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Phase retrieval via propagation-based interferometry

L. Loetgering,* H. Froese, and T. Wilhein
Institute for X-Optics, RheinAhrCampus Remagen, Joseph-Rovan-Allee 2, 53424 Remagen, Germany

M. Rose
Deutsches Elektronen-Synchrotron DESY, Hamburg, 22607, Germany

(Received 14 December 2016; published 17 March 2017)

We present an extension of the Gerchberg-Saxton algorithm to allow for phase retrieval from interferometric
data recorded at multiple sample-detector distances. A system of coupled waves is introduced where the
information exchange can be controlled by use of relaxation parameters. Optimal parameters are investigated by
numerical simulation and demonstrated to work with experimental data. We demonstrate that systematic errors
such as pointing instabilities of the interfering waves involved and position uncertainties of the detector can be
overcome by dimensional extension of the search space. Further it is shown that the proposed approach offers
superior reconstruction quality as compared to conventional Gerchberg-Saxton type algorithms. We expect that
the method described here will open up numerous possibilities for the correction of systematic errors in optical
phase retrieval and lensless microscopy.
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I. INTRODUCTION

In recent years, coherent diffraction imaging (CDI) [1] and
related techniques such as ptychography [2,3] have gained in
importance due to their ability to recover both amplitude and
phase information from intensity measurements of diffracted
wave fields without refractive or diffractive optical elements.
While in CDI a single diffraction pattern and a priori informa-
tion are used to solve the phase problem, ptychography exploits
transverse translation diversity by moving a sample through a
stationary beam. Yet another approach to recovering the wave
field from intensity diverse measurements is propagation-
based phase retrieval, which was first investigated in electron
microscopy [4,5]. Here the sample or the detector is moved
coaxial to the beam propagation direction to yield intensities
at various sample-detector distances. This approach is often
combined with a Gerchberg-Saxton type reconstruction of the
unknown wavefront [6–8]. However, while it was proven by
Gerchberg and Saxton that the error in their iterative scheme
monotonically decreases, to date there is still no guarantee for
convergence. In addition, propagation-based phase retrieval is
sensitive to misalignment of the experimental setup. It was
shown recently that misalignment effects can be alleviated by
means of a cross-correlation-based registration routine that
can be embedded in the Gerchberg-Saxton iteration [9]. It was
also shown that the same approach can be used to increase
the numerical aperture and hence resolution of the optical
imaging setup while no a priori knowledge about the specimen
is needed.

In this paper, we present an extension of the aforementioned
technique to the retrieval of both amplitude and phase
information from interferometric data obtained at multiple
sample-detector distances. The importance of this approach is
threefold: (1) A system of relaxed coupled waves is proposed
that imposes the interferometric constraint. The algorithm is
tested by both simulation and experiment where it is shown that
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it outperforms the conventional Gerchberg-Saxton scheme.
(2) The stability of the presented algorithm is examined and
parameters that yield robust reconstructions are proposed. (3)
It is shown that the method proposed here can compensate for
systematic experimental errors such as pointing instabilities
and position uncertainties of the detector by increasing the
dimension of the search space of possible solutions to the
phase retrieval problem.

II. ALGORITHM

The algorithm presented here aims at recovering wavefronts
from a linear combination of unknown coherent waves from
data diverse measurements. Similar to recent developments in
ptychographic diffraction imaging [10], the method allows
for robust phase retrieval in the case of beam instabilities
by assuming the dimension of the search space of possible
illuminations. Although the technique described here is not
restricted to interferometric data, for illustration of the concept
we consider here a Mach-Zehnder interferometer (MZI) as
depicted in Fig. 1. A collimated beam traverses the interfer-
ometer with tilted mirrors. Blocking one arm at a time of
the MZI yields the diffracted intensities I1,z = |ψ1,z|2 and
I2,z = |ψ2,z|2. Coherent superposition of both exit-surface
waves (ESWs) ψ1,z and ψ2,z yields the interferogram I3,z =
|ψ1,z + ψ2,z|2. In this notation, the index z denotes the detector
plane at distance z from the object. In the object plane the index
is omitted. Unlike in in-line holography, where an object wave
is compared with a known reference wave, both ψ1 and ψ2 are
unknown. The measured intensities I1,z, I2,z, and I3,z can be
used as constraints employed iteratively in a system of coupled
waves, i.e.,⎛
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where α,β,γ ∈ [0,1] are relaxation parameters. Here πM is a
modulus projector [11] incorporating the intensity constraint
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FIG. 1. The experimental setup (top) consists of a spatial filter
(L-P-L) generating a collimated beam that traverses a Mach-Zehnder
interferometer. The mirrors (M) of the Mach-Zehnder interferometer
are aligned to produce beams with different pointing vectors that are
used to produce interferometric data (bottom: (a) |ψ1,z|2, (b) |ψ2,z|2,
(c) |ψ1,z + ψ2,z|2) at multiple object (O)–detector (D) distances (z).

of the kth ESW at distance z and iteration n given by
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where k = 1,2,3 and Dz is an angular spectrum near-field
propagator relating the wave fields in different planes [12], i.e.,
ψk,z = Dzψk . Equation (1) introduces a relaxation between
the modulus and interferometric constraint for each respective
ESW. The relaxation parameters allow us to control the relative
strength of the modulus and interferometric constraints. The
special case of α = β = γ = 1 corresponds to the Gerchberg-
Saxton algorithm, where the waves are decoupled and Eq. (1)
imposes only the modulus constraint. It is noted that Eq. (1) is
prone to numerical instability when the constituting waves
ψ1 and ψ2 exhibit pointing instability. The sensitivity of
the interferogram to pointing instabilities is estimated to be
on the order of λ/�x, where �x is the spatial periodicity
of the fringe pattern [13]. With fringe sizes on the order
of typical detectors (�x ∼ 10 mm) and optical radiation
(λ ∼ 500 nm), it follows that the fringes undergo a phase shift
of 2π if the pointing instabilities of the waves ψ1 and ψ2

are on the order of μrad. While this sensitivity is deliberately
used in phase-shifting digital holographic interferometry [14],
it leads to inconsistent fringes in propagation-based phase
retrieval. In order to solve for ψk (k = 1,2,3) in the presence
of mechanical instabilities, the following modified iterative
algorithm is proposed: (1) Impose modulus constraint on
constituent ESWs, i.e., ψn

1 = πM (ψn−1
1 ) and ψn

2 = πM (ψn−1
2 ).
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waves ψn
1 ,ψn

2 , where m denotes the dimension of the search
space of basis functions. (3) Project ψn−1

3 onto the vector space
spanned by the orthonormal basis given by ξn
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compute a relaxed update
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where γ ∈ [0,1]. (4) Impose modulus constraint on interfero-
metric ESWs, i.e., ψn+1

3 = πM (ψn
3 ). (5) Find an orthonormal

basis φn
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m for the set of updated interferometric
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where α,β ∈ [0,1]. The expansion coefficients in Eqs. (3), (4),
and (5) denote inner products given by

〈ξ |ψ〉 =
∫

ξ ∗(x,y)ψ(x,y) dx dy, (6)

where ∗ denotes complex conjugation and ξ,ψ : R2 → C.
The projector π⊥, as defined by Eqs. (3), (4), and (5), is
convex, which follows directly from the observation that
the inner products in Eq. (6) are sesquilinear. In this regard
the mathematical setting of the method proposed here is
comparable to the shrink-wrap algorithm [15], where a convex
support constraint, which is iteratively refined, is applied
together with a nonconvex modulus constraint to invert
diffraction data. Note that for the MZI setup in Fig. 1, the
number of the basis function should ideally be chosen as
m = 2 to keep the computational complexity of each iteration
low. However, as demonstrated in the simulations below, it
can be advantageous to increase the search space to m � 3
in the presence of systematic experimental errors. It is noted
that the steps (1) to (6) are executed sequentially and repeated
iteratively for all z distances in a randomized position order.

In the simulations and data analysis that follow, both
orthonormal bases in steps 2 and 6 are computed by means of
a truncated singular value decomposition [16]. Other methods
as, for instance, the Gram-Schmidt method may be used as
well [17]. Convergence of the algorithm at the nth iteration is
monitored using the error metric
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d2r∑
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where the summations range over all z positions and ESWs.

III. SIMULATION

To test the algorithm proposed, numerical simulations
assuming a detector with 512 × 512 pixels with a pixel size
of 22 μm and a wavelength of 488 nm were performed. To
simulate beam vibrations, the tilts of the pointing vectors were
randomized for each detector position such that the phase
variation in the object plane ranges from 0 to 2π , causing
quasirandom fringe movement between separate exposures.
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FIG. 2. Reconstruction results for simulated test data. Hue
and brightness encode phase and magnitude, respectively, of the
reconstructed wave field. The bottom of each subfigure indicates
(α|β|γ |m), where m indicates the number of basis functions used
for reconstruction. Subfigure (a) shows one of the two original
exit-surface waves. The coupled iterative scheme proposed, shown in
panels (c)–(e), α = β = γ < 1, performs better than the uncoupled
Gerchberg-Saxton type iteration shown in panel (b), α = β = 1,γ =
0.5. Comparing panels (c) and (f) indicates that increasing the number
of basis functions can help to compensate systematic position errors.

The simulated ESWs as well as their superposition were
propagated to eight distances ranging from 150 to 290 mm,
each distance of which was separated by 20 mm. The position
uncertainty was uniformly distributed in the interval ±1 mm.
Poisson noise was simulated for each diffraction pattern with
an average error of χ2 = 5.1% as compared to the noise-free
diffraction data. For a similar experimental configuration, suc-
cessful wavefront sensing from multiple diffraction intensities
was reported to require about 16 intensities when a Gerchberg-
Saxton type reconstruction is deployed [18]. We chose half
as many intensities to investigate whether the additional
information provided by the interferograms can be used to
successfully reconstruct the wave field from data that would
fail in conventional Gerchberg-Saxton-type reconstructions.
This is verified qualitatively and quantitatively in Figs. 2
and 3, which show reconstructions of the first ESWs and
the χ2 error metric, respectively, for various combinations
of coupling parameters α,β,γ. For these reconstructions, an
initial guess for the ESWs with both random amplitude and
phase was assumed. In each iteration, the sequence of z

positions, from which data was updated, was randomized. This
was observed to prevent the algorithm from getting stuck in
premature convergence results. The phases of the final iterates
where synchronized to facilitate comparison. With the number
of basis functions chosen to be m = 2, best reconstruction
results were obtained for α = β = γ = 0.4, where the order
of magnitude of χ2 monotonically decreased to the noise level
after 30 iterations. Increasing the number of basis functions
(m = 3) for other parameter choices exhibited improved
reconstruction quality, as, for instance, seen by comparing
Figs. 2(c) and 2(f), where α = β = γ = 0.6. For m = 5, the
reconstruction quality did not significantly improve further for
any choice of parameters. Hence it is inferred that increasing
the number of basis functions can help to compensate for
systematic errors. In the absence of systematic errors, an

FIG. 3. Comparison of error metric (χ 2) for various parameters vs
iteration (n) for simulated data in the presence of systematic position
errors and Poisson noise. Various coupling parameters and number of
basis functions (α|β|γ |m) where tested for 2 (solid) and �3 (dashed)
basis functions. Best results for m = 2 are obtained for α = β = γ =
0.4. For m�3 the reconstruction quality is less sensitive to the choice
of coupling paramters.

increased number of modes did not yield any improvement
in the reconstruction quality. For values α + β + γ > 3 (not
shown here) the iterate diverged. It is noted that independent
of parameter choice most iterates did not significantly improve
the error metric after 200 iterations.

IV. EXPERIMENTAL RESULTS

Experimental data were obtained using a collimated argon-
ion laser (λ = 488 nm, Spectra Physics model 2020). An
aperture of 10 mm diameter was placed upstream of the MZI
to prevent stray light from the sides of the beam splitters.
A total of 60 diffraction patterns and interferograms were
recorded on a 12-bit dynamic range CMOS detector (IDS
UI-3370CP-M-GL) with 2048 × 2048 pixels and a pixel size
of 5.5 μm at 20 distances ranging from 40 to 135 mm. The
detector was moved in �z = 5 mm steps. Each diffraction
pattern and interferogram was corrected for background signal
by subtracting dark frames. The diffraction patterns were
aligned relative to each other using a gradient-based cross-
correlation registration routine. Each diffraction pattern Iz was
propagated into its adjacent detector position and compared
with Iz+�z. The relative transverse translation of the detector
was computed by localizing the peak of the cross correlation
of a template T = (∂xD�z + i∂yD�z)

√
Iz and the reference

R = (∂x + i∂y)
√

Iz+�z. As shown in previous work [9],
registration of longitudinally displaced diffraction patterns
yields precise results if the displacement between adjacent
diffraction patterns is smaller than the longitudinal speckle
size. For slowly varying signals in the spatial domain, the
gradient-based cross-correlation method was observed to yield
more robust registrations than a standard cross-correlation
method as the latter may yield compromised results in the
presence of bias signal. The object under investigation is a
sagittal histological section of a mouse cerebellum. The tissue
was perfusion fixed in neutrally buffered 4% paraformalde-
hyde. After dissection, it was postfixed in the same fixative
for 24 h. It was then embedded in paraffin, and serial sections
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FIG. 4. Reconstruction of a stained mouse brain from 60
diffraction patterns and interferograms (z = 40, . . . ,135 mm). Hue
represents phase shift, brightness relative modulus of the exit waves.
Panels (a) and (b) show the constituting ESWs, and panel (c) is
the interferometric ESW. The second ESW (b) exhibits a phase
ramp that is robustly reconstructed due to the incorporation of the
interferometric constraint. Panel (d) shows a magnified view of
the white, dashed region in panel (a). (e) Optical micrograph of the
same region as panel (d).

were cut at 10 μm. Sections were mounted on Superfrost Plus
slides (VWR, Darmstadt, FRG), stained with hematoxylin and
eosin, and finally covered using a 0.17-mm-thick coverslip and
DePeX (Serva, Heidelberg). The reconstructed ESWs using
the algorithm described above (α = β = γ = 0.4,m = 2) are
shown in Fig. 4, where transmission and phase shift are
encoded by brightness and hue, respectively. The modulus of
each ESW is normalized by its maximum to enhance contrast.
The first ESW [Fig. 4(a)] shows an essentially plane phase
profile with a small relative phase shift within the object
region. The second ESW [Fig. 4(b)] exhibits a phase ramp
that indicates a successful reconstruction of the relative phase
as compared to the first ESW. The third ESW [Fig. 4(c)]
depicts 1 out of 20 separately reconstructed interferograms.
For comparison, Figs. 4(d) and 4(e) show the magnified
complex-valued reconstruction of the white, dashed region
in Fig. 4(a) and an optical micrograph, respectively, with
similar numerical aperture (NA) as our lensless setup. The
micrograph was recorded with a macro lens (70-mm F2.8
EX DG Macro) in a 4f setup (×1 magnification, 0.14 NA).
Several reconstructions were carried out for varying choices
of parameters. For 0.2 < α = β = γ < 0.8 (m = 2,3,4) the
reconstructions showed only minor differences, which might
be due to the larger number of measured intensities as
compared to the simulations carried out.

V. DISCUSSION

The numerical and experimental results presented here
suggest that propagation-based phase retrieval from multiple
detection planes can significantly benefit from the incorpora-

tion of interferometric data. Consider, for example, the sets

A = {(x,y) ∈ R2 : |2x − y|2 = 4}, (8)

B = {(x,y) ∈ R2 : |2y − x|2 = 1}, (9)

C = {(x,y) ∈ R2 : |x + y|2 = 1}. (10)

These sets may serve as a two-pixel model for a diffrac-
tion process, where A,B describe diffraction patterns while
C describes interferometric data, where x and y are as-
sumed to be real valued for simplicity. While A ∩ B =
{(−5

3 ,−4
3 ),( 5

3 , 4
3 ),(−1,0),(1,0)}, it is seen that A ∩ B ∩ C =

{(−1,0),(1,0)}. In this example, the interferometric informa-
tion halves the solution set of the phase-retrieval problem.
The additional constraints provided by the interferometric
data impose only slight additional computational cost. For an
N × N matrix, the Gerchberg-Saxton iteration is computed
at the cost of the two-dimensional Fourier transform, i.e.,
O(N2 log2 N ). The truncated singular value decomposition
can be computed at cost O(mN2 + m2N ), where m is the
number of basis functions used [16]. Assuming for most
phase-retrieval applications m � N , it follows that an iteration
of the algorithm presented here requires O[N2(m + log2 N )]
floating-point operations.

Stable parameters for the algorithm presented can be in-
ferred from Eq. (1), which is a special case of the more general
iteration given in Eqs. (3), (4), and (5). The characteristic
polynomial of the matrix M in Eq. (1) is given by

det (qI − M) = −(q − 1)2(q + 2 − α − β − γ ), (11)

where the roots of this polynomial in q are eigenvalues of M .
For the algorithm to iterate into a stable solution, the spectral
radius of M is required to be bounded by 1, which yields the
condition 1 � α + β + γ � 3. This condition is consistent
with the observation that the algorithm presented diverges
for α + β + γ > 3. In our simulations we observed that the
relaxation parameters may initially be chosen close to unity
for the algorithm to precondition the ESW estimates. If slow
or no further progress is made, the relaxation parameters can
be decreased to enable the interferometric data to improve the
iterate. For α = β = γ each diffraction pattern and interfero-
gram has an equal weight in the update rule given by Eqs. (3),
(4), and (5). In this case, the above stability analysis suggests
the choice α,β,γ ∈ [1/3,1]. However, as demonstrated in
Fig. 3 for m = 2 the search performance of the algorithm
varies significantly, while for m > 2 the reconstruction quality
is independent of the choice of relaxation parameters. We
observed that the truncated SVD expansion can compensate
for other experimental instabilities such as intensity and
background fluctuations, since it only requires the data to be a
linear combination of a set of shared basis functions. Similarly,
a dimensional extension of the search space allows for the
technique to apply to multibeam interference configurations.

VI. CONCLUSION

In this paper, we have demonstrated interferometric phase
retrieval from multiple sample-detector distances. It was
shown numerically that the algorithmic approach reported here
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improves the Gerchberg-Saxton scheme by incorporation of
interferometric constraints. Additionally, it was shown that an
increase of the dimension of the search space of possible exit-
surface waves can compensate for systematic experimental
errors. The generality of this result may find applications in
other fields of coherent imaging. Further, the experimental
results suggest that the iterative scheme presented performs
well in practice. As compared to other diffraction imaging
modalities, neither a priori knowledge about the object under
investigation nor a well-characterized phase plate or reference
beam as required in coherent modulation imaging [19,20]
or digital holography, respectively, is needed. In comparison
to (Fourier) ptychography [21,22], no motion tracking of an
optical stage nor knowledge of illumination wave fronts is

necessary. Possible areas of applications may comprise digital
holography with unknown references, wavefront sensing, and
integrated interferometric configurations where stability of the
setup cannot be maintained [23].
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