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Controlled opacity in a class of nonlinear dielectric media
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Motivated by new technologies for designing and tailoring metamaterials, we seek properties for certain classes
of nonlinear optical materials that allow room for a reversibly controlled opacity-to-transparency phase transition
through the application of external electromagnetic fields. We examine some mathematically simple models for
the dielectric parameters of the medium and compute the relevant geometric quantities that describe the speed
and polarization of light rays.
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I. INTRODUCTION

Driven by the recent advances in designing and tailoring
new (meta)materials [1], there has been increasing interest
in studying new optical phenomena in recent years. In
order to remind readers of some remarkable achievements
of such investigations, we mention the interesting effects of
electromagnetically induced transparency (EIT) [2,3], optical
systems presenting a negative index of refraction [4,5],
cloaking devices [1], one-way propagation and optical iso-
lators [6–8], and light-trapping devices [9,10], among many
others. Regarding EIT, an experimental demonstration of
the effect was reported in 1991, where an optically thick
medium was shown to become transparent by means of
a destructive interference caused by the application of an
external electromagnetic field [11]. More recently, an EIT-like
phenomenon was observed in the emission spectrum of a
system of two resonant meta-atoms in a cavity as a response
to an incident microwave [12]. See also the model and the
experimental confirmation of a radiating two-oscillator model
exhibiting EIT and absorption in metamaterials [13]. There
are several theoretical models examining EIT manifestations.
For instance, it was shown [14] that a plasmonic molecule
exhibits an electromagnetic behavior that resembles the EIT
in atomic systems, while Ref. [15] shows that metamateri-
als in which electromagnetic radiation interacts resonantly
with mesoscopic oscillators may display EIT. Furthermore,
transparency can be controlled by changing some properties
of the metamaterial [16,17]. We should also mention the
class of material media, commonly reported as smart glasses,
whose optical properties can continuously run from opacity to
transparency and back according to an externally controllable
field imposed to the medium [18–20].

The aim of this work is to provide, for a given class of
dielectric media and restricted to the limit of applicability of
geometrical optics subjected to external electromagnetic fields,
a theoretical description of the electromagnetically tunable
optical opacity-to-transparency phase transition, while still
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relying upon the basic phenomenological properties of the
medium.

This paper is summarized as follows. The next section
presents the derivation of the Fresnel equation for light
propagation in a nondispersive nonlinear medium by using the
Hadamard method for field discontinuities. From the require-
ment of the existence of nontrivial solutions for the Fresnel
equation, Sec. III deals with the geometric properties (speed
and polarization) of the light rays and establishes sufficient
conditions for the occurrence of opacity in a nonmagnetic
medium. Furthermore, in this section we present and briefly
discuss the effective metric that corresponds to the class of
optical systems here considered. The standard description of
electrically induced birefringence, by either linear Pockels
or quadratic Kerr models, is but a mathematically simple
account of electromagnetically tunable optical properties of
the material medium. Such simplicity contrasts itself with the
intrinsic sophistication of EIT phenomenon, thus suggesting
the use of a more elaborate dependence on the field strength,
as it was chosen in Secs. IV and V below. In Sec. IV, simple
models for the permittivity of the medium are investigated,
and the way to control the opacity by means of an externally
applied electric field is given. A very similar effect can also be
obtained in cases for which the medium reacts nonlinearly to
the presence of an external magnetic field, as shown in Sec. V.
Conclusions and final remarks are given in Sec. VI. For the
sake of completeness, the appendix determines the possible
Jordan canonical forms for the Fresnel matrix.

II. THE LIGHT PROPAGATION IN NONLINEAR OPTICS

Let us consider Maxwell’s equations inside a material
medium in Euclidean space

∂iDi = ρ, (1)

ηijl∂jEl = −∂tBi, (2)

∂iBi = 0, (3)

ηijl∂jHl = Ji + ∂tDi. (4)

We are assuming the convention that Latin indices i,j,l, . . .

run from 1 to 3 and repeated indices are summed upon.
We denote ∂i = ∂/∂xi , ∂t = ∂/∂t , and ηijl is the completely
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skew-symmetric Levi-Civita symbol with η123 = 1. Also, Ei

and Bi stand for the electromagnetic field strengths, while Di

and Hi describe the corresponding field excitations (despite
the generally accepted convention of term Hi as the magnetic
field and Bi as the magnetic induction). Since nonlinear media
are taken into account, the linear constitutive relations should
be replaced by nonlinear ones,

Di = ε0Ei + Pi, −→ Di = εijEj , (5)

Hi = 1

μ0
Bi − Mi, −→ Hi = μ−1

ij Bj , (6)

where Pi is the polarization, Mi is the magnetization, and ε0

and μ0 are the vacuum permittivity and permeability, respec-
tively. It is generally assumed that both the phenomenological
coefficients of permittivity εij and inverse permeability μ−1

ij

may be dependent upon the field strengths Ei and Bi .
In the limit of geometric optics, Ei and Bi , as well as

the charge distribution ρ and its flow Ji , are all assumed to
be continuous through the wavefront �t (xi) = const., for any
given instant of time t , but with a possibly nonzero finite
“step” in their derivatives, as determined by the Hadamard
method [21] (see Ref. [22] for a relativistic formulation of its
application in geometrical optics)

[∂tEi]�t
= −ω ei, [∂tBi]�t

= −ω bi, (7)

[∂iEi]�t
= ei ki, [∂iBi]�t

= bi ki, (8)

[ηijl∂jEl]�t
= ηijlkj el, [ηijl∂jBl]�t

= ηijlkj bl, (9)

where ω is the wave frequency and ki is the wave vector. The
vectors ei and bi describe the polarization modes of the electric
and magnetic components of the light rays, respectively. We
also use the symbol

[f ]�t
(p) = lim

δ→0+
[f (p+) − f (p−)] (10)

to indicate how the step of an arbitrary function f (p) through
the surface �t is evaluated, where p ∈ �t and p± ∈ �t±δ are
such that lim p± = p for δ → 0+.

The above procedure, when applied to the Maxwell
Eqs. (1)–(4), yields [23] a linearly polarized wave ωbi =
ηijlkj el whose electric polarization ei satisfies the eigenvalue
problem

Zij ej = 0. (11)

The components of the Fresnel matrix Zij are given by [7,24]

Zij = 1

ω

(
∂εik

∂Bl

ηlmjEk + ∂μ−1
lk

∂Ej

ηimlBk

)
km

− 1

ω2
ηilmηjqpAmpklkq + Cij , (12)

where the auxiliary matrices Cij and Aij are defined as

Cij = εij + ∂εik

∂Ej

Ek, (13)

Aij = μ−1
ij + ∂μ−1

ik

∂Bj

Bk. (14)

The existence of nontrivial solutions for the eigenvalue
problem given by Eq. (11) is equivalent to the requirement

det[Zij ] = 0. (15)

This equation furnishes the dispersion relation associated
with the light rays.

Up to now, the vectors Ei and Bi represent the total field,
which should be understood as the composition of an external
field Ec

i plus a wave field Eω
i . Hereafter, we will assume that

the fields associated with the propagating waves Eω
i are much

weaker than the controllable fields Ec
i , which can be produced

by a distribution of sources in the medium or by means of
external pumping fields. Thus, Ei = Eω

i + Ec
i ≈ Ec

i . For the
sake of simplicity, we still make use of the same notation
Ei and Bi for the components of the electric and magnetic
fields, which for all practical purposes nearly coincide with
the components of the external fields.

III. CONDITIONS FOR OPACITY
IN NONMAGNETIC SYSTEMS

Most of the material media we are able to optically operate
with are such that they respond linearly to external magnetic
fields. Therefore, we are allowed to simplify the model by
assuming nonmagnetic systems such that εij = εij (El) and
μ−1

ij = (1/μ)δij , where μ is a constant permeability and δij is
the Kronecker delta, which is either 1 for i = j or 0 otherwise.
In this case, the Fresnel matrix given by Eq. (12) reduces to

Zij = Cij − 1

μv2
	ij , (16)

where v = ω/k is the phase velocity. The wave vector can be
written as ki = k k̂i , with norm k = √

kiki , where k̂i is the unit
vector which points along the direction of the wave vector.
Further, we define the projector on the plane orthogonal to the
wave vector direction k̂i as 	ij = δij − k̂i k̂j .

Straightforward calculations show that Eq. (15) can be
written as a polynomial equation for the phase velocity as

av4 + bv2 + d = 0, (17)

where

a = det[Cij ], (18)

b = 1

μ
k̂i [CilClj − CllCij ] k̂j , (19)

d = 1

μ2
k̂i Cij k̂j . (20)

The non-negative roots of Eq. (17) are given by

v± =
√

− b

2a

(
1 ±

√
1 − 4ad

b2

)
. (21)

Two possible cases of opacity inside the material medium are
then identified from this equation, in terms of the discriminant

 = b2 − 4ad of Eq. (17): either 
 < 0 or else 0 � 
/b2 � 1
with b/a > 0. Note that such criteria for opacity is intended
to determine algebraic relations for Cij , since k̂i is an arbitrary
unit vector.
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The algebraic criteria to verify whether the material under
consideration admits a regime of opacity turns out to be useful
when we already know the dielectric coefficients of such
a medium. Otherwise, we have to solve partial differential
equations for the coefficients εij in order to set up the properties
of the medium. This latter approach shall be explicitly adopted
in Sec. IV in order to determine some specific models
exhibiting the opacity phenomenon.

A. Polarization

The nonzero eigenvectors associated to the eigenvalue
problem (11), namely the polarization vector ei , can be found
by considering a basis formed by any suitable choice of
linearly independent vectors {û(A)

i : A = 1,2,3} with the index
A labeling the three different vectors. We choose1 the three unit
vectors û

(1)
i = k̂i , û

(2)
i = Êi , and û

(3)
i = ηijl k̂j Êl/|ηpqr k̂qÊr |,

where Êi = Ei/E is the unit vector directed along the external
electric field Ei , in which E = |Ei | is the magnitude of the
electric field, and |Xi | denotes the Euclidean norm of any
given vector Xi . The decomposition of ei in terms of the basis
{k̂i , Êi , ηij l k̂j Êl/|ηpqr k̂qÊr |} is

ei = aA û
(A)
i , (22)

where aA are constants. For the phase velocity v of the light ray
being given by Eq. (21), the coefficients aA of the polarization
vector ei are determined as

a1 =
{[

ÊsCst Êt − 1 − (Ênk̂n)2

μv2

]
k̂i − (k̂sCst Êt )Êi

}

× Cij

ηjlmk̂lÊm

|ηpqr k̂qÊr |
,

a2 = (k̂i Ês − k̂sÊi)Cst ÊtCij

ηjlmk̂lÊm

|ηpqr k̂qÊr |
,

a3 = k̂sCst ÊiCij (k̂t Êj + k̂j Êt ) + k̂sCst k̂t

1 − (Ênk̂n)2

μv2
, (23)

up to an arbitrary global normalization.

B. Remarks on optical analog models

A simple manipulation of Eq. (17) allows us to cast it
as gμνkμkν = 0, from which we can read out an effective
optical geometry [25,26] describing the dispersion relation
associated with the four-dimensional wave vector kμ

.= (ω,ki),
with Greek indices running from 0 to 3. Here Minkowski
background metric, which in Cartesian coordinates takes the
form [ημν] = diag(−1,1,1,1), associates tensors with lower
and upper indices. In terms of the quantities defined before,

1Mathematically, however, k̂i and Êi could be parallel to one
another, a situation which would prevent them to be both included
as basis vectors. Notwithstanding, we can rely on the continuity
of Maxwell theory in order to define the optical behavior for such
degenerate situation of k̂i ‖ Êi as being given by that of the limit of
|ηpqr k̂q Êr | approaching zero without being equal to it.

this effective metric can be written as [27]

gμν = −μa V μV ν +
[
Cα

α − 1

μ(v±)2

]
Cμν − CμαCν

α, (24)

where V μ = δ
μ

0 and Cμν is defined such that for either μ or
ν equal to zero, then Cμν = 0; otherwise, it coincides with
Cij . It is straightforward to show that for the particular case
of vacuum, where the dielectric coefficients are just ε0 and
μ0, the optical metric gμν reduces to the Minkowski metric
ημν . One important point in this description is that the integral
curves of the wave vector kμ in the flat Minkowski spacetime
correspond to null geodesic curves in the fictitious spacetime
whose metric is given by the effective geometry [28,29].

The usefulness of the effective metric description relies on
the fact that the light propagation inside an optical medium
described by dielectric coefficients in a flat spacetime is
mathematically equivalent to the light propagation in a curved
spacetime. Generically speaking, a curved spacetime is an
exact solution of general relativity for a given source of energy.
Therefore, the coefficients of the effective geometry could
be compared with the coefficients of the curved spacetime
geometry and, as far as only kinematic aspects of such
propagation are considered, the same sort of phenomena
predicted in gravitational systems could be investigated in
the context of optics in material media. Possible applications
of this analogy include the tests of bending of light and the
construction of cosmological models in terrestrial laboratories.
Its theoretical relevance is also linked with the possibility of
measurement of tiny quantum phenomena such as Hawking
radiation, or even testing quantum gravity predictions, as is
discussed in the literature [31].

IV. SIMPLE MODELS FOR SMART GLASSES

We provide here some simple examples in which the
material media present opacity for a given range of the
electromagnetic field and the incident angle of the light rays.
One should notice that the derivation of the results below is
valid for any material satisfying the sufficient requirements
stated in the previous section—just after Eq. (21)—and
not only the smart glasses already known in the literature.
Notwithstanding, we shall keep calling those media as smart
or switchable glasses, because we believe that these words
appropriately express the idea behind the formalism developed
here.

Let us assume a magnetically linear medium whose
permittivity is εij = εij (E) dependent only on the magnitude E

of the electric field. Suppose that the external electric field lies
on the (x,y) plane, that is, [Ei] = (E cos φ,E sin φ,0), with
φ ∈ (0,2π ) and let the unit wave vector be [k̂i] = (kx,ky,kz)
with k2

x + k2
y + k2

z = 1. Suppose that the permittivity tensor
is diagonal, [εij ] = diag(ε1,ε2,ε3). The auxiliary matrix [Cij ]
then reads

[Cij ] =
⎡
⎣ε1 + ε′

1 cos2 φ ε′
1 cos φ sin φ 0

ε′
2 cos φ sin φ ε2 + ε′

2 sin2 φ 0
0 0 ε3

⎤
⎦, (25)

where we denote X′ = E(dX/dE). The coefficients of the
polynomial equation (17) for the phase velocity are obtained
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from

a = ε3(ε1ε2 + ε1ε
′
2 sin2 φ + ε2ε

′
1 cos2 φ),

μb = − 1
2 (ε′

1 + ε′
2)ε3kxky sin(2φ)

+ (ε1 − ε2 + ε′
1 cos2 φ − ε′

2 sin2 φ)ε3k
2
y

+ [(ε1 − ε3)(ε2 + ε′
2 sin2 φ) + ε2ε

′
1 cos2 φ]k2

z

− ε1(ε2 + ε3) − (ε2 + ε3)ε′
1 cos2 φ − ε1ε

′
2 sin2 φ,

μ2d = 1
2 (ε′

1 + ε′
2)kxky sin(2φ) + ε3k

2
z

+ (ε2 − ε1 + ε′
2 sin2 φ − ε′

1 cos2 φ)k2
y

+ (ε1 + ε′
1 cos2 φ)

(
1 − k2

z

)
. (26)

The decomposition of the unit wave vector in spherical coordi-
nates is [k̂i] = (sin θ cos ϕ, sin θ sin ϕ, cos θ ), where θ ∈ (0,π )
and ϕ ∈ (0,2π ). Note that the angles φ and ϕ are physically
nonequivalent variables.

In what follows, we particularize our investigation to the
cases where ε1 = ε(1 + f ), ε2 = ε(1 − f ), and ε3 = ε, where
f = f (E) and ε is a constant, in order to determine some
simple models exhibiting controlled opacity to transparency
phase transitions.

A. A simple model for electrically switchable media

Let us choose f (E) such that the phase velocities, given by
Eq. (21), exhibits azimuthal symmetry with respect to the wave
vector direction. In this case, the coefficients a, b, and d, given
by Eq. (26), will not depend on the components kx and ky of the
wave vector; i.e., they will not depend on the azimuthal angle ϕ.
Such requirement is achieved by setting f ′ + 2f = 0, which
leads to f = (E0/E)2, where E0 is an integration constant.2

The adopted regime of wave propagation we are assuming in
this paper requires that the intensity of the wave field, hereafter
denoted by Eω, has to be small when compared to the external
field E. In order to ensure the validity of this regime, we set
E0 = Eω, which implies that f � 1.

For this particular choice of f , the discriminant 
 of
Eq. (17) reduces to


 = ε4

Ẽ4μ2
[h sin4 θ − sin(2φ)(1 + cos2 θ )2], (27)

where h = 1 − (2/Ẽ2) cos(2φ) + 1/Ẽ4 is such that h � 0,
and Ẽ = E/Eω. Note that small values of θ imply 
 < 0

FIG. 1. Plots of εμ(v±)2 as function of θ for the model given by
f = (E

ω
/E)2. It was set E = 100Eω.

whenever sin(2φ) > 0. For φ = nπ/2 with n ∈ Z, we have

 � 0. Therefore, 
 = 0 and sin(2φ) 	= 0 leads to

cos2 θ =
1 −

√
sin(2φ)

h

1 +
√

sin(2φ)
h

. (28)

From the above analysis, it follows that φ have to be in the
interval (0,π/2) in order for the opacity phenomenon to exist.
Such opacity is most intense in the middle of the interval:
φ̄ = π/4. In this case, Eq. (28) implies that

cos2 θ =
1 −

√
Ẽ4

1+Ẽ4

1 +
√

Ẽ4

1+Ẽ4

. (29)

As Ẽ is larger, cos2 θ becomes smaller and, therefore, the range
of the polar angle θ for which 
 < 0 is larger.

The above model is numerically studied in Fig. 1 where
εμ(v±)2 as function of θ is depicted for some representative
value of φ. Notice that as φ gets larger values compared to
φ̄, the window of transparency enlarges, as anticipated. As
one can confirm by inspecting the coefficients a, b, and d

in Eq. (26), the phase velocity is independent of the polar
direction ϕ of the wave vector in this model.

For the maximum of opacity (φ = φ̄), the polarization
vectors are determined by Eqs. (23) as

a3 = [
√

2a1ṽ
2 + a2 sin θ (cos ϕ + sin ϕ)]

√
β0 cot θ√

2(sin ϕ − cos ϕ)(ṽ2 − 1)
,

a1

a2
=

2 − (f + 1)ṽ2 + (1 + β1 cos2 θ )f − β1
(
1 − tan2 θ sin ϕ

β2

)(
1 − 1

ṽ2

)
√

2
{
[β3 + β2(1 − f )]ṽ2 − β3 + β2

sin θ

} , (30)

2We recall that the model being proposed here emphasizes mathematical simplicity, and possibly disregards other aspects which may prove
relevant elsewhere. For instance, the regularity of Taylor expansions could be recovered by a function which roughly resembles a Planckian
distribution f (x) = 1/{x3[exp(1/x) − 1]} with x = E/Eω, which is globally regular and scales as 1/x2 in the x 
 1 regime as required.
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in which[
μεb

a
+ β0 sin2 θf 2 + 2 cos2 θf + 2(β0 − cos2 θ )

β0(f 2 + 1)

]
ṽ2 + μ2ε2d

a
+ sin2 θ [(cos(2ϕ) − sin(2ϕ) − 1) cos2(θ )f − 1 + sin(2ϕ)]

β0(f 2 + 1)
= 0,

(31)

where ṽ2 = με(v±)2—with the phase velocities v± be-
ing given by Eq. (21) restricted to this particular case.
We also define some auxiliary parameters: β0 = 1 +
cos2 θ − sin2 θ sin(2ϕ), β1 = (sin ϕ + cos ϕ)/(sin ϕ − cos ϕ),
β2 = cos2 θ/(sin ϕ − cos ϕ), and β3 = sin θ (f cos ϕ + sin ϕ).
Notice that Eq. (31) involves only the angular coordinates
θ, ϕ of the wave vector, that is, it establishes a relationship
between the angles in the form θ = θ (ϕ) or vice versa, since
the dimensionless phase velocity ṽ was already determined
from Eq. (21).

Finally, we compute the determinant of the effective metric
g ≡ det[gμν], given by Eq. (24), as

g = −με(1 + f 2)

[(
2 + f 2 − 1

ṽ2

)2

+ f 2

(
1 − 1

ṽ2

)2]

×
(

2 − 1

ṽ2

)
. (32)

From this, it follows that the condition g < 0 (the hyperbolicity
condition for the propagation of the light ray) holds only if
με(v±)2 > 1/2, in agreement with the regime of geometrical
optics that we have assumed.

B. Electrically switchable media with thin film polarizers

There are other simple models that one may propose by
taking into account a thin film polarizer on the interface
between the dielectric and the empty space, so that one of
the wave vector directions tangent to the (x,y) plane will be
absorbed by the polarizer, for example, ky = 0. In this case,
two interesting profiles for f (E) are discussed below.

1. Power law models

If we choose f = (E/Eω)x with E > Eω and Eω as the
probe field, Eq. (21) gives the following expressions for the
phase velocities:

με(v±)2 =
[
x + 1 − (

x
2 + 1

)
Ẽ−x

]
sin2 θ − 2Ẽ−2x

2(x + 1 − Ẽ−2x)

⎡
⎣1 ±

√√√√1 + 4
Ẽ−x(x + 1 − Ẽ−2x)

[(
x
2 + 1

)
sin2 θ + Ẽ−x

]
{[

x + 1 − (
x
2 + 1

)
Ẽ−x

]
sin2 θ − 2Ẽ−2x

}2

⎤
⎦. (33)

For small values of θ , we obtain that the condition 
 < 0
requires x < −1, which particularly includes the case f ∼
E−2 analyzed in Sec. IV A. It should be remarked that the
critical field can always be thought as the probe field one;
therefore it is expected that power-law models have negative
exponents in order that f < 1. Figure 2 depicts the behavior
of the phase velocities, by means of εμ(v±)2, described by

FIG. 2. Plots of εμ(v±)2 as function of θ for the power-law model
described by Eq. (33) with x = −1.05. The solutions were set with
E = ξEω for a few illustrative values of ξ . Here [k̂i] = (sin θ,0, cos θ )
and [Êi] = (1/2) (1,

√
3,0).

Eq. (33) for some representative values of the ratio E/Eω when
the specific model given by x = −1.05 is set. Notice that for
this case, the medium exhibits transparency in a narrow and
symmetric angular range of approximately π/16 rad around
θ = π/2; otherwise it is opaque. Furthermore, the width of the
angular range for which transparency occurs does not depend
on the magnitude of the electric field. The magnitude E of the
field affects only the magnitude v± of the phase velocity. This
behavior, including the range of velocities and the widths of
the transparency windows, is highly dependent on the specific
value of the power x which characterizes each possible model.

2. Exponential models

Material media characterized by f = exp(−αE/Eω), with
α being a constant, also present opacity. Figure 3 depicts the
behavior of the phase velocities for some representative values
of the ratio αE/Eω. Again, we can set Eω as the probe field,
from which the limit of geometric optics requires E > Eω.
Therefore, f can be seen as a small correction to the dielectric
permittivity of an isotropic medium. This figure shows that the
system exhibits transparency only in a narrow window about
θ = π/2; otherwise it is opaque. The width of the transparency
window for this case is dependent on the magnitude E of the
external electric field: A larger electric field opens a larger
window of transparency.
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FIG. 3. Plots of εμ(v±)2 as function of θ in the case of an
exponential model with α = 0.1. The solutions were set with E =
ξEω for a few illustrative values of ξ . Here [Êi] = (1/

√
2) (1,1,0).

V. OPACITY IN MAGNETIC MEDIA

A. Magnetically switchable media

We may also take advantage of the possibly nonlinear
behavior of the dielectric parameters in the magnetic fields.
Let us consider a medium whose dielectric coefficients are
εij = ε δij and μ−1

ij = (1/μ)diag(1 + m,1 − m,1) with m =
m(B) depending upon the magnitude of the magnetic field,
while ε and μ are constant parameters. The dispersion relation
stated in Eq. (15) yields in this situation a biquadratic equation
for the phase velocity,

μ
(
k̂2

2A11 + k̂2
1A22

) + μ2k̂2
3(A2

12 + A11A22)

−[
k̂2

1 + k̂2
2 + μ

(
k̂2

2 + k̂2
3

)
A11 + μ

(
k̂2

1 + k̂2
3

)
A22

]
μεv2

+ (μεv2)2 = 0, (34)

where we assumed the magnetic field points along the direction
[B̂i] = (cos φ, sin φ,0).

The same steps presented in Sec. IV A for the electric case
now yield m(B) = (B0/B)2, with B0 a constant, and we end
up with

(μεv2)2 − [
μA11

(
1 + k̂2

3

) + μA33
(
1 − k̂2

3

)]
μεv2

+μ2
(
A2

11 + A2
12

)
k̂2

3 + μ2A11A33
(
1 − k̂2

3

) = 0, (35)

where the components Aij are computed from the defini-
tion (14). The decomposition in spherical coordinates for the
wave vector [k̂i] = (sin θ cos ϕ, sin θ sin ϕ, cos θ ) then yields
the discriminant 
 of Eq. (35) in the form


 = m(B)2[sin2 θ − sin2(2φ)(1 + cos2 θ )2]. (36)

We note that the occurrence of opacity (which is achieved
from the requirement 
 < 0) is more easily obtained in this
case as compared to the electric ones, since it does not
depend on the intensity of the magnetic field but only on
its direction. In particular, if φ is equal to either 0 or π/2,
then the medium is completely transparent (and birefringence
phenomena is expected to occur) for rays with 0 < θ < π ;
on the other hand, for φ = π/4, the medium is completely

FIG. 4. Plots of εμ(v±)2 as function of θ for the model given by
m = (Bω/B)2. Here B = 100Bω.

opaque. Figure 4 illustrates the behavior of the phase velocities
for some representative values of φ. Recall that the window of
transparency diminishes as φ enlarges.

In this model, as the sign of 
 depends only on the direction
(φ) of the external magnetic field, for a given direction (θ )
of propagation, opacity-to-transparency transition could be
controlled by using an apparatus built with movable permanent
magnets. Such a hypothetical device would be safer to handle,
as compared with the electrical cases discussed in the previous
sections.

B. Electromagnetically switchable media

For the sake of completeness, we present also the case
concerning smart glasses generated by nonlinearities in both
dielectric parameters, with an anisotropy in the electric sector.
We assume the permittivity coefficients of the medium as

[εij ] = ε(1 − λE2) diag(γ,1,1), (37)

and the permeability coefficients

μ−1
ij = (1/μ)(1 − σB2)δij , (38)

both with linear dependence upon the squared magnitude of
the fields, where ε,μ,λ,σ,γ are positive constant parameters.
Notice that the problem admits immediate generalization
for metamaterials, with ε and μ taking negative values.
Most crystalline optical materials have dielectric coefficients
presenting a similar mathematical form but satisfying the
conditions λE2 � 1 and σB2 � 1. This is not the regime
being considered in the present work. The effects we analyze
here require the acceptance of Eqs. (37) and (38) as exact
functions of the fields.

The expression in Eq. (12) is greatly simplified by imposing
the magnitudes of the electric and magnetic fields to be chosen
such that λE2 = 1/3 = σB2. For their angular orientations,
we choose [Ei/E] = (sin χ, 0, cos χ ) and [Bi/B] = (0, 0, 1).
The dispersion relation can then be given as a linear equation
for v2,

με v2 = [4 sin2 θ (γ cos2 χ cos2 ϕ + sin2 ϕ) + 4 cos2 θ sin2 χ

− (1 + γ ) sin(2θ ) sin(2χ ) cos ϕ][4γ cos2 χ tan2 θ

+ 4 sin2 χ − 2(1 + γ ) tan θ sin(2χ ) cos ϕ]−1, (39)

033826-6



CONTROLLED OPACITY IN A CLASS OF NONLINEAR . . . PHYSICAL REVIEW A 95, 033826 (2017)

FIG. 5. Plots of με v2 as a function of θ from Eq. (40) with
γ = 15, for ϕ slightly larger than 8π/25. For ϕ < 12π/25 there
exists a window of opacity near θ = π/8, as depicted in the inset
frame for n = 1000,1500,1588.

where θ and ϕ represent, respectively, the polar and the
azimuthal angles associated with the wave vector direction
[k̂i] = (sin θ cos ϕ, sin θ sin ϕ, cos θ ).

A remarkable feature of this solution is the absence of
birefringence. In fact, the chosen values for the electric and
magnetic fields are such that the medium satisfies a sort of
nonbirefringence condition [27].

In order to study a specific case, let us set χ = π/6. In this
case we obtain that

με v2 = cos2 θ

[
cos2 θ + sin2 θ (4 sin2 ϕ + 3γ cos2 ϕ)

−
√

3

2
(1 + γ ) sin (2θ ) cos ϕ

][
cos2 θ

+3γ sin2 θ −
√

3

2
(1 + γ ) sin (2θ ) cos ϕ

]−1

, (40)

which shows that the system presents opacity for small values
of the angle φ for a range of the angle θ , if γ > 4/3. This
solution is depicted for γ = 15 in Fig. 5 for some illustrative
values of ϕ.

The relevance of the two cases with the magnetic field lies
in the fact that the propagation (with reference to the phase
velocity only) can be switched on and off with no change
whatsoever in the magnitude of the fields, but varying only
their orientation in space. Therefore, the physical device being
modeled in these cases can be adjusted to be either transparent
or opaque by merely rotating the apparatus mechanically.

VI. FINAL REMARKS

We studied some models for nonlinear electromagnetic
material media which, in the regime of geometrical optics,
do present phase transitions between optical transparency
and opacity, and vice versa. These models were chosen to
be mathematically simple and were mostly motivated by
the present-day technological capability of designing and

producing metamaterials whose properties can be set to meet
pre-established requirements [30].

We do not present a complete analysis of this phenomenon
in nonlinear media. Instead, we just present the method by
which such phenomenon can be investigated. In this way, the
theoretical description we present here could be a valuable tool
in searching for new optical devices and effects. Depending on
the external applied electric and magnetic fields, which couple
to the dielectric properties of the medium by means its optical
susceptibilities, opacity and transparency may occur in each
studied model for certain directions of propagation of a probe
electromagnetic wave. The models can be adapted to different
situations, in order to yield the effect around specific directions
of the wave propagation.

Another possible application of the present method would
be the production of models presenting low values for light
velocity around certain directions of propagation. A simple
example is the model for electromagnetically switchable media
investigated in Sec. V B, with a specific example depicted in
Fig. 5. Propagation with directions near π/2 present quite
low velocity. Slow light phenomena is an interesting tool for
investigating some aspects of classical and quantum optics,
including analog models of general relativity. In fact, in the
context of analog models, slow light systems have been used
to simulate black holes in several optical systems. The main
idea is to measure the occurrence of the tiny Hawking radia-
tion [32], long ago predicted to occur in astrophysical black
holes, but its small magnitude renders its direct observation
unlikely to occur in the realm of astrophysics. Thus, measuring
this curious effect in terrestrial laboratories [33] by means of
analog models seems to be an important starting point to test
semiclassical gravity predictions and perhaps even quantum
gravity phenomena.

Finally, it should be noticed that in all models here
examined, except for the one studied in Sec. V B, birefringence
phenomena occur; i.e., the solutions exhibit two distinct phase
velocities along the same direction of the wave vector. The
distinct solutions are associated with different polarization
vectors. In all cases where the effect occurs its magnitude
is larger at the center of the transparency windows and falls to
zero at the borders.
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APPENDIX: CANONICAL FORMS OF THE [Ci j ] MATRIX

The branch of material media we are interested in here
corresponds to the ones which admit only real elements
for the dielectric coefficients. Consequently, the auxiliary
matrices [Cij ] and [Aij ] possess only real entries, yielding
the existence of at least one real eigenvalue, for each of them.
However, their Jordan canonical form can be nondiagonal if
the other eigenvalues are complex. Recall that it is enough
to study the eigenvalues of [Cij ] in order to know the
properties of the generalized Fresnel matrix in the case of
electrically switchable media with an opacity-to-transparency
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transition. For simplicity, we shall analyze here [Cij ] solely.
The decomposition in terms of the eigenvalues can also be
applied to the magnetically switchable media.

Let us denote λA ∈ C the eigenvalues of the dimensionless
version of [Cij ] and a basis {v̂(A)

j } of real vectors, where
A labels the vectors and j labels the components, with
A,j = 1,2,3. If we restrict our analysis to the real canonical
forms of [Cij ], we have to consider two cases separately: either
(a) λ1,2 ∈ C and λ3 ∈ R or (b) λA ∈ R.

In case (a), λ1 = x + yi with y > 0 and the canonical form
is

[Cij ]|a =
⎛
⎝x −y 0

y x 0
0 0 λ3

⎞
⎠, (A1)

and for case (b), we obtain

[Cij ]|b =
⎛
⎝λ1 0 0

δ1 λ2 0
0 δ2 λ3

⎞
⎠, (A2)

where δ1,2 = 0,1, depending on the eigenvalues degeneracy
and the number of associated eigenvectors.

We then decompose the unit wave vector k̂i in terms of the
basis {v̂(A)

j } as

k̂i = kAv̂
(A)
i , (A3)

where the coefficients kA ∈ R lie upon the unit sphere
(k1)2 + (k2)2 + (k3)2 = 1. Therefore, the coefficients of the
polynomial equation for the phase velocity (18)–(20) are

a = (x2 + y2)λ3,

b = − 1

μ

[
(x2 + y2)

(
1 − k2

3

) − 2y2k2
2 + xλ3

(
1 + k2

3

)]
,

d = 1

μ2

[
x
(
1 − k2

3

) + λ3k
2
3

]
, (A4)

for case (a) and

a = λ1λ2λ3,

b = − 1

μ

[
λ1λ2

(
k2

1 + k2
2

) + λ1λ3
(
k2

1 + k2
3

)
+ λ2λ3

(
k2

2 + k2
3

) + λ1δ2 k2k3 + λ3δ1 k1k2 − δ1δ2 k1k3
]
,

d = 1

μ2

(
k2

1λ1 + k2
2λ2 + k2

3λ3 + δ1k1k2 + δ2k2k3
)
, (A5)

for case (b).
Finally, we display the discriminants of each case. For case

(a),


|a = (
1 − k2

3

)2
x4 − 2

(
1 − k2

3

)2
λ3x

3 + [(
1 − k2

3

)
λ2

3

+ 2
(
1 − 2k2

2 − k2
3

)
y2

](
1 − k2

3

)
x2 + 2

[
2
(
k2

3 − 1
)

+ (
1 − 2k2

2 − k2
3

)(
1 + k2

3

)]
λ3y

2x − 4k2
3λ

2
3y

2

+ (
1 − 2k2

2 − k2
3

)2
y4. (A6)

For case (b), with λ1 	= λ2 	= λ3, we obtain


|b1 = [
λ2(λ1 − λ3)k2

3 + λ1(λ2 − λ3)
]2

+ [
2λ2(λ1 − λ3)k2

3 + (λ1 − λ2)λ3k
2
2

− 2λ1(λ1 − λ2)
]
λ3(λ1 − λ2)k2

2 . (A7)

The most degenerate situation for the case (b) is λ1 = λ2 = λ3

with only one eigenvector. Then, the discriminant is


|b2 = [k2(k1 + k3)λ3 − k1k3]2 − 4k1k3λ
2
3 (A8)

Therefore, the negativity of each of these quantities guarantees
the opacity of the medium.
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