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Tunable Landau-Zener transitions using continuous- and chirped-pulse-laser couplings
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The laser coupled Landau-Zener avoided crossing has been investigated with an aim towards obtaining the
laser source parameters for precise controlling of the state dynamics in a two-level quantum system. The
conventional Landau-Zener equation is modified for including the interaction of the system with a laser field
during a bias energy sweep and the obtained Hamiltonian is numerically solved for the investigation of the
two-state occupation probabilities. We have shown that in the Landau-Zener process, using an additional laser
source with controlled amplitude, frequency, and phase, the system dynamics could be arbitrarily engineered.
This is while, by synchronous frequency sweeping of a chirped-pulse laser, the system could be guided into
a resonance condition, which again gives the remarkable possibility for precise tuning and controlling of the
quantum system dynamics.
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I. INTRODUCTION

The Landau-Zener transition process in a two-level quan-
tum system describes the dynamics of the states’ occupation
probabilities when the energy separation of the two states is
linearly swept. Although the introduction of the Landau-Zener
(LZ) model dates back to 1932 (Landau [1] and Zener [2]),
it has many applications in today’s atomic and molecular
physics, quantum information science, quantum optics, and
related fields [3–11]. Important experimental examples of
using the Landau-Zener model include its application for
preparation, manipulation, and reading out of quantum states
in qubits and population inversion in many-body systems
[5,9–14]. The Landau-Zener formalism is based on a time-
dependent Hamiltonian with a constant variation rate of the
energy difference. Assuming the system in a pure state in
the infinite past, a general sweep rate of energy leads the
system into nonadiabatic transitions and the Landau-Zener
model analytically describes the dynamics of such process
[1–3]. In fact, in the absence of diabatic coupling between
the two states, the corresponding energy levels would have
an exact crossing when the energy level is swept. However
with a finite coupling value, the adiabatic energy levels E1

and E2 form an avoided crossing where the LZ transition
takes place at such crossing points [3]. Significant utilization
of the LZ model in experimental quantum systems inspired
many works for considering new aspects and extensions to
this classic problem. Among them controlling and tuning
of the Landau-Zener transitions with different mechanisms
has been investigated in different applications [15–20]. A
tunable Landau-Zener mechanism could be categorized as a
method in the quantum optimal control context whose goal is
to precisely manipulate the dynamics of quantum processes
[21]. References [15–17] are devoted to investigating the
application of periodic modulations on the energy sweep of the
Landau-Zener process for quantum manipulations. They have
included a sinusoidal term into the diagonal energy which is
superimposed to the conventional linear rate of energy change.
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The obtained Hamiltonian is solved there and the effect of
periodic modulations on the tunneling process of the system is
discussed. On the other hand, in the interesting work reported
in Ref. [18], the effect of an oscillatory coupling energy as
off-diagonal terms of the LZ Hamiltonian has been considered
by applying an electromagnetic field to the quantum system.
They have substituted the constant tunneling rate of the
conventional LZ problem with an oscillatory coupling energy
and investigated its effect on the LZ solution.

In this work, we have also investigated the effect of applying
an electromagnetic field to the quantum system during a
Landau-Zener transition process. Here, the off-diagonal cou-
pling energy is considered as a superposition of the oscillatory
electric dipole interaction term with the constant tunneling
rate of the system to be used as a tunability mechanism.
We have shown that in this problem, the consideration of
the constant tunneling rate considerably affects the system
dynamics. Two types of laser sources are considered in this
work which include monochromatic and chirped-pulse-laser
sources [22]. The interaction of the quantum system with the
laser field is considered through conventional Rabi formalism
in which the product of the atomic transition dipole moment
and the illuminated light electric field give the measure of
population fluctuations between the levels [23]. Here, investi-
gating the mentioned quantum process, the dependence of the
states’ population to the monochromatic laser field parameters
including intensity, frequency, and phase is obtained to be
used for desired dynamics tuning. It is also shown that if a
chirped-pulse laser is incorporated in LZ experiments where
its frequency changes in synchrony to the sweeping rate of the
bias energy, the resulting resonance between the states gives
another interesting tool for precise controlling of the system
dynamics.

II. THEORETICAL MODEL

In this work, the developed Hamiltonian of the laser coupled
LZ process is numerically solved for obtaining the evolution
of energy levels as well as the transition probabilities between
the states. Equation (1) shows the time-dependent Hamiltonian
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of the conventional Landau-Zener model [24].

HLZ(t) = H12σx + 1
2αtσz, (1)

where H12 is the tunneling rate between the states at t = 0,
and α is the sweeping rate of the system bias energy. On the
other hand the Hamiltonian of the laser-atom interaction is
considered as

HInt(t) = h̄� cos [2πfL(t + θ)]σx, (2)

where, fL is the laser frequency and � is the Rabi frequency
which is related to the fluctuation of population between the

levels and is determined by the coupling strength between the
laser field and the atomic transition dipole moment

� =
�E · �P
h̄

, (3)

where �E is the laser electric field and �P is the atomic transition
dipole moment. Incorporating Eqs. (1) and (2), the total
Hamiltonian would be obtained as Eq. (4) which is solved
for obtaining the system dynamics.

H (t) = HLZ(t) + HInt(t) =
{

αt/2 H12 + h̄� cos [2πf (t + θ )]

H ∗
12 + h̄� cos [2πf (t + θ )] −αt/2

}
. (4)

Considering Eq. (4), if the intensity of the applied field vanishes, the Hamiltonian reduces to the conventional LZ Hamiltonian.
In this model, the existence of nonzero H12 prevents the coupling energy to vanish at zero field. However, for nonzero fields, the
value of both the field intensity and H12 determine if the off-diagonal terms go to zero during the process.

It should be also noted that, here, for convenience the natural dimensionless unit system is used in which all the time variables
are divided by time constant τ and the energy variables are multiplied by τ and divided by h̄. In this natural system considering a
specific value for τ , all the other parameters could be accordingly found using the mentioned units. In this regard, if we choose
t̂ = t/τ , and α̂ = ατ 2/h̄, Ĥ12 = τH12/h̄, ε̂ = τε/h̄, �̂ = �τ, f̂ = f τ , the Schrödinger equation would be obtained as follows(

φ̇1

φ̇2

)
=

(
−i α̂

2 t̂ −i[�̂ cos(2πf̂ · t̂ + θ ) + Ĥ12]

−[�̂ cos(2πf̂ · t̂ + θ ) + Ĥ ∗
12] i α̂

2 t̂

)(
φ1

φ2

)
, (5)

where φ1(t) and φ2(t) describe the states of the system,
and their absolute squares [P 1(t) and P 2(t)] represent the
probability of finding the system in each state. It should be
noted that for each value of τ , the solution result of Eq. (5)
would be the same.

III. RESULTS AND DISCUSSION

We have numerically solved Eq. (5) for the investigation of
the states’ evolution and their eigenenergies. For comparison,
the solution of the considered Landau-Zener problem with
zero intensity of the laser field (�̂ = 0) is depicted in Fig. 1.
In this simulation the time intervals are chosen in such a way
that the probabilities could reach stable values.

Figure 1 shows that in the LZ crossing, after the transition
at t = 0, the probability of finding the system in each state is a
damping oscillatory function about a determined value which
can be described by the classical LZ equation. The frequency
of these oscillations increases with time, which is related to the
increase of energy in time with the rate of α. In our problem
the end probability value of state 1 could be found using the
conventional LZ formula of P 1 = exp(−πH 2

12/8α) [3].

A. Coupling of monochromatic laser source

In the conventional Landau-Zener process, the adiabatic
energy levels of E1 and E2 change in time because of the αt/2
term in the Hamiltonian of the system. Although at t = 0 they
reach their minimum energy gap of 2H12, they never cross
each other. However, in the presence of an electromagnetic
field, based on the values of H12 and Rabi frequency, the two
energy levels could make the level crossing. In this regard,

for low field intensities of �̂ < Ĥ12, adiabatic energy levels of
E1 and E2 never make an exact crossing. But for �̂ � Ĥ12 ,
based on the field phase of θ , crossing between the states is
possible. Figure 2 shows the variation of energy levels for the
four cases of conventional LZ with �̂ = 0, low field intensity
of �̂ = 1/2Ĥ12, and high field intensity of �̂ = Ĥ12 with θ = 0
and θ = cos−1(−Ĥ12/�̂). It is obvious that for the last case and
for the mentioned phase the energy levels no longer exhibit an
avoided crossing but rather an exact crossing. This emphasizes

FIG. 1. The probability amplitudes of states 1 and 2 versus time
through avoided crossing for Ĥ12 = 0.3 and α̂ = 1.25. The inset
shows the eigenenergies of the quantum system. The time interval
is −t̂end � t̂ � t̂end where t̂end = tendτ = 20.
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FIG. 2. The variation of adiabatic energy levels of E1 and E2 for
cases with no field or �̂ = 0 (dotted black line), low field intensity of
�̂ = 1/2Ĥ12 with θ = π (dashed black line), and high field intensity
of �̂ = Ĥ12 with θ = 0 (gray solid line) and θ = cos−1(−Ĥ12/�̂)
(black solid line). The other parameters are Ĥ12 = 0.3 and α̂ = 1.25.

the effect of the field phase on the system dynamics which will
be further considered in the following.

Figure 3 show the results of the mentioned LZ problem
when the laser field is applied. In these figures, the probability
amplitudes of the two states versus time are shown for two
laser frequencies of f̂ = 2.5 and f̂ = 0.75 for different Rabi
frequencies. It should be noted that for a physical amount of τ ,
these frequencies are in the range of near-optical wavelengths.
In Fig. 3, after transition at t = 0, a specific interference
pattern is obvious in the solution of the probability amplitudes
which are due to the beat phenomenon between the intrinsic
oscillation frequency of the system and the frequency of
the applied laser field. The effect of laser field strength
is also notable in these figures. Increasing the laser field
strength proportionally increases the Rabi frequency where
the probabilities of the states change correspondingly. It can be
inferred that for the considered field frequencies, increasing the
Rabi frequency in the specified range monolithically increases
the transition probabilities. However, this is not the case for
all the range of Rabi frequencies. For investigation of this
dependence, the laser frequency and intensity is swept for
different initial phases and the probability amplitudes are
averaged in the 5% of the end time interval. For simplicity we
name this value the averaged probability (AP) in the following.

Figure 4 shows the averaged final probability amplitudes
of state 1 for different laser frequency and strength and for
different initial phase angles. It is assumed that at the initial
time, this state was in the ground-state or spin-up condition.
In these figures, the dark region represents the complete spin
transition from up to down and correspondingly the bright
region represents the final up state. The other colors show the
final mixed states.

Figure 4 provides a sample tool for selection of intensity,
frequency, and phase of the laser source for controlling of
the state dynamics and engineering the desired final spin
state in the LZ experiment. It also reveals that the complete
spin-flip region (dark) has an oscillatory behavior which,
when increasing the laser frequency, makes it more frequent.
This is while considering lines with constant laser amplitude,

FIG. 3. The probability amplitudes of states 1 and 2 versus time
through avoided crossing for different field and Rabi frequencies.
(a) f̂ = 2.5; (b) f̂ = 0.75. The other parameters are Ĥ12 = 0.3 and
α̂ = 1.25.

FIG. 4. The AP of state 1 for sweeping of the Rabi frequency
and laser frequency with phase difference of (a) θ = 0◦, (b) θ = 45◦,
(c) θ = 90◦, and (d) θ = 180◦. The other parameters are Ĥ12 = 0.3
and α̂ = 1.25.
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FIG. 5. The AP of states 1 and 2 versus Rabi frequency for
the laser frequency of (a) f̂ = 0.12, and (b) f̂ = 0.4. The other
parameters are Ĥ12 = 0.3, θ = 0◦, and α̂ = 1.25.

the large varying of the final population reveals the impact
of laser frequency on the system dynamics. From Fig. 4
it is also evident that for very low Rabi frequencies, the
probability amplitudes are independent of the laser frequency
and approach the classical LZ result to which no external field
is applied. For better comparison, the obtained results for the
field frequencies of f̂ = 0.12 and f̂ = 0.4 at θ = 0◦ are shown
in Fig. 5.

Figure 6 shows the dependence of the averaged final
probability amplitude of state 1 to both laser frequency and
field phase. This figure again shows the oscillatory behavior
of the transition probability with changing the laser frequency,
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FIG. 6. The AP of state 1 for sweeping of the laser frequency and
the laser field phase. The other parameters are Ĥ12 = 0.3, α̂ = 1.25
and �̂ = 1.
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FIG. 7. The AP of state 1 for sweeping of the Rabi frequency and
the laser field phase with (a) Ĥ12 = 0, and (b) Ĥ12 = 0.3. The other
parameters are f̂ = 1, and α̂ = 1.25.

especially for high frequencies. It is worth mentioning that
robustness is an important issue in selection of the quantum
control strategy [21]. From an experimental point of view,
Figs. 4–6 suggest that in choosing the laser parameters, it
is desirable to select them in regions where the variation of
the probability amplitudes is minimum. The reason is that
the minimum variation results in the minimum sensitivity of
the system dynamics to the laser stability or the experimental
uncertainties. In contrast, in regions with large variations,
small changes in frequency, intensity, or phase of the laser
source would considerably change the final value of the states.
For example, in selecting the frequency of the laser source,
Fig. 6 shows that selecting the lowest possible frequency for the
desired dynamics engineering gives the benefit of minimum
required laser frequency stability.

Figure 7 shows the dependence of the state 1 probability
amplitude to both the Rabi frequency and the laser field
phase at a constant frequency of ω̂ = 1. In this figure, part
(a) shows the result for zero constant tunneling rate of
Ĥ12 = 0 and part (b) shows the obtained result for Ĥ12 = 0.3.
Wubs et al. have analytically derived the final transition
probability of the states for Ĥ12 = 0 [17]. They have shown
that the transition probability equation has a factor of cos2(θ )
and also the maximum of the transition probability takes
place when the relation between the Rabi frequency and the
energy sweeping rate satisfy �̂/

√
α̂ = [2 ln(2)/π ]1/2 ≈ 0.664.

Figure 7(a) exactly shows the same result which for α̂ = 1.25
at θ = 0◦; the maximum transition probability takes place at
�̂ = 0.75. This is while the transition probability has a cos2(θ )
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dependence on the changes of laser field angle. It is also worth
mentioning that Fig. 7(a) shows a symmetric behavior for the
positive and negative sign of the applied field, in which if
we increase the field angle by an amount of 180°, nothing
would be changed. In comparison, Fig. 7(b) shows that the
existence of a nonzero constant tunneling rate of Ĥ12 = 0.3
has a considerable effect on the pattern of the probability
amplitudes.

It also shows that the mentioned symmetry for reversing
the sign of the field would be broken in this case and hence
the maximums of the transition probability for θ = 0◦ and
θ = 180◦ take place at different Rabi frequencies of �̂ = 1.13
and �̂ = 0.43, respectively.

B. Coupling of chirped-pulse-laser source

The eigenenergies of Eq. (4) in the absence of the laser field
can be obtained as Eq. (6).

ε̂g(t̂) = 2πf̂g(t̂) = ±
√

Ĥ 2
12 + (α̂t̂/2)2

. (6)

Furthermore, for small values of energy gap and far enough
from t = 0, the eigenenergies could be approximated by a
linear function of time ε̂g(t) ≈ ±α̂t̂/2. Considering these
energy levels, if in a specific period of time, the energy of the
laser photons follows the gap energy, the resonance happens
between the two states of the system. Accordingly if the
frequency of a tunable chirped laser follows the energy gap of
the eigenenergies, we can guide the system into the resonance
condition. Figure 8 shows the obtained result of the probability
amplitudes with consideration of the LZ Hamiltonian for two
cases of on-resonance and 5% off-resonance laser frequency.
Comparison of these figures confirms that εg is the resonance

-60 -40 -20 0 20 40 60
0

0.2

0.4

0.6

0.8

1

Pr
ob

ab
ili

ty

P1
P2

-60 -40 -20 0 20 40 600

0.2

0.4

0.6

0.8

1

Pr
ob

ab
ili

ty

P1
P2

(a)

(b)

Time

Time

FIG. 8. The probability amplitudes of the states (P1 is the solid
line and P2 is the dashed line) in the (a) resonance, and (b)
5% off-resonance cases. The considered parameters are Ĥ12 = 0.3,
α̂ = 1.25, and �̂ = 0.2.
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FIG. 9. The probability amplitudes of the states (P1 is the solid
line and P2 is the dashed line) in the resonance case for a limited
time interval (a) t̂ = [0–40], and (b) t̂ = [0–30]. The insets show
the changes of the laser frequency for each case. The considered
parameters are Ĥ12 = 0.3, α̂ = 1.25, and �̂ = 0.2.

frequency. The frequency of the oscillations in Fig. 8(a) is
determined by the Rabi frequency which can be chosen by
adjusting the laser field intensity. Because of the mentioned
resonance phenomenon, changing the field intensity does not
change the behavior of system dynamics, except the frequency
of the mentioned oscillations.

Furthermore if instead of applying the chirped laser source
in the whole LZ experiment period, a chirped-pulse laser
interacts with the system in a specific time interval, it is
possible to precisely control and tune the population of the
states. Figure 9 shows the probability amplitudes for the case
that the chirped-pulse laser follows the resonance frequency
condition in two specific intervals of time.

IV. CONCLUSION

We have investigated the Landau-Zener process when an
electromagnetic source interacts with the two-level quantum
system. By developing and solving the system Hamiltonian,
the effect of the monochromatic laser parameters including
intensity, frequency, and phase on the dynamics of the system
has been studied. It is shown that consideration of the
constant tunneling rate (H12), in addition to effect of the field
interaction, considerably changes the probability amplitudes.
While the probability amplitudes have a cos2(θ ) dependence
on the field phase for H12 = 0, for nonzero H12 the system
has completely different behavior. The obtained results show
that because of the specific behavior of the states in response
to the laser parameters, robust experimental control of the
system dynamics needs special considerations in external
source parameter selection. For example, it is shown that in
selecting the frequency of the laser in the considered range,
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choosing the lowest possible frequency gives the maximum
robustness against experimental uncertainties. In this work
we have also studied the effect of a special chirped-laser
source for controlling the LZ process. It is shown that if
the chirped-laser frequency follows the LZ energy gap, the
system would be guided into resonance which can be used for
arbitrary final-state engineering. It should be mentioned that,
in comparison of the two approaches for tuning of the state
populations in the LZ experiments, the chirped-pulse method
has appreciably lower sensitivity to the laser field intensity.

In fact, in the chirped-pulse-laser approach, because of the
resonance condition, by decreasing the laser field intensity
and increasing the interaction time period, the same transitions
could be obtained.
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