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Analytical investigation of higher-order plasmonic modes on a metal-dielectric interface

Mahdi Kordi, Fahimeh Armin, Mohammad R. Malekfar, Mir Mojtaba Mirsalehi, and Mehrdad Shokooh-Saremi
Department of Electrical Engineering, Faculty of Engineering, Ferdowsi University of Mashhad, Mashhad 9177948974, Iran

(Received 15 November 2016; published 20 March 2017)

Based on the plane-wave expansion method, we have analytically obtained a set of higher-order transverse
magnetic (TM) modes that can exist on a metal-dielectric interface. Any linear combination of these modes can
be supported on the interface. Our analysis is based on the assumption of nonuniformity of the electromagnetic
fields in all directions. We have also shown that no higher-order transverse electric (TE) mode can propagate on
the interface. Furthermore, the orientation of Poynting vector and energy flow of the TM modes are described.
Our results show that the Poynting vector of a higher-order TM mode always makes an angle with the interface,
which means TM modes are not pure surface waves.
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I. INTRODUCTION

In the recent decades, extensive studies have been carried
out on investigation and analysis of surface waves, since they
would make it possible to transfer information on a planar
waveguide. Among different kinds of surface waves, surface
plasmon polaritons have attracted more interest because of
their ability in transmitting energy below the diffraction limit
of light [1–3].

Despite several valuable theoretical and experimental
research on surface plasmon waves, few of them have
considered higher-order plasmonic modes. Although single
mode description of plasmonic waves results in acceptable
outcomes in many applications, there exist some cases that
cannot be explained by this description [4,5]. Higher-order
plasmonic modes have been studied, both theoretically and
experimentally, in nanowires and ribbon waveguides with
finite widths [6–9]. The work done by Zakharian et al. is one
of the first investigations on higher-order modes in metallic
slab waveguide structures [10]. Based on the study presented
by Zakharian et al. and referring to their earlier analytical
work, Norrman et al. studied higher-order modes supported
by a metal film sandwiched between two similar dielectrics,
and showed that an infinite number of modes can be supported
by a metallic slab waveguide [11,12]. In both of these works, a
two-dimensional structure has been studied. Martinez-Herrero
et al. have also studied higher-order modes but in the concept
of plasmon packet where a Gaussian function has been used to
describe the packet and then calculate its propagation length
and polarization properties [13]. Another interesting point
about surface plasmons has been provided in the analytical
work of Gawhary et al. [14]. Considering the single mode
description, they have shown that a surface plasmon mode
propagating on a metal-dielectric interface is neither a TE nor
a TM pure surface wave.

In contrast to previous works, we have focused on nonuni-
form electromagnetic fields of a metal-dielectric interface.
Based on the plane-wave expansion method, we have obtained
a set of higher-order orthogonal transverse magnetic (TM)
modes for this interface. All of these modes satisfy Maxwell’s
equations and the electromagnetic boundary conditions. Hence
any linear combination of these modes can be supported on the
interface. We also show that, in addition to the fundamental
mode [14], higher-order TM modes are not pure surface

waves. For better understanding theses higher-order modes,
we have also shown how their energy flows differ from the
corresponding flow of the fundamental mode.

The structure of this paper is as follows. We start with a
brief review of the solution to the Helmholtz wave equation
for a two-dimensional structure. Then, the TM and transverse
electric (TE) modes are studied. Next, the hybrid modes are
investigated, in which none of the fields components are zero.
The Poynting vector and energy flow of the TM modes are
discussed in the next section. The last section is devoted to
Conclusion.

II. BACKGROUND

The simplest structure capable of carrying a surface plas-
mon wave consists of two semi-infinite regions of a dielectric
and a metal as shown in Fig. 1.

In this figure, z axis is the wave propagation direction and
x axis is normal to the surface. It is usually assumed that the
plasmonic wave is uniform in the y direction, i.e., ∂/∂y = 0
[15–17]. Solving the Helmholtz wave equation based on this
assumption shows that TE surface modes cannot exist, but a
TM mode having a propagation constant of

β = k0

√
ε1ε2

ε1 + ε2
(1)

is supported, where ε1 and ε2 are the dielectric constants of the
two media and k0 is the wave number in free space. We consider
this mode as the fundamental mode of the structure (TM0).
The assumption ∂/∂y = 0 would not reveal any higher-order
modes.

In the following sections, we investigate the solutions of
the wave equation without using the uniformity assumption
in the y direction. First, we start with TM and TE modes of
higher orders and then move on to investigate the possibility
of existence of hybrid modes.

III. TMx MODES

In Fig. 1, the discontinuity of the structure is in the
x direction. Therefore, we expect the structure to support
higher-order magnetic modes which are transverse to the x
direction (TMx). Note that in the case of TM0 mode, the
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FIG. 1. Schematic of a metal-dielectric interface.

components of magnetic field in x and z directions are both
zero and therefore this mode can be considered TMx or TMz.

Starting with the magnetic vector potential A, for the two
media as

A1 = A1e
−kx1xe−kyye−jβzax, x � 0, (2)

A2 = A2e
kx2xe−kyye−jβzax, x < 0, (3)

and following the trend presented in classical electromagnetic
references [18,19], one can obtain the magnetic fields in the
two media as

H1 = ∇ × A1

μ0
=

(
−jβ

A1

μ0
ay + ky

A1

μ0
az

)

× e−kx1xe−kyye−jβz, (4)

H2 = ∇ × A2

μ0
=

(
−jβ

A2

μ0
ay + ky

A2

μ0
az

)

× ekx2xe−kyye−jβz. (5)

In the above equations, ∇× represents the curl operation, μ0

is the permeability of vacuum, A1 and A2 are magnitudes of
the magnetic vector potentials in the two media, and kx1 and
kx2 are the x components of the corresponding wave vectors.
Also, ky is the y component of the wave vector in the two
media and β is the propagation constant in z direction. The
boundary condition for the tangential magnetic fields at the yz
plane results in the equality of amplitudes, i.e., A1 = A2.

The electric fields can be obtained using Maxwell’s equa-
tions

E1 = 1

jωμ0ε0ε1

((
β2 − k2

y

)
ax + kx1ky ay + jkx1βaz

)

×A1e
−kx1xe−kyye−jβz, (6)

E2 = 1

jωμ0ε0ε2

((
β2 − k2

y

)
ax − kx2ky ay − jkx2βaz

)

×A2e
kx2xe−kyye−jβz. (7)

The boundary condition for the tangential components of
electric fields results in

kx1

ε1
= −kx2

ε2
. (8)

Also, the following dispersion relations hold for the electro-
magnetic wave:

ε1k
2
0 + k2

x1 + k2
y − β2 = 0, (9)

ε2k
2
0 + k2

x2 + k2
y − β2 = 0. (10)

For the fundamental mode of the structure, where uni-
formity in y direction imposes ky = 0, using Eqs. (8)–(10)
reveals the propagation constant of the surface plasmon as
Eq. (1). However, for higher-order TMx modes, where ky �= 0,
the propagation constants cannot be calculated from these
equations, since there are four unknown parameters and three
equations. This degree of freedom reveals infinite number of
modes. Subtracting Eq. (10) from Eq. (9) will reveal a relation
between kx1 and kx2 as

k2
x1 − k2

x2 = k2
0(ε2 − ε1). (11)

Using this equation in conjunction with Eq. (8), the following
expressions are obtained:

kx1 = ± jk0ε1√
ε1 + ε2

, (12)

kx2 = ∓ jk0ε2√
ε1 + ε2

. (13)

Mathematically both negative and positive signs are valid but,
to have a physical mode, the real parts of kx1 and kx2 should be
positive. Therefore, with respect to the ± sign in Eq. (12), the
multiplication of the real parts of kx1 and kx2 must be positive.
So, the relation

Re

{
jε1√

ε1 + ε2

}
Re

{
jε2√

ε1 + ε2

}
< 0 (14)

should be satisfied between ε1 and ε2.
Equations (12) and (13) show that all TMx modes have the

same propagation constant in the x direction and therefore the
same confinement in this direction. It should be mentioned that
writing similar trend used here would not reveal any solution
for TMz or TMy .

To provide a clear picture, the z component of electric field
on the metal-dielectric interface (x = 0) is shown in Fig. 2
for the fundamental mode and a higher-order TM mode. The
fields are calculated for the interface of silver (medium 2)
and vacuum (medium 1) at the wavelength of 633 nm. The
dielectric constant of silver is obtained from the Palik database
[20]. Figure 2(a) corresponds to the fundamental mode where
ky is zero. As can be seen, the wave is uniform in the y direction
and propagates in the z direction. Figure 2(b) corresponds to
a higher-order TM mode with ky = j0.01k0. As a result of
nonuniformity in the y direction, the propagation direction is
deviated from the z axis.

IV. TEx MODES

It is shown that the zero-order TE mode (TE0) is not
supported by a metal-dielectric interface [16]. To fulfill this
discussion over all transverse electric modes, higher-order
TE modes will be studied. Using the same procedure as TM
modes, one can obtain the electric and magnetic fields for TEx
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FIG. 2. z component of electric field corresponding to (a) the
fundamental mode and (b) a higher-order TM mode on the silver-
vacuum interface.

modes from the electric vector potentials. The resulted electric
fields for the two media are

E1 = −∇ × F1

ε0ε1
=

(
jβF1

ε0ε1
ay − kyF1

ε0ε1
az

)

× e−kx1xe−kyye−jβz, x � 0, (15)

E2 = −∇ × F2

ε0ε2
=

(
jβF2

ε0ε2
ay − kyF2

ε0ε2
az

)

× ekx2xe−kyye−jβz, x < 0, (16)

where F1 and F2 are the magnitudes of the electric vector
potentials in the upper and lower media, respectively. Equating
the tangential components of the electric fields at the yz plane
reveals the condition

F1

ε1
= F2

ε2
. (17)

Also, the magnetic fields are obtained as

H1 = 1

jωμ0ε0ε1

((
β2 − k2

y

)
ax + kx1ky ay + jkx1βaz

)

×F1e
−kx1xe−kyye−jβz, (18)

H2 = 1

jωμ0ε0ε2

((
β2 − k2

y

)
ax − kx2ky ay − jkx2βaz

)

×F2e
kx2xe−kyye−jβz. (19)

The boundary condition for the tangential components of
magnetic fields gives

F1
kx1

ε1
= −F2

kx2

ε2
. (20)

Combining this equation with Eq. (17) would result in

kx1 = −kx2. (21)

To have a physical mode at the interface of two media, the
real parts of both kx1 and kx2 should be positive. According
to Eq. (21), the TEx modes do not satisfy this condition.
Therefore, like TE0, these modes are not supported by the
structure shown in Fig. 1. Similarly, it can be shown that other
transverse electric modes (TEy and TEz) are not supported.

V. HYBRID MODES

Here, we investigate the possibility of existence of hybrid
modes. These modes have the most general form where,
unlike the cases in the previous sections, none of the fields
components are zero. One can express the fields of a hybrid
mode as a summation of TE and TM parts. Each of these
two parts satisfy Maxwell’s equations but do not necessarily
satisfy the boundary conditions. Indeed, their summation
should fulfill the electromagnetic boundary conditions [21]. As
before, we start with the magnetic and electric vector potentials
A and F for the two media as

A1 = A1e
−kx1xe−kyye−jβzax, x � 0, (22)

F1 = F1e
−kx1xe−kyye−jβzax, x � 0, (23)

A2 = A2e
kx2xe−kyye−jβzax, x < 0, (24)

F2 = F2e
kx2xe−kyye−jβzax, x < 0. (25)

The corresponding electromagnetic fields are obtained as

H1 = ∇ × A1

μ0
+

∇ × (−∇×F1
ε0ε1

)
−jωμ0

=
[(

β2 − k2
y

jωμ0ε0ε1

)
F1ax +

(
− jβ

A1

μ0
+ kx1kyF1

jωμ0ε0ε1

)
ay

+
(

ky

A1

μ0
+ kx1βF1

ωμ0ε0ε1

)
az

]

× e−kx1xe−kyye−jβz, x � 0, (26)
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H2 = ∇ × A2

μ0
+

∇ × (−∇×F2
ε0ε2

)
−jωμ0

=
[(

β2 − k2
y

jωμ0ε0ε2

)
F2ax +

(
− jβ

A2

μ0
− kx2kyF2

jωμ0ε0ε2

)
ay

+
(

ky

A2

μ0
− kx2βF2

ωμ0ε0ε2

)
az

]

× ekx2xe−kyye−jβz, x < 0, (27)

E1 =
∇ × (∇×A1

μ

)
jωε0ε1

− ∇ × F1

ε0ε1

=
[(

β2 − k2
y

jωμ0ε0ε1

)
A1ax +

(
kx1kyA1

jωμ0ε0ε1
+ jβ

F1

ε0ε1

)
ay

+
(

kx1βA1

ωμ0ε0ε1
− ky

F1

ε0ε1

)
az

]

×e−kx1xe−kyye−jβz, x � 0, (28)

E2 =
∇ × (∇×A2

μ

)
jωε0ε2

− ∇ × F2

ε0ε2

=
[(

β2 − k2
y

jωμ0ε0ε2

)
A2ax +

(
− kx2kyA2

jωμ0ε0ε2
+ jβ

F2

ε0ε2

)
ay

+
(

− kx2βA2

ωμ0ε0ε2
− ky

F2

ε0ε2

)
az

]

× ekx2xe−kyye−jβz, x < 0. (29)

These fields should satisfy the electromagnetic boundary
conditions. For nonmagnetic media, the normal components
of magnetic fields should be equal at the interface. This results
in

F1

ε1
= F2

ε2
. (30)

Also, the equality of the normal components of the displace-
ment fields (D = εE) leads to

A1 = A2. (31)

Using Eqs. (30) and (31), the continuity of tangential compo-
nents of the electric and magnetic fields results in

kx1F1

ε1
= −kx2F2

ε2
, (32)

A1kx1

ε1
= −A2kx2

ε2
. (33)

Equations (30)–(33) cannot lead to a physical mode, unless
F1 = F2 = 0. Substituting the condition F1 = F2 = 0 in
Eqs. (26)–(29), these equations lead to TMx solution presented
in Sec. III. Therefore, our derivations based on plane-wave
expansion result in no hybrid mode for metal-dielectric
interface.

Up to this point, we have shown that apart from the zero-
order plasmon mode, TM0, higher-order TM modes can also
be supported on a metal-dielectric interface. We have come up
with an orthogonal set of modes, where any linear combination

FIG. 3. Poynting vector and the related angles. The dashed line
shows the trajectory of P on the yz plane.

of these modes can be a solution. For example, the z component
of electric field in medium 1 can be written as

E1z =
∫ +∞

k
′′
y =−∞

∫ +∞

k
′
y=0

f (k
′
y,k

′′
y)e−( ±jk0ε1√

ε1+ε2
)x

e−kyye−jβzdk
′
ydk

′′
y,

(34)

where f (k
′
y,k

′′
y) is the amplitude of the mode correspond-

ing to ky = k′
y + jk′′

y and could be any arbitrary function.
Equation (34) represents a linear combination of TMx modes.
Martinez-Herrero et al. have introduced the concept of surface
plasmon packet to show that a metal-dielectric surface can
support more than one mode [13]. Their results are a special
case of Eq. (34) in which f (k

′
y,k

′′
y) = δ(k

′
y)G(k

′′
y), where G is

an arbitrary function and δ is the Kronecker delta function.
According to the results obtained here, both β and ky

determine the energy flow of the mode. In fact, if one divides
the wave vector to a normal and a tangential component to the
surface, the tangential component of wave vector is important
for the propagation. In general, kx , ky , and β all have complex
values; hence the wave vector is complex. This yields that
the normal to a constant-phase plane and the normal to a
constant-amplitude plane are not parallel. None of these two
vectors represent the propagation direction. One should find
the Poynting vector to obtain the direction of energy flow.

VI. POYNTING VECTOR AND ENERGY FLOW

Although all the investigated TM modes in this paper
have similar mathematical formulation, they differ in their
energy flow directions. The orientation of Poynting vector is
schematically shown in Fig. 3. As θ , the angle of Poynting
vector (P) to the surface, increases, the wave behaves more
like a radiation mode, transmitting the energy away from the
surface. On the other hand, modes having smaller values of θ

are more bounded to the surface. In general, the energy flow
direction of a TMx mode is not in the xz plane and the trajectory
of its Poynting vector on the yz plane makes an angle with the
z axis (φ). TM0 mode, on the other hand, is uniform in the y
direction and therefore its Poynting vector has no y component,
i.e., φ = 0. In this section, we study the energy flow of TMx

modes by calculating the angles θ and φ for different possible
values of ky .

The Poynting vector P is generally obtained by

P = 1
2 Re(E × H∗) = Px ax + Py ay + Pzaz. (35)
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FIG. 4. Values of the angles (a) θ and (b) φ corresponding to the
Poynting vectors of TMx modes. These values correspond to medium
1. The values are given in degrees.

By substituting E and H from Eqs. (4)–(7) in Eq. (35), θ and
φ can be calculated from

θ = sin−1

(
Px

|P |
)

, (36)

φ = cos−1

(
Pz

|P |cos(θ )

)
. (37)

As before, media 1 and 2 are assumed to be vacuum and
silver, respectively. All calculations have been done for the
wavelength of 633 nm. Calculated values of θ and φ for the
TMx modes in medium 1 are shown in Fig. 4. According
to the notations used in this paper, the imaginary part of ky ,
i.e., k′′

y , can have positive or negative values, while its real
part, i.e., k′

y , corresponds to the loss and should be positive.
In Fig. 4(a), as the absolute values of k′

y and k′′
y increase, θ

increases too, directing more energy away from the surface to

FIG. 5. Values of the angles (a) θ and (b) φ corresponding to
the Poynting vectors of TMx modes. These values are calculated in
medium 2. The values are given in degrees.

the upper medium. The smallest possible value for θ occurs
when both real and imaginary parts of ky are zero, which
corresponds to the TM0 mode. The angle φ has its smallest
values for TMx modes with real values of ky including TM0

mode. As the absolute value of k′′
y increases, the Poynting

vector deviates more from the xz plane. According to Fig. 4(b),
φ is an increasing function of k′′

y and a decreasing function
of k′

y .
The angles θ and φ corresponding to the Poynting vectors

of TMx modes in silver are shown in Fig. 5. In general, the
results are similar to the ones obtained for the upper medium.
As can be seen in Fig. 5(a), the maximum value of θ in medium
2 is smaller, showing that the modes are more confined in the
silver.

The determination of angle θ requires having various
components such as kx1, kx2, ky , and β. On the other hand,
according to Eq. (12), kx1 is identical for all TMx modes
and therefore the penetration depths and also the propagation
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constants of the fields above the interface are similar for all
TMx modes. This limits the range of θ .

Our analytical calculations which are graphically repre-
sented in Figs. 4 and 5 show that θ is not equal to zero for TMx

modes and therefore these modes are not pure surface waves.

VII. CONCLUSION

In this paper, we have derived higher-order modes of
surface plasmon polariton on a metal-dielectric interface
using the exact solution of Helmholtz wave equation. Our
solution is based on plane-wave expansion and provides a
set of orthogonal modes for the structure. It is shown that
in addition to the fundamental mode, TM0, higher-order
transverse magnetic modes, TMx , can also exist. Furthermore,

it is shown that higher-order TE modes cannot exist on the
interface. We have also investigated hybrid modes, in which
none of the components of the electric and magnetic fields
are zero. However, our analysis for hybrid modes only reveals
TMx modes for the metal-dielectric interface.

We have investigated the energy flow of higher-order TM
modes by calculating the orientation of the Poynting vector.
Using the obtained results, the confinement of modes to the
surface and their deviations from the propagation direction
are analyzed. Our results show that the angle between the
Poynting vector and the interface, θ , has its smallest value for
the fundamental mode. Also, because of their deviations from
the interface, all TMx modes are not pure surface waves. As θ

increases for higher-order TM modes, the wave behaves more
like a radiative wave.
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