
PHYSICAL REVIEW A 95, 033816 (2017)

Partial polarization by quantum distinguishability
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We establish that a connection exists between wave-particle duality of photons and partial polarization of a
light beam. We perform a two-path lowest-order (single photon) interference experiment and demonstrate both
theoretically and experimentally that the degree of polarization of the light beam emerging from an output of the
interferometer depends on path distinguishability. In our experiment, we are able to change the quantum state
of the emerging photon from a pure state to a fully mixed state without any direct interaction with the photon.
Although most lowest-order interference experiments can be explained by classical theory, our experiment has
no genuine classical analog. Our results show that a case exists where the cause of partial polarization is beyond
the scope of classical theory.
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I. INTRODUCTION

The interference effect displayed by a quantum system or
entity when sent through an interferometer is a key feature of
quantum mechanics [1,2]. If quantum entities of a particular
kind are sent one at a time through a two-path interferometer
and one can identify (even in principle) the path traversed by
each of them, no interference occurs. The information that
leads to the identification of the path is often called the which-
path information. Because the common-sense understanding
of a particle implies that the path traversed can always be
identified, the particle behavior of the quantum entity is often
interpreted as the complete availability of the which-path
information, i.e., the complete distinguishability of the paths.
On the other hand, when the which-path information is fully
unavailable, i.e., when the paths are fully indistinguishable,
perfect interference occurs—a characteristic of waves. The
wave-particle duality of photons has been confirmed by nu-
merous experiments [3]. Several theoretical studies have been
made on the relationship between the path distinguishability
and visibility of fringes in interference experiments [4–7].

Since fringe visibility is a measure of the ability of light to
interfere, it has played an important role in the development of
the field of statistical optics [8–10]. In the classical formulation
of statistical optics, it is assumed that the electric field
associated with light is not measurable and is considered to be
a random quantity. The visibility of fringes in a lowest-order
interference experiment (e.g., Young’s double-slit experiment)
then becomes a measure of the correlation between the inter-
fering fields; in the simplest case, maximum visibility implies
full correlation (coherent light) and zero visibility implies
no correlation (incoherent light). Based on this observation
a theoretical connection between path distinguishability and
optical coherence was introduced by Mandel [5]. However,
classical statistical optics describes lowest-order correlation
effects so successfully that the difference between quantum
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mechanical interpretation and classical interpretation of such
effects are often merely academic. It is, therefore, important
to find a case where the quantum mechanical interpretation
turns out to be the only possible interpretation. Such a case
has been experimentally demonstrated [11,12] in the context
of lowest-order interference, and the nonclassicality of the
experimental results has been verified independently [13].

Studies in statistical optics have also revealed that partial
polarization of a light beam is a manifestation of lowest-
order correlation between two mutually orthogonal transverse
field components [14–17]. It is therefore natural to ask
whether a connection between partial polarization and path
distinguishability can be established [18]. The aim of this
paper is to show that the wave-particle duality of photons has
an important implication in partial polarization of a light beam.
We develop a two-path interferometer and show that the degree
of polarization (DOP) of the light beam emerging from the out-
put of the interferometer depends on the distinguishability of
photon paths. We use two independent methods for introducing
path distinguishability. While the distinguishability introduced
in one of the methods can be erased by performing a suitable
measurement on the photon emerging from the interferometer,
the distinguishability introduced in the other method cannot
be erased. Our key result is the dependence of the degree of
polarization on the inerasable distinguishability, which cannot
be explained by the classical theory of light.

In Sec. II, we provide a qualitative description of the
phenomenon. In Sec. III, we describe the experimental setup
and provide a theoretical analysis. Then in Sec. IV we present
and discuss the experimental results. Finally, in Sec. VI we
conclude by discussing the implications of our results.

II. QUALITATIVE DESCRIPTION OF THE PHENOMENON

Let us consider a two-path interferometer in which photon
beams generated by two identical sources Q1 and Q2 are
superposed by a lossless and balanced non-polarizing beam-
splitter, BS (Fig. 1). Photons emerging from one of the outputs
of BS are collected by a photodetector, D. Photons emitted by
Q1 can only travel via path 1; photons emitted by Q2 travel
via path 2 only. Suppose that the photons emitted by Q1 and
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FIG. 1. Two identical sources, Q1 and Q2, emit identical linearly
polarized photons. The photons from Q1 are sent through a polar-
ization rotator, �, and then superposed with the photons generated
by Q2 by a beam splitter, BS. The beam emerging from one of the
outputs of BS is sent through a polarizer, �, and then detected by
a photodetector, D. The device, M, attached to Q1 determines with
probability 1 − M2 whether Q1 has emitted.

Q2 are identical and linearly polarized in the same direction.
On path 1, we place a polarization rotator (for example, a
half-wave plate), �, by which we can rotate the direction of
the incident linear polarization by an arbitrary angle γ , where
cos γ � 0. The superposed beam emerging from BS is sent
through a polarizer, �, before arriving at D (Fig. 1). The light
emerging from � is linearly polarized along a direction that
makes an angle θ with the polarization direction of the light
originally emitted by the sources. In this arrangement, � and
D constitute the detection system that is used to measure the
DOP of the beam before �.

Suppose Q1 and Q2 emit at the same rate and in such a
way that only one photon exists in the system between an
emission and a detection at D. Now, if path 2 is blocked,
the probability amplitude of photodetection is given by α1 =
eiφ1 [cos(θ − γ )]/2, where the phase φ1 depends on path
length. Similarly, if path 1 is blocked, the probability amplitude
of photodetection will be α2 = eiφ2 (cos θ )/2. Suppose now
that we attach (Fig. 1) to source Q1 a device, M, that
does not perform any measurement on the photons entering
the interferometer but determines with a known probability
whether Q1 has emitted. Clearly, when both paths are open,
there are three possible cases in which a photon can arrive at
D after passing through �:

(I) Q1 emits and M reports the emission
(II) Q1 emits and M does not report the emission
(III) Q2 emits.
Note that the possibilities II and III are indistinguishable.

This is because photons coming from both arms have certain
probabilities of passing through � given by |α1|2 and |α2|2;
once they have passed through �, it is not possible to say in
which source they were produced. On the other hand, when M
reports an emission, it becomes known that the detected photon
was emitted by Q1. Hence, possibility I is fully distinguishable
from possibilities II and III. For obtaining the total probability
of detecting a photon at D, one therefore needs to add the
probability associated with possibility I to the modulus square
of the sum of probability amplitudes associated with II and III.

Let us assume that when Q1 has emitted a photon, the
probability of M not reporting the emission is equal to M2,
where 0 � M � 1. The probability amplitudes associated
with cases I, II, and III are then given by α1

√
1 − M2, α1M,

and α2, respectively. The probability of photodetection at D is

thus given by

� = |α1

√
1 − M2|2 + |α1M + α2|2

= 1
4 [cos2 θ + cos2(θ − γ )

+ 2M cos θ cos(θ − γ ) cos(φ2 − φ1)], (1)

which is directly proportional to the photon counting rate at the
detector. We choose the path lengths such that φ2 − φ1 is equal
to a multiple of 2π , i.e., cos(φ2 − φ1) = 1. In this case, it can be
readily shown from Eq. (1) that when θ = γ /2, the probability
� attains its maximum value �max = (1 + M) cos2(γ /2)/2;
and when θ = γ /2 ± π/2, it attains the minimum value
�min = (1 − M) sin2(γ /2)/2. The degree of polarization
(DOP) of the beam generated by superposition (after the beam
splitter and before the polarizer) is given by [19]

P = �max − �min

�max + �min
= M + cos γ

1 + M cos γ
. (2)

We now discuss the role of path distinguishability in
our interferometer. This should not be confused with the
distinguishability of the possible cases mentioned above. We
consider a photon right after the beam splitter before it has
passed through the polarizer and ask under which conditions
it is possible to know through which path (1 or 2) it traveled.
Clearly, the path distinguishability can be introduced by two
independent methods: (a) by the polarization rotator � and (b)
by the device M.

The path distinguishability introduced by � is maximum
when γ = π/2 and minimum when γ = 0. A measure of the
path distinguishability introduced by � is given by cos γ .

The device M works in such a way that when M = 0, it
determines with complete certainty whether Q1 has emitted; in
this case, the paths are fully distinguishable and no interference
occurs irrespective of the orientation of �. On the other hand,
when M = 1, the device M does not provide any information
about the origin of the detected photon. A measure of the path
distinguishability introduced by M is, therefore, given by M.

It follows from Eq. (2) that both devices (� and M) must
be used to introduce path distinguishability for generating
a partially polarized (0 < P < 1) beam. If only one of the
devices introduces path distinguishability, i.e., if eitherM = 1
or cos γ = 1, the beam is always fully polarized (P = 1). On
the other hand, the beam is unpolarized (P = 0) if and only if
both devices introduce maximum path distinguishability, i.e.,
if and only if M = 0 and cos γ = 0.

Note that the path distinguishability introduced by � can be
erased by placing a polarizer after the beam splitter, whereas
the path distinguishability introduced by M cannot be erased
by any other device. The central feature of this thought
experiment is the dependence of the DOP on the inerasable
distinguishability (M) for a fixed amount of the erasable
distinguishability (cos γ �= 1).

III. EXPERIMENTAL AND QUANTITATIVE ANALYSIS

We now discuss an experiment (Fig. 2) in which the
above-mentioned phenomenon is observed. This experiment is
based on the concept of “induced coherence without induced
emission” [11,12]. Two identical nonlinear crystals, NL1 and
NL2, are pumped by two mutually coherent pump beams, P1

and P2, respectively. Each crystal converts a pump photon into
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FIG. 2. Pump beams P1 and P2 (dotted lines) are generated by a
CW laser source (532 nm). The crystals, NL1 and NL2, produce
linearly polarized signal (S1, S2; solid line; 810 nm) and idler
(I1, I2; dashed line; 1550 nm) photons. A neutral density filter, A, is
placed on the path of I1 between NL1 and NL2. Initially, S1 and S2 are
polarized in the same direction x. S1 is sent through a half-wave plate,
�. S1 and S2 are superposed by a nonpolarizing beam splitter, BS.
The detection-system (inside dotted box) used for polarization state
tomography consists of a quarter-wave plate, q, a polarizer, �, and
an avalanche photo detector, D; detection time 15 s. The mirror, MS ,
is placed on a piezo-driven stage; DM1, DM2 and DM3 are dichroic
mirrors.

a photon pair (signal and idler), each linearly polarized, by
the process of spontaneous parametric down-conversion. We
denote the signal and the idler generated in crystal NLj by
Sj and Ij , respectively. The idler beam, I1, is sent through
NL2 and is aligned with I2 (Fig. 2). The down-converted light
is weak enough, so that it is highly improbable for photon
pairs emitted by both crystals to be simultaneously present
in the system. Under this condition the effect of stimulated
emission at NL2 is negligible. An attenuator (neutral density
filter), A, is placed on the path of I1 between NL1 and NL2;
the transmission coefficient of A can be varied. The signal
beam S1 is sent through a half-wave plate, �, such that its
polarization direction can be rotated by a chosen angle γ . It is
then superposed with S2 by a nonpolarizing beam splitter, BS.
The DOP of the superposed signal beam emerging from one
of the outputs of BS is determined. We choose the path lengths
appropriately [12] such that the beams S1 and S2 interfere
when γ = 0 and A is absent.

The signal photons are generated as linearly polarized in
the direction x, say; I1 and I2 are linearly polarized along
the direction x ′ [20]. The quantum state of light (interaction
picture [21]) generated by a crystal is given by the well-known
formula (first-order approximation)[

1 + gj â
†
Sj x

â
†
Ij x ′ − g∗

j âSj x âIj x ′
]|ψj0〉 ≡ Ûj |ψj0〉, (3)

where 1 is the identity operator, j = 1,2 labels the crystals, gj

provides a measure of the rate of parametric down conversion,
â
†
Sj x

and â
†
Ij x ′ are creation operators for Sj and Ij photons,

respectively, and |ψj0〉 is the state of light before down-
conversion (input state). The action of the attenuator, A, on
the quantized field associated with I1 photons is equivalent to
that of a lossless beam splitter [11,12]; then one has

âI2x ′ = [T âI1x ′ + R ′̂a0x ′ ]eiφI , (4)

where T is the complex amplitude transmission coefficient of
A, |T |2 + |R′|2 = 1, â0x ′ represents the vacuum field at the
unused port of the beam splitter (the attenuator A), and φI is
a phase factor due to propagation of I1 from NL1 to NL2. It
follows from Eqs. (3) and (4) that the quantum state of light in
this system is given by |�〉 = Û2Û1|vac〉, i.e., by (neglecting
the higher-order terms)

|�〉 ≈ |vac〉 + (
g1|x〉S1 + g2e

−iφI T ∗|x〉S2

)|x ′〉I1

+ g2e
−iφI R′∗|x〉S2 |x ′〉0, (5)

where |vac〉 is the vacuum state, |x〉Sj
≡ â

†
Sj x

|vac〉 represents

an x-polarized signal photon, |x ′〉Ij
≡ â

†
Ij x ′ |vac〉, |x ′〉0 ≡

â
†
0x ′ |vac〉, and 0〈x ′|x ′〉0 = 1.

The quantized field components (positive-frequency part)
at one of the outputs of the beam splitter are given by

Ê
(+)
Sx = eiφS1

(
cos γ âS1x + sin γ âS1y

) + ieiφS2 âS2x, (6a)

Ê
(+)
Sy = eiφS1

(
sin γ âS1x − cos γ âS1y

) + ieiφS2 âS2y, (6b)

where y is the Cartesian direction orthogonal to x, φS1 and φS2

are the phase changes associated with the propagation from
NL1 to BS and from NL2 to BS, respectively, and γ /2 is the
angle of the half-wave plate �. The DOP is determined by
using the formula [16,22]

P =
√

1 − 4det G(1)

[trG(1)]2
, (7)

where det and tr represent the determinant and the trace
of a matrix, respectively, and the matrix G(1) is given by
the elements G(1)

pq = 〈�|Ê(−)
Sp Ê

(+)
Sq |�〉 [23]; p = x,y, q = x,y,

and Ê
(−)
Sp (r,t) = {Ê(+)

Sp (r,t)}†.
If the crystals emit at the same rate (|g1| = |g2|), it follows

from Eqs. (5)–(7) that

P = {cos2 γ + |T |2(sin2 γ + cos2 γ cos2 β)

+ 2|T | cos γ cos β} 1
2 /{1 + |T | cos γ cos β}, (8)

where β=φS2−φS1−φI−arg(T ) + arg(g2) − arg(g1) + π/2.
If we set cos β = 1, Eq. (8) reduces to the form

P = |T | + cos γ

1 + |T | cos γ
. (9)

Note that replacing M with |T | in Eq. (2) yields Eq. (9).
This is due to the following reason: When the I1 beam passes
through A, its intensity drops by a factor of |T |2. Since a
photon cannot be broken into further fractions, an idler photon
can either be fully transmitted or fully blocked by A. The
probability of an idler photon being transmitted through A

is therefore equal to |T |2. If the idler photon is blocked, the
paths of the signal photon are fully distinguishable for any
orientation of �; this is because the full which-path information
can, in principle, be extracted by performing a coincidence
measurement on a signal photon emerging from BS and an
idler photon after NL2 [11]. On the other hand, if the idler
photon is transmitted, the paths of the signal photon become
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FIG. 3. Dependence of the degree of polarization P on inerasable path distinguishability: (a) Experimentally observed dependence of P

on |T | for various values of γ , and computed curves considering experimental imperfections (solid lines). Data points are represented by filled
circles with error bars including both systematic and statistical errors. (b) Dependence of P on M for various values of γ predicted by the
thought experiment [Eq. (2)]. The difference with the experimentally obtained results is because BS is slightly polarizing and I1 beam suffers
losses at the various optical components.

indistinguishable in absence of � (or cos γ = 1), because
there remains no way to extract the path information even
in principle. Since the effect of stimulated emission at NL2
is negligible (see Sec. V for further discussion), the insertion
of A does not change the intensities of the signal beams. The
attenuator, A, of Fig. 2 thus introduces path distinguishability
for the signal photons without interacting with them and plays
the role of the device, M, of Fig. 1.

IV. EXPERIMENTAL RESULTS

In the experiment (Fig. 2), the value of |T | is changed
by using neutral density filters (A) of different values of
transmittance. For each choice of T and γ , the interferometric
phase is set equal to a multiple of 2π by varying the path length
of S1 with the mirror MS . For each such setting, polarization
state tomography is performed on the superposed signal beam
in the following way: photon counting rates at the detector (D)
are measured (detection time 15 s) in three mutually unbiased
polarization bases that are set by the quarter-wave plate (q) and
the polarizer (�) placed in front of D (Fig. 2); the matrix G(1)

is determined from the background-corrected photon counting
rates by the maximum likelihood technique for a single-qubit
system [24–26]. The DOP is then calculated by using Eq. (7).
The experimentally observed dependence of the DOP on |T |
is shown in Fig. 3(a). The data points are represented by
filled circles with error bars that contain both systematic and
statistical errors. The solid lines are computed by using the
theory discussed in Sec. III and considering the two following
experimental imperfections: BS is slightly polarizing; and I1

beam suffers losses at the various optical components.
In Fig. 3(b) we illustrate the results predicted by the thought

experiment (Fig. 1). A comparison of Figs. 3(a) and 3(b) shows
that the predictions of the thought experiment (Fig. 1) have
been practically realized in the actual experiment (Fig. 2).

V. DISCUSSION

As mentioned above, the attenuator (A) introduces path
distinguishability for the signal photons without interacting
with them. This path distinguishability (quantified by |T |)
cannot be erased by introducing any device that interacts with
the signal photons (in this context, see Ref. [27]). It can be

readily checked that if cos β = 1 and γ = π/2 (compare the
curves labeled by γ = 90◦ in Fig. 3), the density operator
representing a signal photon, emerging from BS, takes the form

ρ̂S = 1
2 (|x〉〈x| + |y〉〈y| + |T ||x〉〈y| + |T ||y〉〈x|). (10)

Clearly, when |T | = 0, the state is fully mixed (unpolarized
light) and when |T | = 1, the state is pure (polarized light). We
are therefore able to change the “intrinsic” correlation between
the transverse field components using the attenuator, A, with-
out any direct interaction with the beam; this phenomenon can-
not be explained classically. Classical theory does not provide
any space for the particle behavior of light. When a classical
field is sent through a transmission object (attenuator), it gets
attenuated without any change in its “intrinsic” statistical
properties. On the other hand when a photon is incident on a
transmission object, it either fully passes or gets fully blocked
with a certain probability. The effect of an attenuator on a pho-
ton is therefore not deterministic. This is why an appropriately
placed attenuator (A) affects the inherent statistical properties
of the output light in our experiment and changes the DOP.

Our method of controlling the DOP of the light beam is
based on a procedure that was introduced in Refs. [11,12]; this
procedure allows one to generate mutual coherence between
the signal beams S1 and S2 without any induced (stimulated)
emission at NL2 (Q2). One can argue that there is always a
possibility of stimulated emission since the I1 beam is sent
through NL2. However, if both crystals are weakly pumped,
the low down-conversion rates of the crystals assure that the
effect of stimulated emission on the lowest-order interference
of the two signal beams is negligible (see, for example,
Refs. [11,12,28–30]). The absence of induced emission at NL2
can be quantitatively established by the dependence of the
mutual correlation between S1 and S2 on |T |. It was shown
in Refs. [11,12] that in this case the modulus of the degree
of mutual coherence between the two beams (the visibility
characterizing their interference) is linearly proportional to
|T |. This fact was also verified independently in another
publication [13]. In our experiment, the equivalent result is
the linear dependence of the DOP on |T | when γ = π/2 and
cos β = 1; this shows that contributions of photons generated
by stimulated emission are negligible compared to the ones
generated by spontaneous parametric down-conversion. In
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absence of the stimulated emission, it cannot be argued that
the detected light (signal) interacted with the attenuator. The
appearance of |T | in the expression of the DOP is thus beyond
the scope of classical theory where interaction of the field with
an object is mandatory for any such effect.

We now compare our experiment with a purely classical
situation that may mistakenly appear to reproduce some of our
results. Suppose that two mutually orthogonal and mutually
correlated field components are superposed by a two-arm
interferometer. Since all optical fields have finite coherence
time, the correlation between the superposed field components
depends on the difference between optical distances traversed
by the beams. Therefore, the DOP of the output beam can be
changed by varying the path difference. However, if the output
beam is filtered to a much narrower frequency width, the DOP
approaches its maximum possible value that is independent of
the path difference [31]. Therefore, the change of the DOP on
the optical path difference is not due to “intrinsic” change of
field correlation. In contrary, the DOP of the beam generated in
our experiment cannot be altered by enhancing the coherence
time of the beam.

VI. CONCLUSIONS

Coincidence or heralded detection plays a key role in
establishing the failure of classical electromagnetic theory to

explain certain higher-order correlation effects, e.g., photon
antibunching [32], Hong-Ou-Mandel effect [33], etc. However,
coincidence detection is not at all required for observing
lowest-order correlation effects, and not enough attempts have
been made to demonstrate the limitations of classical theory
in explaining such effects. It is a common perception that the
phenomenon of partial polarization (a lowest-order correlation
effect) is a classical effect. We have demonstrated that partial
polarization of a light beam may not always be explained by the
classical theory, and we have not performed any coincidence
measurement for this purpose. Our results show that it is
possible to develop a source that generates a low-intensity light
beam with a controllable degree of polarization. Furthermore,
the inability of classical theory to explain our experiment
opens the door for further systematic investigations into
the lowest-order correlation effects from the perspective of
quantum mechanics. We hope this will lead to the discovery
of other novel phenomena with significant applications.
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