. 3(b)], the generated negative OPP
will partly counteract the positive linear phase, resulting in
a relatively smaller output signal phase. In the crystal case
with an anomalous signal dispersion, both the OPP and linear

propagation phase will just change their signs accordingly,
thus also resulting in a smaller output signal phase. On the
other hand, the obtained OPP here is exactly the same as
its counterpart in Fig. 2 if the idler dispersion is set for
a same intrinsic phase-mismatch as that contributed by the
signal dispersion. Therefore, we can generally conclude that
the output signal phase after amplification is a sum of the linear
propagation phase in the crystal and the cascaded nonlinear
phase (i.e., OPP) induced in amplification.

III. FEATURES OF OPP

In this section, we study the influences of the small-signal
gain and pump depletion on OPP. To quantitatively illustrate
the OPP and link it to the various orders of linear crystal
dispersion, we expand the calculated OPP around the central
signal frequency similar to Eq. (3),

ϕ(ωs)=ϕ(ωs0)+α1(�ω)+ 1
2α2(�ω)2+ 1

6α3(�ω)3+· · · ,

(4)

where αj = ∂ (j )ϕ/∂ω(j ) is the j th-order OPP. In the following
calculations, we employ a parameter αj/(βjL) to characterize
the amount of OPP. For example, α3/(β3iL) indicates the ratio
of third-order OPP to the crystal TOD at idler.

First, we study the influence of the small-signal gain G0 on
OPP (Fig. 4). The dependence of OPP on gain G0 in the case
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FIG. 3. Comparison among the linear phase (black dashed curves), the output phase after amplification (red dotted curves), and OPP (purple
solid curves) for different signal dispersions. In (a), β2s = 150 fs2/mm, and in (b), β3s = 2000 fs3/mm. The signal bandwidth and OPCPA gain
are 70 THz and G0 = 107, respectively, and the other parameters are the same as their counterparts in Fig. 2.

of signal GVD [blue solid curve in Fig. 4(a)] is the same as that
of signal TOD [blue solid curve in Fig. 4(b)]. Moreover, the
phase characteristic of OPP is the same as that of the imposed
crystal dispersion but exhibits an opposite sign. Taking the
signal GVD case as an example, the generated OPP presents
a phase characteristic as like the GVD-resulted linear phase,
i.e., the OPP can be fully characterized by the second-order
phase term (α2) in Eq. (4) that has a characteristic the same as
GVD. The OPP magnitude increases with G0 and approaches
to half the signal dispersion in the high-gain regime (e.g.,
G0 > 105). In the crystal case with idler GVD [red dashed
curve in Fig. 4(a)], a similar conclusion is expected, i.e., the
OPP has a same phase characteristic and opposite sign with
those of the linear idler dispersion. However, in the crystal case
with idler TOD [red dashed curve in Fig. 4(b)], the OPP has
a same sign with the linear idler dispersion even though they
show a same phase characteristic. Such a rule of OPP signs can
be easily understood by Eq. (3), where the idler TOD has an
opposite contribution compared to that of the signal TOD. In
summary, a general conclusion can be deduced that the OPP
magnitude in the high-gain limit is nearly half the intrinsic
phase-mismatch, i.e., ϕ(ωs) ≈ −�k(ωs)L/2.

Second, we study the influence of pump depletion on OPP
by adjusting the seed signal intensity [Fig. 5(a)]. Because a
high gain of G0 = 107 was adopted in the simulations, the OPP

is nearly half the imposed idler GVD and remains unchanged
with varied seed signals until significant back-conversion
occurs. In the strong seeding regime (Is/Ip0 � 10−4) where
the OPCPA efficiency is severely degraded by the effect of
back-conversion, the OPP magnitude can dramatically deviate
from that in a conventional OPCPA. This is because that
the OPP characteristic (i.e., the phase profile in the spectral
domain) will be distorted by the back-conversion effect and
thus no longer determined by a single parameter α2. As shown
in Fig. 5(b), the profile of OPP in the strong seeding regime
is severely deviated from a α2-determined parabolic shape.
Actually, in this situation, there are higher-order dispersion
components in the distorted OPP, and an extension up to the
sixth-order term will give a better fitting to the OPP.

Finally, we study the spatial dependence of OPP. As
discussed in Sec. II, the OPP magnitude is determined by
the parametric gain and thus might be spatially dependent
when the pump beam is nonuniform. A spatiotemporal two-
dimensional code and a Gaussian pump beam with σp = 5 mm
were used in the calculations. Figure 6 depicts the distributions
of spectrum and phase in the crystal case with only idler
dispersion. While OPP in the spectral domain [Figs. 6(b)
and 6(c)] is quite similar to those calculated by using a 1D
code, the OPP in the spatial domain [Figs. 6(b) and 6(d)] is
surprisingly independent of space. For instance, the two OPP

(a) (b)

100 101 102 103 104 105 106 107 108 109
-0.5

-0.4

-0.3

-0.2

-0.1

0.0

2/(
2s
L)

G
0

With
2s

With
2i

-0.5

-0.4

-0.3

-0.2

-0.1

0.0

2/(
2i
L)

100 101 102 103 104 105 106 107 108 109
-0.5

-0.4

-0.3

-0.2

-0.1

0.0

3/(
3s
L)

G
0

With
3s

0.0

0.1

0.2

0.3

0.4

0.5

3/(
3i
L)

With
3i

FIG. 4. The OPP coefficient (normalized to the imposed crystal dispersion) versus small-signal gain G0. In (a), β2s = 150 fs2/mm (blue
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values at the beam center (x/σs = 0) and beam edge (x/σs =
0.2) are almost identical, despite that the pump intensities
at these two positions are largely different [Fig. 6(c)]. Such
an interesting feature of OPP can be simply understood by
the result shown in Fig. 4(a): in the high-gain limit, the OPP
approaches to a constant value of half the imposed crystal
dispersion. For the same reason, the OPP values at a fixed
frequency (�ν/�ν0 = 0 or �ν/�ν0 = 0.25) are also nearly
constant in the spatial domain [Fig. 6(d)].

IV. COMPENSATION OF OPP

In previous sections, the nonlinear origin of OPP and
its magnitude have been studied, which will significantly
degrade pulse compression in the few-cycle pulse regime.
Here, we study the OPP and its compensation in a typical
noncollinear OPCPA system based on a β-BBO crystal.
The major simulation parameters are listed in Table I.
In this case, the residual phase-mismatches up to a fifth-
order term (∂�k/∂ωs0,∂
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parameters are the same as their counterparts in Fig. 2.
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TABLE I. The simulation parameters for a noncollinear OPCPA
in a β-BBO crystal.

Parameter Value

Seed Central wavelength 800 nm
Frequency bandwidth (�ν) 70 THz
Temporal chirp coefficiect (a) 44 ps−2

Input intensity 4.5 kW/cm2

Pump Wavelength 532 nm
Intensity 15 GW/cm2

β-BBO Length 5 mm
Phase-matching angle (θ ) 23.96°
Noncollinear angle between 2.48°

signal and pump

and ∂5�k/∂ω5
s0) were calculated to be 0 fs/mm, −20 fs2/mm,

−358 fs3/mm, − 1583 fs4/mm, and −9642 fs5/mm, respec-
tively. The transverse effects were neglected in the simulations
by assuming a relatively large beam width (i.e., 5 mm).

Figure 7(a) shows the amplified signal spectrum and its
spectral phase induced by the OPCPA process. Here, we
assume that the pulse compressor cancels the dispersion
imposed by the stretcher and also the GVD of the β-BBO
crystal. The OPP is quite flat around the central frequency and
is dominated by TOD and higher-order dispersions because
both the group-velocity mismatch and GVD can be neglected
in the noncollinear PM configuration. On the other hand, as
discussed in the previous sections, the generated OPP in the
high-gain (G0 = 107) situation is nearly half the intrinsic

phase-mismatch due to crystal dispersion. In addition, because
of a large PM bandwidth (∼100 THz) in the noncollinear
configuration, the amplified signal spectrum is broadened
from its incident value of 70 THz to 92 THz, which may
support a Fourier-transform (FT) limited pulse duration of ∼8
fs, as shown in Fig. 7(b). The presence of OPP results in a
longer compressed pulse of ∼11 fs and a ∼36% reduction of
peak intensity. Thus, it is necessary to compensate OPP in a
practical few-cycle OPCPA system.

We study the compensation of OPP up to the third-order,
fourth-order, and fifth-order dispersion, respectively. As ex-
pected, OPP compensation can significantly improve the pulse
compression and thus the peak intensity. Figures 7(c) and 7(d)
present the residual spectral phases and the corresponding
compressed pulses after compensating OPP, respectively. In
the case with OPP compensation up to the third-order (the
fourth-order) term, a pulse duration of ∼9.5 fs (∼8.5 fs)
can be achieved with a peak intensity improved by ∼21%
(∼25%). The OPP can be fully compensated by dispersion
compensation up to the fifth-order term, which corresponds
to a FT-limited pulse of ∼8 fs after pulse compression. The
results show that the OPP compensation needs additional
management of TOD and even higher-order dispersions in
few-cycle OPCPA systems, even though the noncollinear PM
configuration is employed.

V. CONCLUSIONS

In a broadband OPCPA system, the nonlinear spectral
phase, termed as OPP, is inevitably produced by the intrinsic
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phase-mismatch due to crystal dispersions. By viewing
OPCPA as a series of narrowband OPAs in the time domain
with individual signal instantaneous frequencies, we have
linked OPP to the cascaded nonlinear phase shifts due to
intrinsic phase-mismatch and verified that OPP originates from
the cascaded quadratic nonlinearity. Based on the numerical
studies, we have shown that the phase characteristic of OPP
is the same as that of the imposed crystal dispersion. The
total output signal phase after amplification is a sum of
OPP and the linear propagation phase in the crystal. In
the crystal case with signal dispersion, the OPP and linear
crystal dispersion always have opposite signs, and thus they
can be partially compensated to each other. In the limit of
high parametric gain, the OPP magnitude can be simply
linked to the crystal dispersion, which is nearly half the
intrinsic phase-mismatch. According to the study on a typical
noncollinear OPCPA system based on a β-BBO crystal, the
OPP can significantly affect the pulse compression and thus

necessitates an additional dispersion compensation of signal
pulses. According to the quantitative relationship between
OPP and the crystal dispersion in the high-gain regime, the
effect of OPP in the spatial domain is negligible, which
makes the OPP compensation necessary only in the spectral
domain. The results presented in this paper will be crucial to
a deep understanding and experimental compensation of OPP,
which may further promote the progress of few-cycle intense
pulses.
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