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Generation of monocycle squeezed light in chirped quasi-phase-matched nonlinear crystals
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We present a quantum theory of parametric down-conversion of light in chirped quasi-phase-matched second-
order nonlinear crystals with undepleted quasimonochromatic pump. This theory allows us to consider generation
of ultrabroadband squeezed states of light and is valid for arbitrary, sufficiently slowly varying nonlinear poling
profiles. Using a first-order approximate quantum solution for the down-converted light field, we calculate the
squeezing spectra and the characteristic squeezing angles. We compare the approximate solutions with the exact
and numerical ones and find a very good agreement. This comparison validates our approximate solution in
the regime of moderate gain, where the existing approaches are not applicable. Our results demonstrate that
aperiodically poled crystals are very good candidates for generating ultrabroadband squeezed light with the
squeezing bandwidth covering almost all the optical spectrum and the correlation time approaching a single
optical cycle.
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I. INTRODUCTION

Squeezed light is a nonclassical electromagnetic field at
optical frequency with the fluctuations of one quadrature
component below the level of the vacuum fluctuations within
certain frequency bandwidth. Squeezed light is one of the
central objects of study in modern quantum optics, being,
on the one hand, a macroscopic object with substantially
quantum properties and, on the other hand, a valuable re-
source for metrology, quantum communication, and quantum
information processing [1]. Both the degree of squeezing
and the squeezing bandwidth are important for potential
applications of squeezed light. To date, successful generation
has been reported of continuous-wave optical beams with
15 dB squeezing in a band of about 100 MHz [2] and 2 dB in a
band of 1.2 GHz [3]. Experiments with pulsed light reach
the bandwidth of several terahertz [4–7] and even tens of
terahertz [8].

In our recent paper [9] we gave a theoretical description of
a method allowing for generation of squeezed light with the
squeezing bandwidth comprising the whole optical spectrum,
i.e., hundreds of terahertz. After a proper compensation
of the phase, such light would demonstrate a monocycle
two-mode squeezing with the sideband-frequency quadrature
components quantum correlated at the time scale of a single
optical period. The proposed method is based on parametric
down-conversion (PDC) of light in an aperiodically poled
nonlinear crystal with quasi-phase matching (QPM) in a broad
band of frequencies, resulting from a linear chirp of the spatial
frequency of the poling. Such crystals are widely used for
parametric amplification of ultrashort pulses of light [10–15]
and also for generation of photon pairs with a correlation time
of the order of one optical cycle [16–20].

In the present article we develop a general quantum theory
of generation of ultrabroadband squeezed light by PDC of light
in aperiodically poled crystals. Our purpose is twofold. First,
we provide a detailed description for the analytic solution of the
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case of linear chirp, presented in Ref. [9], where many details
were omitted. Second, we present an approximate solution
for the quantum field in a quasi-phase-matched nonlinear
crystal, which is important for qualitative understanding of
the underlying physical processes and for crystal design
in practical applications. Our theory is valid for arbitrary
nonlinear poling profiles, which should be sufficiently slowly
varying, and for both low and high parametric gains. We
compare the approximate analytical solution with exact and
numerical ones for linear and quadratic-hyperbolic quasi-
phase-matched poling profiles and find a very good agreement
within the amplification band.

Our approach is conceptually close to the classical de-
scription of optical parametric amplification in QPM media
developed in Refs. [12,13]. We use a similar perturbation
approach for obtaining an approximate solution of the wave
equation for the slowly varying field amplitudes. We restrict
our consideration to the first-order approximation; however,
our results can be easily generalized to the second-order
solution. The main difference between our approach and that
of Ref. [12] is that our solution is for the slowly varying
Heisenberg field operators and, therefore, can be applied to
arbitrary quantum states of light such as squeezed or entangled
states. The solution of Ref. [12] is for the classical slowly
varying field amplitudes and is not suitable for evaluation of the
squeezing spectra and squeezing angles of the ultrabroadband
squeezed light, which is the main objective of our work.

It should be understood also that the classical and the
quantum theories of PDC in aperiodically poled crystals are
oriented at different values of the parametric gain and put
different meaning to the term “high-gain regime.” For the
classical theory of parametric amplification the gain is “high”
if it provides a practically important increase of the signal peak
power, above 10 dB, sometimes even above 60 dB [21]. In the
quantum theory of PDC the “low-gain regime” corresponds
to spontaneous emission of the down-converted photon pairs,
so-called biphotons, while the high-gain regime corresponds
to stimulated emission of photons, when the mean photon
number per mode well surpasses unity. The latter regime
is characterized by squeezing of one field quadrature and
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can be observed at the values of the power gain, which
are not practical for the pulse amplification. Indeed, for the
power gain G the variance of the squeezed quadrature is
reduced [G

1
2 + (G − 1)

1
2 ]2 times below the vacuum level.

Thus, the widely available values of squeezing from 3 to 12 dB
correspond to the power gain from 0.5 to 7 dB, which is of
relatively little interest for the purpose of amplification of light
pulses. We note in this connection that our quantum solution
gives an adequate description of the field evolution in the
high-gain (above 0.5 dB) and very-high-gain (above 10 dB)
regimes, and in the latter case is in good agreement with the
classical formulas obtained in Ref. [12].

The article is organized as follows. In Sec. II we derive
a differential equation for the slowly varying Heisenberg
field operators of the electromagnetic field in an aperiodically
poled nonlinear crystal. This equation is solved exactly for
a linear poling profile in Sec. III and approximately for an
arbitrary sufficiently slowly varying poling profile in Sec. IV.
An example of a crystal with more than octave-wide QPM is
considered in Sec. V, where we compare the exact analytical
solution for a linear poling profile with the approximate one.
In the same section a similar comparison is presented for
numerical and approximate analytical solutions for a nonlinear,
quadratic-hyperbolic poling profile. Here we discuss also the
limits of applicability of our analytical approximation. In
Sec. VI we summarize the results and discuss their importance
for the experiments with ultrabroadband squeezed light.

II. PARAMETRIC DOWN-CONVERSION IN AN
APERIODICALLY POLED NONLINEAR CRYSTAL

A. Differential equation for the field

We consider the process of collinear PDC in a nonlinear
crystal, where after annihilation of one photon of the pump
wave with the frequency ωp two photons are created with the
same polarization and frequencies ω0 + � and ω0 − �, where
ω0 = ωp/2. The phase mismatch for this process has the form
�(�) = kp − k(�) − k(−�), where kp is the wave vector of
the pump wave, accepted to be an undepleted monochromatic
plane wave, and k(�) is the wave vector of the down-converted
wave at the frequency ω0 + �. In general there is no phase
matching at degeneracy, kp �= 2k0, where k0 = k(0). Let us
direct the z axis along the propagation of the waves, placing the
origin on the front edge of the crystal. For the description of the
field we use two operators: the photon annihilation operator at
the frequency ω0 + � and position z, which we denote b(�,z),
and the sideband photon annihilation operator at detuning
�, which is given by a(�,z) = b(�,z)ei(k(�)−k0)z. The field
operator E(+)(t,z) of the down-converted light is expressed (in
photon flux units) through these operators as follows:

E(+)(t,z) =
∫

a(�,z)ei(k0z−(ω0+�)t) d�

=
∫

b(�,z)ei(k(�)z−(ω0+�)t) d�. (1)

The operator b(�,z) corresponds to the modal function,
which is a solution of the wave equation in the absence
of nonlinear interaction; therefore, in its presence b(�,z) is
the slowly varying amplitude. In terms of this operator the
equation for the down-converted waves at frequencies ω0 + �

and ω0 − � takes the well-known form [22,23]

∂b(�,z)

∂z
= χ (2)bpb†(−�,z)ei�(�)z, (2)

where χ (2) is the appropriately scaled element of the nonlinear
susceptibility tensor of the second order, responsible for the
nonlinear interaction, while bp is the pump-wave amplitude in
units of photon flux. An effective interaction of the tree waves
is possible only for such frequencies � where the phase-
matching condition �(�) ≈ 0 is approximately satisfied.
Usually, in an experiment the phase matching is realized for
a narrow frequency band by selecting an angle of propagation
with respect to the optical axis of the crystal [22], birefringence
being taken into consideration.

If reaching the phase matching is impossible at the desired
frequency ω0 + �, one can apply the method of QPM, which
consists of the following [23]. An artificial periodic layered
structure is produced out of the original crystal, where the
width of each layer is �/2, and each subsequent layer is
different from the previous one by inversion of the crystal
structure. As a result of such an inversion the second-order
nonlinear susceptibility tensor changes its sign, though the
linear properties of the crystal remain unchanged. The spatial
modulation of the second-order nonlinear susceptibility in
such a layered structure has the form of a meander,

χ (2)(z) = χ0 sgn(sin Kz) = −iχ0

π

+∞∑
n=−∞

1 − (−1)n

n
einKz,

(3)

where K = 2π/� is the spatial frequency of the created
grating, χ0 is the second-order nonlinear susceptibility of the
first layer, and the Fourier-series decomposition of the meander
function has been used, containing only odd values of n (the
term with n = 0 is implied to be zero). Quasi-phase-matching
of the first order for frequencies ω0 + � and ω0 − � consists
of choosing the grating vector such that K = �(�). In this
case the additional phase factor, corresponding to n = −1,
will compensate the phase mismatch at the desired frequency,
when Eq. (3) is substituted into Eq. (2). All other terms in
Eq. (3) can be disregarded under typical conditions [24].

In practice such periodically oriented crystals are created
by a number of different methods [24,25]. The most widely
used of them is the method based on the property of a
ferroelectric crystal to change its crystal structure under the
action of an external electric field and then to maintain
this structure when the external field is removed. Applying
a spatially periodic constant electric field to a ferroelectric
with a significant second-order nonlinear susceptibility, such
as lithium niobate, allows one to create artificial structures
with QPM for practically any combination of wavelengths in
various nonlinear optical processes. Such crystals are generally
known as periodically poled and represent today a versatile tool
in nonlinear optics.

In the past decades much interest has been concentrated
on the development of the above-described method, based
on a slow change of the spatial frequency K(z) along the
crystal, allowing one to reach QPM at different frequencies in
different parts of the crystal (Fig. 1). Such crystals received the
name of aperiodically poled crystals and are widely used for
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FIG. 1. Parametric down-conversion in an aperiodically poled
crystal. The color varying along the crystal length shows the phase-
matched signal frequency at the given position.

parametric amplification of ultrashort optical pulses [10–15]
and generation of broadband entangled photon pairs [16–20].

When the spatial frequency modulation is weak, the local
period of the grating, �(z) = 2π/K(z), is a slowly varying
function of the coordinate z and under the condition |�′(z)|�1
Eq. (3) can be rewritten as

χ (2)(z) = χ0 sgn

(
sin

∫ z

0
K(z′) dz′

)

≈ −iχ0

π

+∞∑
n=−∞

1 − (−1)n

n
ein

∫ z

0 K(z′) dz′
. (4)

Leaving only the term with n = −1 and substituting Eq. (4)
into Eq. (2), we obtain

∂b(�,z)

∂z
= iγ b†(−�,z)ei�(�)z−i

∫ z

0 K(z′) dz′
,

∂b†(−�,z)

∂z
= −iγ ∗b(�,z)e−i�(�)z+i

∫ z

0 K(z′) dz′
, (5)

where γ = 2χ0bp/π is the coefficient of nonlinear coupling,
and the second equation is obtained from the first one by a
Hermitian conjugation and a sign inversion for �. We note
that the function �(�) is even by definition for the considered
case of type-I phase matching. Equations (5) represent a
closed system, having a unique solution for given boundary
conditions. For finding this solution we introduce a new field
operator b̃(�,z) by the following relation:

b(�,z) = b̃(�,z)e
i
2 (�(�)z−∫ z

0 K(z) dz+ϕ0), (6)

where ϕ0 = arg(iγ ) combines the phases of the pump wave
and χ0. Now the system of Eqs. (5) takes the form

∂b̃(�,z)

∂z
+ i

2
[�(�) − K(z)]b̃(�,z) = |γ |b̃†(−�,z)

∂b̃†(−�,z)

∂z
− i

2
[�(�) − K(z)]b̃†(−�,z) = |γ |b̃(�,z).

(7)

Solution of this system with the boundary conditions b̃(�,0),
b̃†(−�,0) will give a transformation of the field operators in
the nonlinear crystal. Practical interest is represented by their
values at the output of the crystal, at the point z = L, where L

is the length of the crystal, i.e., b̃(�,L) and b̃(−�,L).
Excluding the operator b̃†(−�,z) from the system of

Eqs. (7), we obtain one equation of second order:

∂2b̃(�,z)

∂z2 +
(

1

4
[�(�) − K(z)]2 − |γ |2 − i

2
K ′(z)

)
b̃(�,z)

= 0. (8)

In the next section we discuss the general structure of the
solution of this equation.

B. The general structure of the solution

The system of Eqs. (7) with the boundary conditions at
z = 0 has a unique solution in the form of a Bogoliubov
transformation for the field operators:

b̃(�,L) = A(�)b̃(�,0) + B(�)b̃†(−�,0), (9)

where A(�) and B(�) are some complex functions. Note that
the frequency detuning enters Eqs. (7) only through �(�),
which is an even function. Therefore, the functions A(�) and
B(�) are also even. Equation (9) can be rewritten in terms of
the sideband photon annihilation and creation operators as

a(�,L) = U (�)a(�,0) + V (�)a†(−�,0), (10)

where

U (�) = A(�)ei[k(�)−k0+ 1
2 �(�)]L− i

2

∫ L

0 K(z) dz,

V (�) = B(�)ei[k(�)−k0+ 1
2 �(�)]L− i

2

∫ L

0 K(z) dz+iϕ0 , (11)

and these functions are not even in general because of their
dependence on k(�).

The transformation (10) at a frequency where V (�) �= 0
corresponds to generation of a two-mode squeezed field
state [26]. As any Bogoliubov transformation, it is fully
characterized by four real parameters. Indeed, Eq. (10)
together with its Hermitian conjugate with opposite detuning
represents a closed linear transformation for a pair of operators
{a(�,z),a†(−�,z)} from z = 0 to z = L. This transformation
for a fixed � is fully characterized by four complex numbers
U (±�), V (±�). Unitarity of the Bogoliubov transformation
imposes four real conditions |U (±�)|2 − |V (±�)|2 = 1, and
U (�)/V (�) = U (−�)/V (−�) (note that the latter complex
equation is equivalent to two real conditions), so only four
real parameters remain. They can be defined as one squeezing
parameter and three characteristic angles [26] by the following
expressions:

r(�) = ln(|U (�)| + |V (�)|), (12)

ψL(�) = 1
2 arg[U (�)V (−�)], (13)

ψ0(�) = 1
2 arg[U−1(�)V (�)], (14)

κ(�) = 1
2 arg[U (�)U−1(−�)], (15)

where the first three parameters are even functions of �,
while the fourth one is odd. The physical meaning of these
parameters becomes clear from the definition of the squeezed
quadrature. For each pair of modes with opposite detunings
we construct two quadrature operators as [26]

X1(�,z) = a(�,z)e−iψz(�) + a†(−�,z)eiψz(�),

X2(�,z) = −i[a(�,z)e−iψz(�) − a†(−�,z)eiψz(�)], (16)

where for the aims of the present discussion z is equal only to
zero and L. In terms of these quadratures the transformation
Eq. (10) can be rewritten in a simple form,

Xj (�,L) = e±r(�)+iκ(�)Xj (�,0), (17)
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where the upper (lower) sign corresponds to j =1 (j =2).
It follows from Eq. (17) that the quadrature X2(�,L) is
squeezed below the standard quantum limit, while the con-
jugate quadrature X1(�,L) is stretched above that limit.
The squeezing parameter r(�) determines the degree of this
effect, while the angle of squeezing, ψL(�), determines the
quadrature at which the squeezing is to be observed at the
output of the nonlinear crystal.

The angle ψ0(�) determines the quadrature at the input,
which is subject to the squeezing operation. For an unseeded
PDC this angle is irrelevant, since all quadratures of the input
field are in the vacuum state. However, for a seeded PDC this
angle is to be taken into account, as discussed in Sec. IV E.

The last parameter κ(�) in our case of even A(�) and B(�)
is independent of the nonlinear properties of the crystal and is
given by

κ(�) = 1
2 [(k(�) − k(−�)]L ≈ τg�, (18)

where τg = k′(0)L is the time of light propagation through the
crystal at the group velocity of the central wavelength of the
down-converted light.

Below we are interested in finding the functions r(�),
ψL(�), and ψ0(�), characterizing the nonlinear transforma-
tion of the field in quasi-phase-matched crystals. In the next
section we present an exact solution for a linear poling profile,
while in Sec. IV we discuss in detail an approximate solution
for a sufficiently slowly varying, but otherwise arbitrary, poling
profile K(z).

III. EXACT SOLUTION FOR A LINEAR POLING PROFILE

In this section we present an exact solution of the system
of Eqs. (7) in the case of linear chirp of the grating vector
K(z) = K0 − ζz, where ζ > 0 is the chirp rate.

For a fixed � we introduce a new variable x = √
ζz +

[�(�) − K0]/
√

ζ . In the variables (�,x), Eqs. (7) for a linear
chirp take the following form:

∂b̃(�,x)

∂x
+ i

2
xb̃(�,x) = σ b̃†(−�,x),

∂b̃†(−�,x)

∂x
− i

2
xb̃†(−�,x) = σ b̃(�,x), (19)

where σ = |γ |/√ζ is a new coupling coefficient. The second-
order equation (8) in the new variables is

∂2b̃(�,x)

∂x2 +
(

1

4
x2 − σ 2 + i

2

)
b̃(�,x) = 0, (20)

and the corresponding equation for the operator b̃†(−�,x) is

∂2b̃†(−�,x)

∂x2 +
(

1

4
x2 − σ 2 − i

2

)
b̃†(−�,x) = 0. (21)

Equations (20) and (21) have solutions in the class of
parabolic cylinder functions [27]. Let us denote two linearly
independent solutions of Eq. (20) with a constant Wronskian
W as φ1(x) and φ2(x). For these two functions we introduce
“reciprocal” functions φ̃i(x), i = 1,2, by the relation

1

σ

(
∂

∂x
+ i

2
x

)
φi(x) = φ̃i(x). (22)

By construction, pairs (φi(x),φ̃i(x)) are solutions of the
system of Eqs. (19). Let us prove that the functions φ̃1(x)
and φ̃2(x) represent solutions of Eq. (21). This can be easily
seen from writing Eqs. (20) and (21) in an operator form,
T ∗T b̃(�,x) = b̃(�,x) and T T ∗b̃†(−�,x) = b̃†(−�,x), re-
spectively, where we have introduced a differential operator

T = 1

σ

(
∂

∂x
+ i

2
x

)
, (23)

having, after Eq. (22), a meaning of mapping onto the
“reciprocal” function: T φi(x) = φ̃i(x), and the asterisk stands
for complex conjugation. Substituting the last expression into
the operator form of Eq. (21), and using the associative
property of differential operators, we obtain T T ∗φ̃i(x) =
(T T ∗)T φi(x) = T (T ∗T )φi(x) = T φi(x) = φ̃i(x), which had
to be proven. Also we easily obtain T ∗φ̃i(x) = T ∗T φi(x) =
φi(x), which is a complex conjugate operator T ∗ that maps
back the reciprocal function onto the original one. Let us
denote by W̃ the Wronskian of functions φ̃1(x) and φ̃2(x).
Then

W̃ =
∣∣∣∣∣φ̃1(x) φ̃2(x)

φ̃
′
1(x) φ̃

′
2(x)

∣∣∣∣∣ = σ

∣∣∣∣∣ φ̃1(x) φ̃2(x)

T ∗φ̃1(x) T ∗φ̃2(x)

∣∣∣∣∣
= σ

∣∣∣∣T φ1(x) T φ2(x)

φ1(x) φ2(x)

∣∣∣∣ =
∣∣∣∣∣φ

′
1(x) φ

′
2(x)

φ1(x) φ2(x)

∣∣∣∣∣ = −W, (24)

where we have used the property of invariance of the
determinant under addition to one of its rows of another row,
multiplied by an arbitrary factor. Equation (24) shows that the
reciprocal functions φ̃1(x) and φ̃2(x) are linearly independent
if their original functions are.

Taking the complex conjugate of Eq. (20) in the operator
form, we obtain T T ∗φ∗

i (x) = φ∗
i (x); i.e., the functions φ∗

1 (x)
and φ∗

2 (x) are solutions of Eq. (21) and, therefore, are linear
combinations of the functions φ̃1(x) and φ̃2(x). Let us write
this dependence in the matrix form[

φ∗
1 (x)

φ∗
2 (x)

]
=

[
m11 m12

m21 m22

][
φ̃1(x)
φ̃2(x)

]
, (25)

where mij are complex numbers. Now the Wronskian of φ∗
1 (x)

and φ∗
2 (x) can be written as

W ∗ = det

[
φ∗

1 (x) φ∗
2 (x)

φ∗′
1 (x) φ∗′

2 (x)

]

= det

{[
φ̃1(x) φ̃2(x)

φ̃
′
1(x) φ̃

′
2(x)

]
MT

}
= W̃ det M, (26)

where M is a matrix with the coefficients mij from Eq. (25), and
the superscript T stands for transposition. Applying to Eq. (25)
first the operator T ∗, and then the complex conjugation, we
obtain the property M−1 = M∗.

A general solution of the system of Eqs. (19) with the
boundary conditions at the point x0 = [�(�) − K0]/

√
ζ can

be written in the form

b̃(�,x) = A(x,x0)b̃(�,x0) + B(x,x0)b̃†(−�,x0),

b̃†(−�,x) = Ã(x,x0)b̃†(−�,x0) + B̃(x,x0)b̃(�,x0), (27)
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where

A(x,x0) = σ

W

∣∣∣∣ φ1(x) φ2(x)

φ̃1(x0) φ̃2(x0)

∣∣∣∣, (28)

B(x,x0) = − σ

W

∣∣∣∣ φ1(x) φ2(x)

φ1(x0) φ2(x0)

∣∣∣∣, (29)

Ã(x,x0) = − σ

W

∣∣∣∣ φ̃1(x) φ̃2(x)

φ1(x0) φ2(x0)

∣∣∣∣, (30)

B̃(x,x0) = σ

W

∣∣∣∣∣ φ̃1(x) φ̃2(x)

φ̃1(x0) φ̃2(x0)

∣∣∣∣∣. (31)

The structure of the solution, Eqs. (27), becomes more clear
if we notice that both expressions are linear combinations of
solutions of Eqs. (20) and (21), respectively, and, therefore,
are also their solutions. Moreover, T A(x,x0) = B̃(x,x0) and
T B(x,x0) = Ã(x,x0), and therefore the pair of functions
defined by Eqs. (27) satisfies the system of Eqs. (19).
Correspondence to the boundary conditions is seen from the
following considerations. It is easy to see that B(x0,x0) =
B̃(x0,x0) = 0 because of the presence of two identical rows in
both determinants. In addition,

A(x0,x0) = σ

W

∣∣∣∣φ1(x0) φ2(x0)

φ̃1(x0) φ̃2(x0)

∣∣∣∣
= σ

W

∣∣∣∣ φ1(x0) φ2(x0)

T φ1(x0) T φ2(x0)

∣∣∣∣ = 1, (32)

and similarly Ã(x0,x0) = 1. Also, using Eqs. (24)–(26), we
find that

A∗(x,x0) = σ

W ∗ det

{[
φ̃1(x) φ̃2(x)

φ1(x0) φ2(x0)

]
MT

}

= − W

W ∗ Ã(x,x0) det M = Ã(x,x0), (33)

and similarly B∗(x,x0) = B̃(x,x0); i.e., for the coefficients in
Eqs. (28)–(31) an exchange of the original and the reciprocal
functions is equivalent to complex conjugation, though in
general φ̃i(x) �= φ∗

i (x). In particular, it follows that the second
of Eqs. (27) can be obtained from the first one by taking a
Hermitian conjugation, as expected. It should be noted that by
definition x is an even function of the frequency detuning �,
since it is determined by �(�).

It is left to prove that Eqs. (27), as required for a Bogoliubov
transform, preserve the commutator of the field operators. To
this end we need to show the fulfillment of two conditions [26]:
evenness of A(x,x0)/B(x,x0) as a function of � and the
relation |A(x,x0)|2 − |B(x,x0)|2 = 1. Fulfillment of the first
condition follows from the evenness of both coefficients
A(x,x0) and B(x,x0) as functions of �. Let us show that the
second condition is always satisfied by these coefficients:

|A(x,x0)|2 − |B(x,x0)|2
= A(x,x0)Ã(x,x0) − B(x,x0)B̃(x,x0)

= − σ 2

W 2
det

{[
φ1(x) φ2(x)

φ̃1(x0) φ̃2(x0)

][
φ̃1(x) φ1(x0)

φ̃2(x) φ2(x0)

]}

+ σ 2

W 2
det

{[
φ1(x) φ2(x)
φ1(x0) φ2(x0)

][
φ̃1(x) φ̃1(x0)
φ̃2(x) φ̃2(x0)

]}

= σ 2

W 2

∣∣∣∣φ1(x0) φ2(x0)
φ̃1(x0) φ̃2(x0)

∣∣∣∣
∣∣∣∣φ1(x) φ̃1(x)
φ2(x) φ̃2(x)

∣∣∣∣ = 1, (34)

where we have used the invariance of the matrix determinant
to the operation of transposition.

Thus, Eqs. (27) together with their Hermitian conjugation
give a correct description of the evolution of quantum field
operators in the nonlinear medium, in full correspondence to
Eq. (9), with A(�) = A(x,x0) and B(�) = B(x,x0).

Let us consider Eq. (10) for the sideband operator. The
functions U (�) and V (�) are given by Eqs. (11), where
the right-hand side is defined by the exact solution obtained
above. We see easily that the transformation of Eq. (10)
is unitary. The ratio U (�)/V (�) is even as a function
of � because it is proportional to A(�)/B(�), which is
even. The relation |U (�)|2 − |V (�)|2 = 1 follows from the
corresponding properties of the functions A(�) and B(�),
since these functions differ only by phase.

For practical calculations in the rest of this article we choose
the functions φ1(x) and φ2(x) from the family of Whittaker
functions (see Sec. 19.3.7 in Ref. [27]), which are represented
in the system of computer algebra MATHEMATICA 10. Thus, for
a fixed parameter ν = σ 2 we let

φ1(x) = Diν(xeiπ/4),

φ2(x) = D−1−iν(−xe−iπ/4), (35)

with the corresponding reciprocal functions

φ̃1(x) = ν1/2e
i3π/4

Diν−1(xeiπ/4),

φ̃2(x) = ν−1/2e
−iπ/4

D−iν(−xe−iπ/4). (36)

The Wronskian of the functions, defined by Eqs. (36), is equal
to W = e−iπ/4eπν/2. The spectra of PDC calculated with these
functions are presented in Sec. V A.

Thus, we have seen that in the case of a linear poling profile
an analytic solution for the Heisenberg equations of motion for
the field exists in the class of special functions. Unfortunately,
in the general case of the nonlinear profile it is not so, and the
solution can be computed numerically only. In the next section
we show how an approximate solution can be obtained in a
more general case.

IV. APPROXIMATE SOLUTION FOR A NONLINEAR
POLING PROFILE

A. Formulation of the equivalent “potential barrier” problem

In this section we derive an approximate solution for the
field transformation in an aperiodically poled crystal in a very
simple analytic form. Our approach is based on the similitude
of the field evolution to that of a quantum particle in a given
potential and is similar to the approach of Refs. [10,12] with
the main difference that we consider the evolution of a quantum
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field and are interested in a unitary transformation of the field
operators. In addition, we obtain the approximate solution
directly in the first-order approximation, without deriving a
second-order solution and then simplifying it, as in Ref. [12].

Equation (8) is similar to the Schrödinger equation for a
particle of mass 1/2 in a given potential,

∂2

∂z2
�(z) + [E − U(z)]�(z) = 0, (37)

where �(z) is the particle wave function, E = −|γ |2 is the
energy of the particle, and the potential is defined as

U(z) = − 1
4 [�(�) − K(z)]2. (38)

Rewriting Eq. (8) in the form of Eq. (37), we have omitted the
term K ′(z), which is justified for a sufficiently slowly varying
profile [10,12].

An approximate solution of Eq. (37) can be obtained
in the first-order approximation [28]. In this approximation
the solution is oscillating in the regions where U(z) < E

and exponentially growing or decaying in the regions where
U(z) > E. For the sake of simplicity we limit ourselves
to monotonous profiles K(z), which, for definiteness, we
consider to be decreasing functions of z.

In a crystal with a monotonous profile K(z) for every
pair of frequencies ω0 + � and ω0 − � from the parametric
amplification band, there is a perfect phase-matching point
0 � zpm(�) � L, defined by the relation

K
(
zpm(�)

) = �(�). (39)

At this point the potential U(z) is maximal and equal to zero.
To the left and right of this point there are the so-called
turning points, where U(z) = E. These points are defined by
the relation

K
(
z1,2(�)

) = �(�) ± 2|γ | (40)

and represent the borders of the region of the exponential
solution (see Fig. 2). Note that in our case the oscillatory
solutions exist in the regions (−∞,z1] and [z2,∞), while the
exponentially growing and decaying solutions, corresponding
to the parametric amplification and attenuation, exist in the
region [z1,z2]. Therefore, our equivalent quantum particle
problem corresponds to passing through a “potential barrier”
and not to oscillating in a “potential well.”

Using the approach described above, the evolution of the
signal field in the crystal can be represented by the following
simplified picture. In the region [0,z1(�)] the field remains
in its vacuum state. A major part of photons at a given pair
of frequencies ω0 + � and ω0 − � is generated in a narrow
layer of crystal between z1(�) and z2(�), which we call the
amplification layer. Afterwards both waves propagate through
the crystal with practically unchanging amplitudes, acquiring
a phase difference due to the crystal dispersion. The field
operator at the crystal output b̃(�,L) = �(L) is given by the
solution of Eq. (37) with the conditions at some point z = z0,

�(z0) = b̃(�,z0),

� ′(z0) = ±i
√

−U(z0)b̃(�,z0) + √−Eb̃†(−�,z0). (41)

Here the second condition is derived from Eq. (7) and for
a decreasing poling profile the upper (lower) sign should be

zz1 zpm z2

K(z)

Δ(Ω) − 2|γ|

Δ(Ω)

Δ(Ω) + 2|γ|

amplification layerphase ϕ(Ω) phase θ(Ω)

(a)

U(z)

z

E

z1 zpm z2

(b)

FIG. 2. Three regions in the crystal for a given detuning �.
(a) Spatial frequency of aperiodic poling as a function of position
in the crystal. (b) Potential for an equivalent problem for a quantum
particle of energy E, passing through a potential barrier, solved semi-
classically with both exponentially growing and decaying solutions.
The point of perfect phase match zpm corresponds to the peak of the
barrier, and the turning points z1 and z2 correspond to reflection of a
classical particle coming to z1 from the left or to z2 from the right.

taken for z0 < zpm (z0 > zpm). Note that in the equivalent
“potential barrier” problem �(z) is considered as a c-number.
However, after a solution of Eq. (37) is obtained in the form of
a linear combination of initial values �(0) and � ′(0), the latter
can be substituted by operator-valued expressions, Eqs. (41)
with z0 = 0, corresponding to the original physical problem.

In what follows we derive a solution of Eq. (37) together
with the conditions in Eqs. (41) in the first-order approxi-
mation. A second-order, Wentzel-Kramers-Brillouin (WKB)
solution was obtained for a classical field in the high-gain
regime in Refs. [10,12]. However, below we demonstrate
that even the first-order solution describes very well the
average shapes of optical and squeezing spectra and with a
very high precision the characteristic squeezing angles. In
the calculations which follow we often omit the frequency
detuning, which is always equal to �.

B. Oscillating solution before amplification

In the first-order approximation the solution of Eq. (37) in
the region [0,ztp1] is given by [28]

�(z) = C1e
+i

∫ z

0

√
E−U(z) dz + C2e

−i
∫ z

0

√
E−U(z) dz, (42)
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where C1 and C2 are constants, to be determined from the
initial conditions. In the considered region almost everywhere
we have |E| � |U(z)|. Thus, disregarding E compared toU(z)
in Eqs. (41) and (42), we obtain C2 = 0 and write the solution
in the form of a phase shift b̃(�,z1) = b̃(�,0)eiϕ(�), with

ϕ(�) = −1

2

∫ zpm(�)

0
(�(�) − K(z)) dz, (43)

where we have replaced the upper integration limit z1(�) by
zpm(�), which is a good approximation for a sufficiently thin
amplification layer.

C. Exponential solution inside the amplification layer

In the first-order approximation the solution of Eq. (37) in
the region [z1,z2] is given by [28]

�(z) = C̃1e
+ ∫ z

z1

√
U(z)−E dz + C̃2e

− ∫ z

z1

√
U(z)−E dz

, (44)

where C̃1 and C̃2 are some constants. Unfortunately, these
constants cannot be obtained from the initial condition at
z = z1 since it is a turning point, where U(z1) = E and
therefore � ′(z1) = 0. The problem of tailoring the solutions at
the turning points is well known for both the first-order and the
WKB approximations [28]. Below we show how this problem
can be circumvented in our case.

Accepting that the amplification layer is very thin compared
to the distance at which the poling profile K(z) is substan-
tially nonlinear, we can approximate the profile inside the
amplification layer by its Taylor expansion around z = zpm

up to the linear term: K(z) ≈ K(zpm) + K ′(zpm)(z − zpm).
Substituting such a linearized profile into Eq. (44) and
performing the integration, we obtain

�(z) = C̃1e
ν(ξz+ 1

2 sin 2ξz+ π
2 ) + C̃2e

−ν(ξz+ 1
2 sin 2ξz+ π

2 ), (45)

where ξz = arcsin sz, and sz = |K ′(zpm)|(z − zpm)/(2|γ |) is
the normalized coordinate inside the amplification layer vary-
ing from −1 to 1. Note that the parameter ν = |γ 2/K ′(zpm)|
is defined exactly as in Sec. III, if we replace ζ by the local
chirp rate |K ′(zpm)|.

Substituting z = z2 into Eq. (45) gives the following
expression for the field at the crystal output:

b̃(�,z2) = C̃1e
πν + C̃2e

−πν. (46)

Taking the condition in Eqs. (41) at z0 = z1 we obtain C̃1 +
C̃2 = b̃(�,z1). In the absence of the second initial condition,
Eq. (46) represents a family of solutions, from which one
member should be selected with some considerations. Let us
parametrize properly this family. The solution should be a
linear combination of b̃(�,z1) and b̃†(−�,z1). Let us write

C̃1 = 1 + μ

2
b̃(�,z1) + μ̃

2
b̃†(−�,z1),

C̃2 = 1 − μ

2
b̃(�,z1) − μ̃

2
b̃†(−�,z1), (47)

where μ and μ̃ are some complex coefficients. Such a
parametrization is the most general one satisfying the relation
for the sum of C̃1 and C̃2. Now Eq. (46) has the form

b̃(�,z2) = [cosh (πν) + μ sinh (πν)]b̃(�,z1)

+ μ̃ sinh (πν)b̃†(−�,z1). (48)

Unitarity of this transformation demands

|μ̃| =
√

|cosh (πν) + μ sinh (πν)|2 − 1

sinh (πν)
. (49)

There are two candidates for μ, met in similar physical
problems. First, we notice that the case μ = 0, |μ̃| = 1
resembles the field transformation in a medium with perfect
phase matching [26]. Indeed, in this case the signal field is
multiplied (up to a phase) by cosh(gl), where g is proportional
to the pump amplitude and l is the length of the medium.
In our case the width of the medium (amplification layer) is
also proportional to the pump amplitude [see Eq. (40)] and,
as a consequence, gl is proportional to the pump intensity,
exactly as the parameter ν. However, such a choice is related
to neglecting the phase mismatch close to the edges of
the amplification layer, which may become significant with
growing pump power, leading to widening of the amplification
layer. Second, the case of μ = 1 resembles a solution obtained
by Rosenbluth for a similar problem in plasma physics. In
Ref. [29] a parametric interaction of three waves in plasma
is considered, which is governed by Eq. (8), written for
c-numbers. In our case c-numbers appear when one considers
the mean field, 〈b̃(�,z)〉, which, of course, satisfies the same
Eq. (8) because of its linearity. The initial conditions of
Ref. [29] correspond to the presence of the mean field at
the input at the signal frequency, but not at the idler one,
which is also a typical scenario of parametric amplification
in classical optics [10–14]. Rosenbluth’s solution [29] can be
written for the mean field as 〈b̃(�,z2)〉 = 〈b̃(�,z1)〉eπν , which
obviously corresponds to μ = 1 in Eq. (48). Unfortunately,
there is no clear intuitive reason for giving a preference to
μ = 0 or μ = 1, or maybe some other value of μ.

Fortunately, the field transformation for a linearized poling
profile can be written in an analytic form by the approach
of the previous section where the constant chirp rate ζ is
to be substituted by the local chirp rate |K ′(zpm)| and K0

by K(zpm) − K ′(zpm)zpm. Thus, the exact form of the field
transformation in the amplification layer for a linearized
profile, but without first-order approximation for an equivalent
problem, is given by Eq. (27) with x = √

ζ (z − zpm). It is
easy to find that the turning points correspond to the values
x1,2 = ±2

√
ν. Equation (28) in our case takes the form

A(x2,x1) = e−πν/2(|Diν(2
√

νeiπ/4)|2
+ ν|Diν−1(−2

√
νeiπ/4)|2), (50)

where we have used the expression of the elementary solutions
through the Whittaker functions given by Eqs. (35) and (36).
We see that A(x2,x1) is real, which corresponds to the choice
of a real μ. In Fig. 3 we show the amplitude gain as a function
of ν for the exact solution and the approximate solutions
corresponding to different values of μ. We see that in the
region of significant but not too high squeezing, 0.5 < ν < 2,
the case of μ = 1, i.e., the Rosenbluth formula, complies very
well with the exact solution. A similar analysis of B(x2,x1)
shows that its phase is a slow function of ν and for ν < 2 can
be approximated as ϕ1 = arg[B(x2,x1)] ≈ −ν + ν2/4.
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FIG. 3. Amplitude gain at given frequency as function of the
normalized pump power. Solid green line, exact solution for the
linearized profile. Dotted, dashed, and dot-dashed lines represent
approximate solutions for different values of the parameter μ.

Thus, the total transformation in the amplification layer can
be written as

b̃(�,z2) = eπν(�)b̃(�,z1) + eiϕ1
√

e2πν(�) − 1b̃†(−�,z1),

(51)

which can be viewed as a quantum extension of the Rosenbluth
formula.

D. Oscillating solution after amplification

In the region [z2,L], analogously to Sec. IV B, the solution
of Eq. (37) in the first-order approximation is given by

�(z) = C̄1e
+i

∫ z

z2

√
E−U(z) dz + C̄2e

−i
∫ z

z2

√
E−U(z) dz

, (52)

where C̄1 and C̄2 are constants, to be determined from the
initial conditions. In the considered region again, almost ev-
erywhere we have |E| � |U(z)|, and disregarding E compared
to U(z) in Eqs. (41) and (52), we obtain C̄2 = 0 and write the
solution in the form of a phase shift b̃(�,L) = b̃(�,z2)eiθ(�),
with

θ (�) = −1

2

∫ L

zpm(�)
(�(�) − K(z)) dz, (53)

where we have replaced the integration limit z2(�) by zpm(�).

E. Total transformation and the characteristic angles

Combining the results of the previous three sections and
coming back to the sideband operator a(�,z), we write the
total field transformation in the crystal in the following form:

a(�,L) = U1(�)a(�,0) + V1(�)a†(−�,0), (54)

where

U1(�) = eπν(�)ei[k(�)−k0]L,

V1(�) =
√

e2πν(�) − 1e−2iϕ(�)+i[k(�)−k0]L+iϕA . (55)

Here index 1 stands for the first-order approximation, and
ϕA = ϕ0 + ϕ1 is the phase added in the amplification layer. The
properties |U1(±�)|2 − |V1(±�)|2 = 1 and U1(�)/V1(�) =

U1(−�)/V1(−�), required for the unitarity of this transfor-
mation, are straightforward to verify.

We show in the next section that the first-order approximate
solution, given by Eq. (54), is very close to the analytical and
numerical solutions of the initial Heisenberg equation for both
small and considerable values of the pump power. In this way
it differs from the solution, called the “Rosenbluth formula”
in Ref. [12], which provides the same value eπν for moduli
of U1(�) and V1(�) inside the amplification band and is valid
only at πν � 1. In this limit our Eqs. (55) give the same result.
At the same time, they give also a very good approximation at
a moderate pump power, where πν is less than or comparable
to unity.

The three parameters in Eqs. (12)–(14), characterizing
the nonlinear transformation of the field in the first-order
approximation, are equal to

r(�) = ln(eπν(�) +
√

e2πν(�) − 1), (56)

ψL(�) = −ϕ(�) − 1

2
�(�)L + ϕA

2
, (57)

ψ0(�) = −ϕ(�) + ϕA

2
. (58)

As mentioned in Sec. II, the angle ψ0(�) determines the
quadrature at the input which is subject to the squeezing effect
and is important in the case of seeded PDC. For example,
to obtain an amplitude squeezing at all frequencies, one
needs to shape the signal seed pulse so that 〈X1(�,0)〉 = 0,
〈X2(�,0)〉 �= 0, where at each frequency the quadratures
are determined by ψ0(�). For this the idler component
should be equal to the conjugated and phase-shifted signal
component, 〈a(−�,0)〉 = −ei2ψ0(�)〈a(�,0)〉∗, where we have
assumed � > 0. Equation (14) shows that this phase shift is
exactly compensated by the relative phase difference −2ϕ(�)
acquired by the idler field with respect to the signal field
before the amplification layer, and by the phase ϕA, added
during the amplification. As a result, the squeezing is in phase
with the coherent component of the field, as required for the
amplitude squeezing.

Now we proceed to explain the physical meaning of the
expression for the angle of squeezing, Eq. (13). Differentiating
this equation and taking into account Eq. (43), we obtain

dψL(�)

d�
= −1

2
�′(�)

[
L − zpm(�)

]
. (59)

Equation (59) has a simple physical meaning in terms
of the classical notion of the relative group delay between
the signal and the idler waves. In the classical treatment of
PDC the field operators a(±�,z) are replaced by classical
complex amplitudes 〈a(±�,z)〉 (� is assumed to be positive).
Equation (54) with the corresponding replacement gives the
field amplitudes at the crystal output. As mentioned above, in
the scenario of parametric amplification, treated classically, it
is typically assumed that at the crystal input only the signal
wave is present, i.e.,〈a(�,0)〉 = 1, 〈a(−�,0)〉 = 0. In this
case the signal wave at the output is equal to 〈a(�,L)〉 =
U (�) and the idler wave to 〈a(−�,L)〉 = V (−�). Then,
the group delay of the signal wave is given by τs(�) =
− d

d�
arg{U (�)} and that of the corresponding idler wave by
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τi(�) = − d
d(−�) arg{V (−�)}. The relative delay is

τ (�) = τs(�) − τi(�)

= − d

d�
arg{U (�)V (−�)} = −2

dψL(�)

d�
. (60)

Now Eq. (59) can be rewritten as

τ (�) = L − zpm(�)

vg(�)
− L − zpm(�)

vg(−�)
, (61)

where vg(�) = [k′(�)]−1 is the group velocity at the cor-
responding frequency. Equation (61) shows that the relative
delay is equal to the difference of propagation times of two
waves from the perfect phase-matching point to the end of
the crystal with the corresponding group velocities, which is
quite a natural result. This result is well known in the classical
consideration of parametric amplification; see, e.g., Ref. [11].
In our quantum treatment we have shown that the relative
group delay is related to the angle of squeezing via Eq. (60).

Before finishing this section, let us estimate the condition
of “slow” variation for the poling profile. In order that its
linearization inside the amplification layer be valid, it is
necessary that the second-order term in the Taylor expansion
is much smaller than the first-order term; i.e., the parameter

ε = 1

2

|K ′′(zpm)(ztp − zpm)|
|K ′(zpm)| (62)

should be much smaller than unity, where ztp is the most distant
of two turning points with respect to zpm. We may obtain a
more compact expression for the smallness parameter. If ε � 1
and the linearization is valid, then |ztp − zpm| ≈ 2|γ /K ′(zpm)|
and the parameter

ε′ = |γK ′′(zpm)|
[K ′(zpm)]2

(63)

is also much smaller than unity. Thus, ε′ � 1 is a necessary
condition for the applicability of the first-order approximation
of this section. Note that, since |γ | is proportional to |bp|, this
condition imposes a limitation on the pump power.

V. SPECTRA OF PARAMETRIC DOWN-CONVERSION
FOR A MODEL CRYSTAL

A. Linearly chirped crystal: Comparison
of exact and approximate solutions

For making a comparison of the exact and the approximate
solutions of the wave equation we consider PDC in a nonlinear
crystal of 5% MgO-doped congruent aperiodically poled
LiNbO3 of length L = 4.5 mm, continuously pumped at
the wavelength λp = 532 nm. The pump frequency is ωp =
2πc/λp, and the central frequency of the down-converted
light is ω0 = ωp/2. The signal band is chosen to be from
1.1ω0 to 1.5ω0, and the idler band from 0.5ω0 to 0.9ω0. This
corresponds to signal wavelengths of 709–967 nm, and to
idler wavelengths of 1182–2128 nm. To obtain the desired
frequency band of the down-converted light we need to vary
the spatial frequency of aperiodical poling K(z) from K0 =
�(0.1ω0) = 894 rad/mm to K1 = �(0.5ω0) = 720 rad/mm.
In this section we consider a linear dependence KL(z) = K0 −
ζz, where ζ = (K0 − K1)/L = 38.5 rad/mm2. The phase

FIG. 4. Phase mismatch of a crystal of 5% MgO-doped congruent
LiNbO3, pumped at 532 nm. Solid green line is obtained from
the Sellmeier equation [30]; dashed black line is its quadratic
approximation. Dotted lines show the limits of spectral bands for
the signal (blue) and the idler (red) waves. Both waves, as well as the
pump wave, are extraordinary.

mismatch for such a crystal, obtained from its Sellmeier
equation [30], is shown in Fig. 4. In the same figure we show
the quadratic approximation of the phase mismatch,

�q(�) = −α

(
�

ω0

)2

+ β, (64)

where α = −�′′(0)ω2
0/2 = 735 rad/mm, and β = �(0) =

901 rad/mm.
The optical spectrum of PDC, S(ω), is defined by the

relation 〈a†(�,L)a(�′,L)〉 = S(ω0 + �)δ(� − �′), where-
from, taking into account the commutation relations [a(�,z),
a†(�′,z)] = 1

2π
δ(� − �′) and Eq. (10), we obtain

S(ω0 + �) = 1

2π
|V (�)|2. (65)

In Fig. 5 we show the PDC spectra, calculated with the
help of the exact solution, defined by Eqs. (10), (11), (28),
and (29), and its approximation, Eq. (54), for various values
of the parameter ν = 4|χ0bp|2/(π2ζ ).

We see in Fig. 5 that for both small and comparable-with-
unity values of parameter ν the approximation in Eq. (54)
gives the true average value for the spectrum in the generation
band, though it does not follow the rapid oscillations around
this average value. Validity of the approximate formula at
small values of ν is a consequence of unitarity of the field
transformation in the amplification layer, Eq. (51). This is the
key difference from the approach of Ref. [12], where a purely
classical consideration was undertaken, valid for a sufficiently
strong pump, πν � 1. It is demonstrated in the same reference
that the rapid oscillations of the spectrum can be fairly well
described by the second-order (WKB) approximation. For
the purposes of design of aperiodically poled crystals these
oscillations may be secondary and a general, “averaged,” shape
of the spectrum provided by Eq. (54) may be sufficient.

The squeezing spectrum of the field at the crystal out-
put S2(�) for an unseeded PDC is defined by the rela-
tion 〈X2(�,L)X†

2(�′,L)〉 = S2(�)〈X2(�,0)X†
2(�′,0)〉; i.e., it
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FIG. 5. Optical spectra of the signal and the idler fields of PDC
in an aperiodically poled crystal with a linear poling profile. Solid
blue line, exact solution; dashed red line, first-order approximation.
The parameter ν is proportional to the intensity of the pump.

shows the change of variance of the quadrature X2. It is given
by [26]

S2(�) = (|U (�)| − |V (�)|)2. (66)

In Fig. 6 we show the squeezing spectra, calculated on the
basis of the exact solution, defined by Eqs. (10), (11), (28),
and (29), and its approximation, Eq. (54), for various values
of the parameter ν.

We see in Fig. 6 that for both small and comparable-with-
unity values of parameter ν the approximation in Eq. (54)
gives a value for the spectrum very close to the exact value
in the generation band. Outside this band there is a significant
difference between the two solutions: the exact solution shows
some squeezing, though the approximate one predicts no
squeezing at all.

The first-order approximate angle of squeezing can be
easily obtained for a linear chirp by integrating Eq. (43) and

FIG. 6. Squeezing spectra for a linear poling profile. Solid blue
line, exact solution; dashed red line, first-order approximation.

FIG. 7. Angles ψL(�) and ψ0(�) for a linear poling profile at
the pump power corresponding to medium squeezing, ν = 0.01.
Solid green line (increasing), exact solution for ψL(�); dashed
black line (increasing), its first-order approximation. Solid cyan line
(decreasing), exact solution for ψ0(�); dashed red line (decreasing),
its first-order approximation. ϕA is chosen so that ψL(0.5ω0) = 0.
Vertical dotted lines mark the borders of the amplification band.
Inset: Dash-dotted magenta line shows the exact values of ψL(�) at
ν = 1, which are already significantly different from the first-order
approximation.

substituting the result into Eq. (13), which gives

ψ
(lin)
L (�) = 1

2

[
[k(�) + k(−�)]L − [�(�) − K0]2

2ζ
+ ϕ̄A

]
,

(67)

where ϕ̄A = ϕA − 2k0L. A similar expression (with a factor
of −2) was obtained in Ref. [16] in the low-gain regime
for the phase of the compensating optical element, neces-
sary to provide simultaneous arrival of the signal and idler
photons at the distant detector or summing crystal. Thus,
the angle of squeezing is related to this phase as ψL(�) =
− 1

2 arg{H (�)} + 1
2 ϕ̄A, where H (�) is the transfer function of

the compensating element. The additional term 2k0L in the
definition of ϕ̄A reflects the difference between the phase of
a sideband operator and that of the full field operator. The
phase ϕ1, which is part of ϕA, is very small in the low-gain
regime and can be disregarded. In the high-gain regime it
is not small, but for a linear chirp it is constant and does
not affect the simultaneity of photon arrivals. Thus, even in
the high-gain regime we can understand the dispersion of the
squeezing angle as caused by a relative delay of the photons
at the conjugated frequencies.

In a similar way we obtain the second characteristic angle,

ψ
(lin)
0 (�) = − [�(�) − K0]2

4ζ
+ ϕA. (68)

We see that in the first-order approximation both angles at
all frequencies are independent of the pump power up to an
additive constant, which is quite a general result.

We show in Fig. 7 the exact and the approximate values
for both angles, calculated at ν = 0.01. We see that the
difference between the two solutions is much smaller than
π/2 everywhere. With the growing ν this difference increases,
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and a numerical study shows that up to ν = 1 it remains less
than or comparable to π/2.

We can conclude that the approximate formula, Eq. (54),
looks very promising for designing aperiodically poled crystals
in the case of a linear chirp profile. It provides a good
qualitative description of the squeezing spectrum and almost
exact values of the characteristic angles for a sufficiently low
pump power, ν well below 1.

B. Nonlinearly chirped crystal: Comparison of approximate
and numerical solutions

In this section we analyze a nonlinear profile of aperiodic
poling. Several specific shapes of nonlinear profiles have been
studied to date: a zn profile [10], and sinusoidal and tapered
profiles [12]. For demonstrating the efficiency of the results of
Sec. IV we need to consider a rather slowly varying profile,
which is selected from the following physical considerations.
In the previous section we have seen that a linear profile
produces an almost flat spectrum of the down-converted light,
but the angle of squeezing, ψL(�), is a complicated function
of frequency detuning, including non-negligible third- and
fourth-order components [see Eq. (67)]. Any observation of the
ultrabroadband character of squeezing requires compensation
of this angle in a wide range of frequencies. For a bandwidth
of the order of 10 THz the quadratic term is dominant
and compensation can be performed by a passive optical
element (optical fibre [18], a glass block [19], or a pair
of prisms [20]), but for a 100-THz-wide PDC spectrum an
active compensation is required [31,32], which is the state
of the art of modern quantum optics. When looking for a
nonlinear spatial frequency profile we could demand that it is
a monotonous function K(z) such that the corresponding angle
of squeezing, ψL(�), is a second-order polynomial, which can
be compensated by passive optical elements.

The relative delay of the signal with respect to the idler
in the first-order approximation is given by Eq. (59). Our
aim is to obtain τ (�) = a� + b, where a and b are some
real parameters. From Eqs. (39), (59), and (60) we obtain the
following equation, which should be satisfied by the profile
function:

K

(
L − a� + b

�′(�)

)
= �(�). (69)

This equation can be easily solved in the approximation of
quadratic dispersion, Eq. (64), where the inverse group velocity
difference has a simple form: �′(�) = −2α�/ω2

0.
For a quadratic phase (linear delay) we need zpm(�) =

L + d + db/(a�), where d = aω2
0/(2α). The inverse of this

function is

�pm(z) = − db/a

L + d − z
(70)

and has a meaning of the frequency, for which perfect phase
matching is reached at the point z. The sought profile is found
in the form

K(z) = �(�pm(z)) = − α

ω2
0

(
db/a

L + d − z

)2

+ β. (71)

FIG. 8. Optical spectra for the case of a quadratic-hyperbolic
profile. Solid blue line, numerical solution; dashed red line, first-order
approximation. The parameter ν0 is proportional to the intensity of
the pump.

Let us determine the possible values of the coefficients a

and b. From Eq. (70) we obtain the phase-matched frequencies
at the edges of the crystal,

�pm(0) = −b

a

d

L + d
, �pm(L) = −b

a
. (72)

Since both frequencies should be positive, we have two
possibilities:

(i) a > 0, b < 0, d > 0, and K(z) is decreasing, and
(ii) a < 0, b > 0, d < −L, and K(z) is increasing.
In this section we limit the lower frequency of the signal

amplification band to 0.25ω0, because otherwise the profile
does not satisfy the requirement of slow variation. In the
first of the cases listed above, substituting �pm(0) = 0.25ω0,
�pm(L) = 0.5ω0, we obtain d = L and

K(z) = − α

4(2 − z/L)2 + β. (73)

In the second case, substituting �pm(0) = 0.5ω0, �pm(L) =
0.25ω0, we obtain d = −2L and

K(z) = − α

4(1 + z/L)2 + β. (74)

A decreasing profile is more interesting from the practical
point of view because it generates a negatively chirped field
(a > 0), where lower signal frequencies are more delayed
than the higher ones, which requires a compensating medium
with normal dispersion, e.g., an optical fiber [18] or a glass
block [19]. In the rest of this section we compare the
first-order approximate and numerical solutions for the case
of decreasing quadratic-hyperbolic poling profile, given by
Eq. (73). Substituting Eq. (73) and Eq. (64) into Eq. (8) and
solving numerically this second-order differential equation,
we calculate optical spectra and spectra of squeezing. These
spectra are presented in Figs. 8 and 9, where they are compared
with the first-order values, predicted by Eq. (54). For better
comparison with Figs. 5 and 6, we introduce normalized pump
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FIG. 9. Spectra of squeezing for the case of quadratic-hyperbolic
profile. Solid blue line, numerical solution; dashed red line, first-order
approximation. The parameter ν0 is proportional to the intensity of
the pump.

intensity,

ν0 = |γ |2L
|K(0) − K(L)| , (75)

which has a physical meaning of the Rosenbluth parameter
for the linear profile, providing a quasi-phase matching in the
same frequency band for the given crystal length.

From the same numerical solution we can calculate the
angle of squeezing. Its first-order value is given by integrating
Eq. (43) with the profile defined by Eq. (73) and substituting
the result into Eq. (13),

ψ
(qh)
L (�) = −αL

2

(
� − 0.5ω0

ω0

)2

+ ψc, (76)

where ψc = (ϕA + αL/8 − βL)/2 is a constant. In a similar
way we obtain the input angle

ψ
(qh)
0 (�) = −αL

(
� − 0.25ω0

ω0

)2

+ ϕA

2
, (77)

where the superscript qh denotes the quadratic-hyperbolic
profile. The approximate angles are plotted in Fig. 10 together
with their numerical solutions. We see that the agreement of
both solutions is very good. As in the previous section, the
numerical study shows that the two solutions start to differ
significantly when ν0 approaches unity.

Finally, let us evaluate two parameters, characterizing the
slow variation of the profile, given by Eq. (73). We find easily
that max |�′(z)| = |�′(L)| = 0.001, so the poling period is
changing sufficiently slowly for applying Eq. (4). We also find
that max(ε′) = 0.18

√
ν0, and, therefore, the linearization of the

poling profile is justified for values ν0 < 0.31, where ε′ < 0.1.
We see in Fig. 8(d) that at ν0 = 0.3 the optical spectrum starts
to deflect from the prediction of the first-order approximation
not only in rapid oscillations but also in the average value.
With growing ν0 this deflection becomes greater, meaning that
the linearized solution is not valid anymore.

To ascertain that the good correspondence of the approx-
imate solution to the exact analytic and the numerical ones

FIG. 10. Angles ψL(�) and ψ0(�) for a quadratic-hyperbolic
poling profile at the pump power corresponding to ν0 = 0.01.
Solid green line (increasing), numerical solution for ψL(�); dashed
black line (increasing), its first-order approximation. Solid cyan
line (decreasing), numerical solution for ψ0(�); dashed red line
(decreasing), its first-order approximation. All angles are shifted
so that ψL(0.5ω0) = ψ0(0.25ω0) = 0. Vertical dotted lines mark the
borders of the amplification band.

is not a particular property of the chosen crystal settings, we
applied the analysis of the current section to four other crystal
designs. First, we considered MgO:LiNbO3 crystals of differ-
ent lengths, quasi-phase-matched for the same bandwidth: a
2-mm-long crystal with the chirp rate ζ = 87 rad/mm2, and
a 20-mm-long crystal with the chirp rate ζ = 8.7 rad/mm2.
In addition, we considered a 20-mm-long crystal of undoped
LiNbO3 pumped at 420 nm and quasi-phase-matched from
464 to 750 nm, as in Ref. [16], and a 22-mm-long crystal of
stoichiometric LiTaO3 pumped at 532 nm and quasi-phase-
matched from 680 to 800 nm, as in Ref. [11]. In all these cases
we obtained the correspondence of the solutions similar to that
of Figs. 5–10.

VI. CONCLUSIONS

We have considered the process of ultrabroadband collinear
PDC in an aperiodically poled crystal, designed to produce
QPM in a wide range of wavelengths (hundreds of nanome-
ters). In the case of the high-gain regime with an undepleted
pump such a process generates an ultrabroadband squeezed-
light wave at the output of the crystal. The components of such
a light wave at the frequencies symmetric with respect to the
central frequency ω0 are highly quantum correlated, and their
correlation time may be made as small as one optical period.
This ultrabroadband squeezing can be observed, for example,
in second-harmonic generation as described in Ref. [9], after
the compensation of the angle of squeezing at all frequencies.
For a sufficiently broadband squeezed light the correlation
time can be as short as a single optical period.

We can estimate the number of squeezed modes in the con-
sidered ultrabroadband source of squeezed light. In our model
of the monochromatic pump the number of squeezed modes is
formally infinite. When the spectral width δω of the pump is
taken into account, the number of such modes in the low-gain
regime is given roughly by the ratio �ω/δω, where �ω is
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the amplification bandwidth [33]. In the high-gain regime the
modes are expected to be approximately the same, but each pair
of modes will be characterized by a high degree of squeezing.
Thus, we can estimate the number of entangled modes for a
nanosecond pump pulse as 200 THz/1 GHz = 2×105 modes,
where the amplification bandwidth of 200 THz corresponds to
the example analyzed in Sec. V A. Such a highly multimode
field can be used in various applications of quantum informa-
tion, from metrology to cluster state quantum computation.

Let us summarize the results obtained in this article. First,
we have analyzed in detail the exact solution of the differential
equation for PDC with an undepleted quasimonochromatic
pump in an aperiodically poled nonlinear crystal with a linear
poling profile. The solution is expressed through parabolic
cylinder special functions. We have analyzed the properties of
this solution and proven the conservation of the commutation
relations for the field operators. Second, we have obtained
a unitary approximate solution, a “quantum Rosenbluth for-
mula,” in the first-order approximation and have demonstrated
that it is in good agreement with the exact solution within
the amplification band for various values of the pump power.
We have shown that, taking into consideration the quantum

conditions, one arrives at a solution, applicable in the high-gain
regime of PDC with the gain, corresponding to practical values
of squeezing from 3 to 12 dB. We have also shown a good
correspondence of the approximate solution to the numerical
one for the case of a nonlinear (quadratic-hyperbolic) profile.
Third, we have shown that a quadratic-hyperbolic profile
of aperiodic poling results in a negatively chirped output
field, compressible by a passive dispersive element with
normal quadratic dispersion. These results will help to design
aperiodically poled crystals for generation of squeezed light
with monocycle squeezing, which is important for applications
requiring ultrashort correlations in the temporal domain or an
ultrahigh number of entangled modes in the spectral domain.
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