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Topology-driven nonlinear switching in Möbius discrete arrays
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We examine the switching dynamics of discrete solitons propagating along two coupled discrete arrays which
are twisted to form a Möbius strip. We analyze the potential of the topological switches by comparing the
differences between the Möbius strip and untwisted discrete arrays. We employ the Ablowitz-Ladik (AL) model
and reveal a nontrivial Berry phase associated with the monopole spectra in parameter space. We study the
dynamical evolution of the AL soliton launched into one of the chains and observe its switching behavior. While
in the untwisted discrete case, the soliton splits in nearly identical portions as the interchain coupling is increased,
in the Möbius case and for weak coupling, we observe a well-defined “switching time” where the soliton switches
completely from one chain to the other.
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I. INTRODUCTION

Topological insulators represent a novel class of materials
with topologically protected order [1], and they are promis-
ing for potential applications. The ever-increasing interest
of the physics community was patently demonstrated with
the awarding of the 2016 Nobel Prize in Physics to three
researchers who made the seminal contributions in this field.
Recently, the general concepts of topological insulators and
topological phase order became very attractive in optics, and
different types of electromagnetic topological states have been
suggested theoretically and realized experimentally for mi-
crowave and optical systems [2]. More importantly, photonic
systems have been used to simulate conventional topological
systems and to explore topological phases, mainly in the
waveguide geometry [3] and bi-anisotropic metamaterials [4].
By employing the bulk-edge correspondence, one may explore
different topological phases by probing edge states or edge
topological invariants in optics [5].

Apart from the multiple efforts to emulate topological
insulators and their properties, in optics there are many
examples of relatively simple models to realize different types
of photonic topological states. One of the examples, a dimer
chain (known also as the Su-Schieffer-Heeger model) [6], was
implemented for optical edge modes in a binary waveguide
array [7]. Analogous systems have been recently proposed to
demonstrate one-dimensional topological edge states based on
zigzag chains of nanoparticles [8].

Twisted Möbius strips are known for their unusual topolog-
ical properties of being surfaces with only one side. Recently,
such strips were generated optically by tightly focusing the
light beam emerging from a liquid crystal q plate [9], revealing
the appearance of Möbius polarization structures of light,
driven by this unusual topology. An important difference
between the Möbius strip and other topological systems (e.g.,
the SSH model) is that the topology is determined by the
boundary conditions rather than from the Hamiltonian.

In this article we uncover fascinating properties of the
Möbius geometry by studying the effect of topology in coupled

discrete arrays, including the switching of discrete solitons.
We reveal that the nontrivial Berry phase associated with
the parameter space of the twisted pair of coupled discrete
arrays stipulates the unusual switching dynamics of discrete
solitons, with a sharp difference between the Möbius and
untwisted chains. We believe that such topological modes may
be important for topological optical switches and complex
light beam engineering in photonic networks, and may bring
additional knowledge about the role of topology in optics.

II. SPECTRAL PROPERTIES OF COUPLED
DISCRETE ARRAYS

We consider the propagation of a discrete soliton [10]
along a quasi-one-dimensional (ribbon) lattice [11], with the
topology of a Möbius strip [Fig. 1(a)]. We are interested in the
effect of this nontrivial topology on the switching behavior of
the soliton. The results will be compared with those of a usual
ribbon with untwisted boundary conditions [Fig. 1(b)]. We
will use the simplest ribbon consisting of two coupled chains,
chain A and chain B.

Untwisted boundary conditions. Let us consider a discrete
ribbon formed by two coupled chains (A and B). Assuming
periodic boundary conditions (untwisted), the Hamiltonian of
each chain is

Hδ = −t

N∑
i=1

c
†
δ,icδ,i+1 + H.c., (1)

where δ = {A,B} denote the different chains, t is the nearest
neighbor hopping, and cδ,N+1 = cδ,1.

When the two chains are coupled, with one A site on top of
a B site, we will end with N coupled dimers, each composed
of an A,B pair. If the A-B hopping is t ′, the interchain
Hamiltonian reads

HAB = −t ′
N∑

i=1

c
†
A,icB,i + H.c. (2)
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FIG. 1. Geometry of the two ribbons considered in this work:
(a) Mobius and (b) untwisted.

Even though it is straightforward to solve this Hamiltonian
by the Fourier transform, we will take a detour which will
make it easier to solve the Möbius strip later.

The eigenvalue equation (Huntwisted� = E�) for each site
is reduced to the form

tCn−1 + tCn+1 + t ′σxCn = ECn, (3)

where σx is one of the Pauli matrices.

That suggests a solution Cn = eikn(
a

b
) which results in a

simple equation for the eigenvalues(
2t cos(k) − E t ′

t ′ 2t cos(k) − E

)(
a

b

)
= 0, (4)

with solutions

E± = 2t cos(k) ± t ′, Cn = eikn

√
2

(
1

±1

)
. (5)

Now we apply the periodic boundary condition to obtain
the allowed values of k. From the condition CN+1 = C1, we
obtain

eikN = 1 ⇒ k = 2mπ

N
, m = 0, 1,2, . . . , N − 1. (6)

Möbius boundary conditions. Now we consider the discrete
Möbius strip. To impose Möbius boundary conditions to the
ribbon composed of the two chains A and B, we need to close
the loop by attaching the A site from an end of the ribbon
to the B site of the other end of the ribbon, and vice versa.
This leads to the same Hamiltonian [Eqs. (1) and (2)] as in the
untwisted case for all the sites except at the twisted boundary.
Thus, the only difference between Huntwisted and HMöbius is at
the boundaries, where HMöbius(1,N ) = tσx , reflecting that an
A site has a B neighbor.

We write the eigenvalue equations in an explicit form:

tCn−1 + tCn+1 + t ′σxCn = ECn, 1 < n < N, (7)

tσxCN + tC2 + t ′σxC1 = EC1, (8)

tCN−1 + tσxC1 + t ′σxCN = ECN. (9)

The similarity between Huntwisted and HMöbius is evident,
and it should lead to a similar spectrum, if we take the
limit of a infinitely long chain. Thus, by disregarding the
borders, the eigenvalue equations (7) are the same as in (3).
These considerations suggest we use the same solutions of the
untwisted case (5), before imposing the boundary conditions.

While Eq. (5) satisfies Eq. (7), we still need to solve the
eigenvalue equation at the boundaries, namely Eqs. (8) and (9).
Let us take the solution for the untwisted case:

E+ = t cos(k) + t ′, C+ = eikn

√
2

(
1
1

)
, (10)

with k not yet defined, and apply it to both boundary equations,
obtaining

teik(N−1)

(
1
1

)
+ teik

(
1
1

)
+ t ′

(
1
1

)
= [2t cos(k) + t ′]

(
1
1

)
,

(11)

te−ik

(
1
1

)
+ teik(N+1)

(
1
1

)
+ t ′

(
1
1

)
= [2t cos(k) + t ′]

(
1
1

)
,

(12)

both equations (left and right borders) are redundant and
satisfied if k = 2πm/N . That is the same result found in the
untwisted case.

The remaining eigenvalue and eigenvector (of the untwisted
case) are

E− = t cos(k) − t ′, C− = eikn

√
2

(
1

−1

)
. (13)

After substituting it into the boundary equations, we obtain

teik(N−1)

(−1
1

)
+ teik

(
1

−1

)
+ t ′

(−1
1

)

= [2t cos(k) − t ′]
(

1
−1

)
, (14)
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FIG. 2. Untwisted case. Soliton norm of the AL soliton on chain
A (left column) and on chain B (right column), for two values of
interchain coupling (α = 1,β = 0.5,N = 103).
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TOPOLOGY-DRIVEN NONLINEAR SWITCHING IN MÖBIUS . . . PHYSICAL REVIEW A 95, 033833 (2017)

FIG. 3. Untwisted case. Time evolution of un(z) (left) and vn(z) (right) for an initial AL soliton for a normal untwisted strip, and for a small
transverse coupling value t ′ = 0.2 (α = 1,β = 0.5,N = 103).

te−ik

(
1

−1

)
+ teik(N+1)

(−1
1

)
+ t ′

(−1
1

)

= [2t cos(k) − t ′]
(

1
−1

)
. (15)

In order to satisfy these equations, it is needed

eikN = −1 ⇒ k = mπ

N
, m = 1, 3, . . . , 2N − 1. (16)

This solution, evidently, has a period of 2N , twice the number
of sites.

Finally, we calculate the geometrical (Berry) phase [12]
associated with both states of the Möbius strip. This phase is
defined as

γ± = −i

N∑
n=1

C±(n)
∂

∂n
C±(n) = −i

∫ N

0
dn C±(n)

∂

∂n
C±(n),

(17)
assuming that the chain is long enough to have a continuum
range of n. Since a phase is defined only up to 2π , we obtain
the values γ− = π and γ+ = 0.

The value γ− = π reflects the fact that it is impossible
to use a single gauge everywhere [13]. For instance, let us
think that the A sites are positive and the B sites are negative.
After traveling through the whole chain, the sites A and B

need to change their sign, i.e., another gauge. In contrast, the
case of C+ has a trivial Berry’s phase, indicating that a single
phase (or gauge) is enough to cover all the sites, since after

walking through the whole chain, and exchanging A and B

sites, the phase is the same. Also, and contrary to the situation
in topological insulators, which also have a Berry phase of
π , in our system the π geometrical phase comes from the
boundary conditions, not from the Hamiltonian.

A nontrivial Berry’s phase indicates the existence of a
monopole similar to a magnetic monopole but living in the
parameter space [14]. This extra phase is similar to the
Aharonov-Bohm effect due a magnetic field, but with an
important difference: enclosing a Berry’s magnetic monopole
does not break the time-reversal symmetry (this is why it is
exactly π ).

III. DYNAMICS OF DISCRETE SOLITONS

Let us now consider a discrete soliton propagating along
the coupled chains. We are interested in the way the soliton
switches between the two chains, when in the presence of
untwisted or Möbius boundary conditions. To work with a
bona fide integrable discrete soliton we use the Ablowitz-
Ladik (AL) equation [15] expanded for the case of two coupled
chains:

i
dun(z)

dz
+ [t + χ |un(z)|2](un+1 + un−1) + t ′vn(z) = 0,

i
dvn(z)

dz
+ [t + χ |vn(z)|2](vn+1 + vn−1) + t ′un(z) = 0,

(18)

FIG. 4. Untwisted case. Time evolution of un(z) (left) and vn(z) (right) for an initial AL soliton for a normal untwisted strip, and for a
transverse coupling value t ′ = 0.5 (α = 1,β = 0.5,N = 103).
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FIG. 5. Möbius case. Soliton norm of the AL soliton in chains
A (left) and B (right) as a function of time, for interchain coupling
t ′ = 0 and t ′ = 0.2 (α = 1,β = 0.5,N = 433).

where un and vn are the excitation amplitudes on chains A

and B, respectively, χ is the nonlinearity parameter, and we
have taken a simple linear coupling between both chains,
parametrized by t ′. For a single chain, the AL equation admits
a closed-form solution in the form of a discrete soliton (the
AL soliton):

un(z) = sinh(α)sech(αn + vz) exp[−i(βn + ωz)] (19)

written in dimensionless units, where α and β are parameters
that determine the velocity and frequency of the soliton:

v = 2 sinh(α)sin(β), (20)

ω = −2 cosh(α)cos(β). (21)

Equation (20) provides a natural time scale for an AL
soliton propagating along a chain with untwisted. This time

corresponds to the time it takes the soliton to traverse the length
of the chain and come back to the initial position. For a chain
of N sites, this characteristic time is

T = N

2 sinh(α)sin(β)
. (22)

The idea now is to examine the propagation of an AL soliton in
a discrete Möbius strip and in the presence of coupling between
the two chains. We seek to find how the nontrivial topology
of the Möbius ribbon influences the switching behavior of the
AL soliton. The results will be compared to the ones obtained
for the simple untwisted topology.

To quantify the degree of localization of the excitation on
any of the two chains, we will resort to the soliton norm (SN),
defined as

N (u) =
∑

n

|un|2, N (v) =
∑

n

|vn|2, (23)

which gives a measure of the fraction of the soliton present on
a given chain. The total norm N ≡ N (u) + N (v) is a dynamical
constant, as can be obtained from Eq. (18).

For the periodic boundary conditions case, we have

u1 = uN+1, v1 = vN+1, (24)

and solve Eqs. (18) to trace the evolution of un,vn, using as
an initial condition the AL soliton profile placed on one of
the chains, un(0) = sinh(α)sech(αn) exp(−βn) and vn(0) = 0.
Figure 2 shows the time evolution of the soliton norms on
chains A and B, for a couple of interchain coupling values.
Figures 3 and 4 show the time evolution of u(z) and v(z), for
two coupling values. From these figures we observe that in
the presence of interchain coupling, the soliton stays mainly
on the initial chain (chain A), while the small portion that is
transferred to chain B gives rise to a another, smaller soliton
that propagates with the same speed as the “main” soliton.
That is, the initial soliton has been split into two solitons
by the presence of the interchain coupling. As the interchain
coupling increases so does the size of soliton B. When all
couplings (interchain and intrachain) have the same value, the
initial AL soliton gets split into two, nearly identical AL-type
solitons. In this respect the coupled chains system acts as a
coherent coupler [16].

FIG. 6. Möbius case. Time evolution of un(z) (left) and vn(z) (right) for an initial AL soliton on a Möbius strip, in the absence of transversal
coupling t ′ = 0 (α = 1,β = 0.5,N = 103).
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FIG. 7. Möbius case. Time evolution of un(z) (left) and vn(z) (right) for an initial AL soliton on a Möbius strip, for transversal coupling
t ′ = 0.26 (α = 1,β = 0.5,N = 103).

As stated earlier, to obtain the Möbius case, one has to
impose a special boundary condition by coupling the A site
from one end of the strip to the B site to the other end of the
ribbon, and vice versa. More explicitly, the boundary tems in
Eq. (18) read

i(du1/dz) + (t + χ |u1|2)(u2 + vN ) + t ′v1 = 0,

i(duN/dz) + (t + χ |uN |2)(uN−1 + v1) + t ′vN = 0,

i(dv1/dz) + (t + χ |v1|2)(v2 + uN ) + t ′u1 = 0,

i(dvN/dz) + (t + χ |vN |2)(vN−1 + u1) + t ′uN = 0. (25)

As we did for the untwisted case, we solve numerically
Eqs. (18) and (25) for un and vn, using as an initial condition the
AL soliton placed on one of the chains. We focus on the switch-
ing behavior of the soliton as the interchain parameter t ′ is var-
ied. Typical results are shown in Fig. 5, which shows the soliton
norm on each chain, as a function of time. Contrary to the PR of
the untwisted case, here we see an abrupt alternation between
large and small soliton norm, indicating an abrupt switching.

In the absence of coupling, the AL soliton propagates on
the initial chain for a while until, at time T it disappears from
the initial chain and gets transferred completely to the other
chain, where it will propagate for a time T , after which it will
reappear on the initial chain, reaching the initial position at
time 2T . From the parameters used in Fig. 5, this recurrence
time is 2T = 182.8. We see that the presence of the Möbius

boundary conditions has produced a complete switching of the
AL soliton (see Fig. 6). Now, for a nonzero interchain coupling,
something interesting happens: As soon as the AL soliton on
chain A gets switched to chain B, a small soliton is produced
on chain A with the same speed as the AL soliton (Fig. 7).
This intermediate soliton disappears from chain A as soon as
the AL soliton gets switched back to chain A from chain B.
Similarly, while the AL soliton is on chain A, the intermediate
soliton propagates along chain B. The size of this intermediate
soliton is proportional to the transverse coupling t ′. When t ′
is large enough (∼0.5), the size of the intermediate soliton
is similar to the one of the AL soliton (Fig. 8). This case is
dynamically indistinguishable from the untwisted case, and
one only observes an AL soliton in chain A and another in
chain B that propagate with the same speed on (effectively)
untwisted chains. In addition to all of this, we also observe
in all cases a high frequency oscillation of the soliton due to
internal dynamics and interchain coupling, governed by the
coupling parameter t ′.

IV. CONCLUSIONS

We have examined the switching dynamics of an Ablowitz-
Ladik (AL) soliton propagating along a twisted pair of discrete
chains, mimicking a Möbus strip. We have found that the
spectra of the system exhibits only one nontrivial geomet-
ric (Berry) phase, γ = π , similar to the Aharonov-Bohm
effect, but without breaking of the time-reversal symmetry.

FIG. 8. Möbius case. Time evolution of un(z) (left) and vn(z) (right) for an initial AL soliton on a Möbius strip, for transversal coupling
t ′ = 0.5 (α = 1,β = 0.5,N = 103).
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In the absence of interchain coupling, we have observed
switching of an AL soliton, with a well-defined period.
In the presence of interchain coupling, this switching gets
degraded by the presence of a single intermediate soliton,
whose amplitude increases with the strength of the inter-
chain coupling. At stronger interchain coupling, this leads
to a dynamics that mimics the one with periodic boundary
conditions.

ACKNOWLEDGMENTS

This work was supported in part by Fondecyt Grants
No. 1150806 and No. 1160177, Programa ICM Grant
No. RC130001, the Center for the Development of
Nanoscience and Nanotechnology CEDENNA FB0807, and
the Australian Research Council, and the Liverhulme Trust
through the Visiting Professorship Program.

[1] M. Z. Hasan and C. L. Kane, Rev. Mod. Phys. 82, 3045 (2010);
B. Bernevig and T. Hughes, Topological Insulators and Topo-
logical Superconductors (Princeton University Press, Princeton,
NJ, 2013).

[2] L. Lu, J. D. Joannopoulos, and M. Soljacic, Nat. Photon. 8, 821
(2014).

[3] M. C. Rechtsman, J. M. Zeuner, Y. Plotnik, Y. Lumer, D.
Podolsky, F. Dreisow, S. Nolte, M. Segev, and A. Szameit,
Nature (London) 496, 196 (2013); M. Hafezi, S. Mittal, J. Fan,
A. Migdall, and J. M. Taylor, Nat. Photon. 7, 1001 (2013).

[4] A. B. Khanikaev, S. Hossein Mousavi, W.-K. Tse, M. Kargarian,
A. H. MacDonald, and G. Shvets, Nat. Mater. 12, 233 (2013);
A. P. Slobozhanyuk, A. B. Khanikaev, D. S. Filonov, D. A.
Smirnova, A. E. Miroshnichenko, and Y. S. Kivshar, Sci. Rep.
6, 22270 (2016); K. Lai, T. Ma, X. Bo, S. Anlagec, and G.
Shvets, ibid. 6, 28453 (2016).

[5] S. Mittal, J. Fan, S. Faez, A. Migdall, J. M. Taylor, and M. Hafezi,
Phys. Rev. Lett. 113, 087403 (2014); A. V. Poshakinskiy, A. N.
Poddubny, and M. Hafezi, Phys. Rev. A 91, 043830 (2015).

[6] J. K. Asboth, L. Oroszlany and A. Palyi, A Short Course on
Topological Insulators (Springer, Berlin, 2016).

[7] N. Malkova, I. Hromada, X. Wang, G. Bryant, and Z. Chen,
Opt. Lett. 34, 1633 (2009).

[8] A. P. Slobozhanyuk, A. N. Poddubny, A. E. Miroshnichenko, P.
A. Belov, and Y. S. Kivshar, Phys. Rev. Lett. 114, 123901 (2015).

[9] T. Bauer, P. Banzer, E. Karimi, S. Orlov, A. Rubano, L.
Marrucci, E. Santamato, R. W. Boyd, and G. Leuchs, Science
347, 964 (2015); T. Bauer, M. Neugebauer, G. Leuchs, and P.
Banzer, Phys. Rev. Lett. 117, 013601 (2016).

[10] S. Trillo and W. Torruellas (eds.), Spatial Solitons (Springer,
Berlin, 2001); J. W. Fleischer, M. Segev, N. K. Efremidis, and

D. N. Christodoulides, Nature (London) 422, 147 (2003); F.
Lederer, G. I. Stegeman, D. N. Christodoulides, G. Assanto,
M. Segev, and Y. Silberberg, Phys. Rep. 463, 1 (2008); Yu. V.
Bludov, D. A. Smirnova, Yu. S. Kivshar, N. M. R. Peres, and
M. I. Vasilevskiy, Phys. Rev. B 91, 045424 (2015).

[11] M. I. Molina and Y. S. Kivshar, Opt. Lett. 35, 2895 (2010).
[12] M. V. Berry, Proc. R. Soc. London Ser. A 392, 45 (1984); F.

Wilczek and A. Shapere, Geometric Phases in Physics (World
Scientific, Singapore, 1989); A. Bohm, A. Mostafazadeh, H.
Koizumi, Q. Niu, and J. Zwanziger, Foundations, Mathematical
Concepts, and Applications in Molecular and Condensed Matter
Physics (Springer Science & Business Media, Berlin, 2013); N.
Zhao, H. Dong, S. Yang, and C. P. Sun, Phys. Rev. B 79, 125440
(2009); E. H. Martins Ferreira, M. C. Nemes, M. D. Sampaio,
and H. A. Weidenmüller, Phys. Lett. A 333, 146 (2004); W.
Beugeling, A. Quelle, and C. Morais Smith, Phys. Rev. B 89,
235112 (2014).

[13] M. Fruchart and D. Carpentier, C. R. Phys. 14.9, 779 (2013).
[14] Z. L. Guo, Z. R. Gong, H. Dong, and C. P. Sun, Phys. Rev. B

80, 195310 (2009).
[15] M. J. Ablowitz and J. F. Ladik, J. Math. Phys. 17, 1011 (1976);

L. D. Faddeev and L. A. Takhtajan, Hamiltonian Methods
in the Theory of Solitons (Springer, Berlin, 1987); M. J.
Ablowitz and P. A. Clarkson, Solitons, Nonlinear Evolution
Equations and Inverse Scattering (Cambridge University Press,
New York, 1991); A. Bulow, D. Henning, and H. Gabriel,
Phys. Rev. E 59, 2380 (1999); M. I. Molina, ibid. 372, 6388
(2008).

[16] S. M. Jensen, IEEE J. Quantum Electron. 18, 1580 (1982);
W. D. Deering, M. I. Molina, and G. P. Tsironis, Appl. Phys.
Lett. 62, 2471 (1993).

033833-6

https://doi.org/10.1103/RevModPhys.82.3045
https://doi.org/10.1103/RevModPhys.82.3045
https://doi.org/10.1103/RevModPhys.82.3045
https://doi.org/10.1103/RevModPhys.82.3045
https://doi.org/10.1038/nphoton.2014.248
https://doi.org/10.1038/nphoton.2014.248
https://doi.org/10.1038/nphoton.2014.248
https://doi.org/10.1038/nphoton.2014.248
https://doi.org/10.1038/nature12066
https://doi.org/10.1038/nature12066
https://doi.org/10.1038/nature12066
https://doi.org/10.1038/nature12066
https://doi.org/10.1038/nphoton.2013.274
https://doi.org/10.1038/nphoton.2013.274
https://doi.org/10.1038/nphoton.2013.274
https://doi.org/10.1038/nphoton.2013.274
https://doi.org/10.1038/nmat3520
https://doi.org/10.1038/nmat3520
https://doi.org/10.1038/nmat3520
https://doi.org/10.1038/nmat3520
https://doi.org/10.1038/srep22270
https://doi.org/10.1038/srep22270
https://doi.org/10.1038/srep22270
https://doi.org/10.1038/srep22270
https://doi.org/10.1038/srep28453
https://doi.org/10.1038/srep28453
https://doi.org/10.1038/srep28453
https://doi.org/10.1038/srep28453
https://doi.org/10.1103/PhysRevLett.113.087403
https://doi.org/10.1103/PhysRevLett.113.087403
https://doi.org/10.1103/PhysRevLett.113.087403
https://doi.org/10.1103/PhysRevLett.113.087403
https://doi.org/10.1103/PhysRevA.91.043830
https://doi.org/10.1103/PhysRevA.91.043830
https://doi.org/10.1103/PhysRevA.91.043830
https://doi.org/10.1103/PhysRevA.91.043830
https://doi.org/10.1364/OL.34.001633
https://doi.org/10.1364/OL.34.001633
https://doi.org/10.1364/OL.34.001633
https://doi.org/10.1364/OL.34.001633
https://doi.org/10.1103/PhysRevLett.114.123901
https://doi.org/10.1103/PhysRevLett.114.123901
https://doi.org/10.1103/PhysRevLett.114.123901
https://doi.org/10.1103/PhysRevLett.114.123901
https://doi.org/10.1126/science.1260635
https://doi.org/10.1126/science.1260635
https://doi.org/10.1126/science.1260635
https://doi.org/10.1126/science.1260635
https://doi.org/10.1103/PhysRevLett.117.013601
https://doi.org/10.1103/PhysRevLett.117.013601
https://doi.org/10.1103/PhysRevLett.117.013601
https://doi.org/10.1103/PhysRevLett.117.013601
https://doi.org/10.1038/nature01452
https://doi.org/10.1038/nature01452
https://doi.org/10.1038/nature01452
https://doi.org/10.1038/nature01452
https://doi.org/10.1016/j.physrep.2008.04.004
https://doi.org/10.1016/j.physrep.2008.04.004
https://doi.org/10.1016/j.physrep.2008.04.004
https://doi.org/10.1016/j.physrep.2008.04.004
https://doi.org/10.1103/PhysRevB.91.045424
https://doi.org/10.1103/PhysRevB.91.045424
https://doi.org/10.1103/PhysRevB.91.045424
https://doi.org/10.1103/PhysRevB.91.045424
https://doi.org/10.1364/OL.35.002895
https://doi.org/10.1364/OL.35.002895
https://doi.org/10.1364/OL.35.002895
https://doi.org/10.1364/OL.35.002895
https://doi.org/10.1098/rspa.1984.0023
https://doi.org/10.1098/rspa.1984.0023
https://doi.org/10.1098/rspa.1984.0023
https://doi.org/10.1098/rspa.1984.0023
https://doi.org/10.1103/PhysRevB.79.125440
https://doi.org/10.1103/PhysRevB.79.125440
https://doi.org/10.1103/PhysRevB.79.125440
https://doi.org/10.1103/PhysRevB.79.125440
https://doi.org/10.1016/j.physleta.2004.10.026
https://doi.org/10.1016/j.physleta.2004.10.026
https://doi.org/10.1016/j.physleta.2004.10.026
https://doi.org/10.1016/j.physleta.2004.10.026
https://doi.org/10.1103/PhysRevB.89.235112
https://doi.org/10.1103/PhysRevB.89.235112
https://doi.org/10.1103/PhysRevB.89.235112
https://doi.org/10.1103/PhysRevB.89.235112
https://doi.org/10.1016/j.crhy.2013.09.013
https://doi.org/10.1016/j.crhy.2013.09.013
https://doi.org/10.1016/j.crhy.2013.09.013
https://doi.org/10.1016/j.crhy.2013.09.013
https://doi.org/10.1103/PhysRevB.80.195310
https://doi.org/10.1103/PhysRevB.80.195310
https://doi.org/10.1103/PhysRevB.80.195310
https://doi.org/10.1103/PhysRevB.80.195310
https://doi.org/10.1063/1.523009
https://doi.org/10.1063/1.523009
https://doi.org/10.1063/1.523009
https://doi.org/10.1063/1.523009
https://doi.org/10.1103/PhysRevE.59.2380
https://doi.org/10.1103/PhysRevE.59.2380
https://doi.org/10.1103/PhysRevE.59.2380
https://doi.org/10.1103/PhysRevE.59.2380
https://doi.org/10.1103/PhysRevE.372.6388
https://doi.org/10.1103/PhysRevE.372.6388
https://doi.org/10.1103/PhysRevE.372.6388
https://doi.org/10.1103/PhysRevE.372.6388
https://doi.org/10.1109/JQE.1982.1071438
https://doi.org/10.1109/JQE.1982.1071438
https://doi.org/10.1109/JQE.1982.1071438
https://doi.org/10.1109/JQE.1982.1071438
https://doi.org/10.1063/1.109322
https://doi.org/10.1063/1.109322
https://doi.org/10.1063/1.109322
https://doi.org/10.1063/1.109322



