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The long-standing goal of deterministic quantum interactions between single photons and single atoms was
recently realized in various experiments. Among these, an appealing demonstration relied on single-photon Raman
interaction (SPRINT) in a three-level atom coupled to a single-mode waveguide. In essence, the interference-based
process of SPRINT deterministically swaps the qubits encoded in a single photon and a single atom, without
the need for additional control pulses. It can also be harnessed to construct passive entangling quantum gates,
and can therefore form the basis for scalable quantum networks in which communication between the nodes
is carried out only by single-photon pulses. Here we present an analytical and numerical study of SPRINT,
characterizing its limitations and defining parameters for its optimal operation. Specifically, we study the effect
of losses, imperfect polarization, and the presence of multiple excited states. In all cases we discuss strategies
for restoring the operation of SPRINT.
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I. INTRODUCTION

Optical photons are widely considered prime candidates for
the transmission of quantum information from one material
quantum node, responsible for processing and storage, to
another [1]. Such photonic links can drastically increase
scalability, even with realistic error rates [2,3]. A prerequisite
for a hybrid quantum system is a reliable interface between
its photonic and material qubits. Such an interface also has
the prospect of creating an effective interaction between
different photons, and may therefore act as a platform for
all-optical quantum information processing. Recently, much
experimental progress has been made towards this goal,
mostly in the field of cavity quantum electrodynamics (cavity
QED) [4,5]. In particular, the powerful scheme proposed by
Duan and Kimble [6], in which microwave or Raman laser
beams are used to create a single-atom interferometer that
responds to the presence of one photon in the cavity mode, has
been used to experimentally realize nondestructive detection of
optical photons [7], a phase gate [8], a quantum gate between
photons and a single atom [9], a quantum memory [10], and a
photon-photon controlled-NOT quantum gate [11].

In this work we focus on a different scheme that is
based on single-photon Raman interaction (SPRINT), which
occurs in a three-level � system coupled to a single-mode
waveguide. Originally proposed by Pinotsi and Imamoglu
as a deterministic absorber of a single photon [12] and a
quantum memory [12,13], the mechanism of SPRINT was
shown by Koshino et al. to also be able to implement a

√
SWAP

quantum gate [14–16] that forms a universal set of quantum
gates together with single-qubit operations. Later theoretical
studies focused on the harnessing of this scheme for photon-
photon interactions, such as photon routing and single-photon
extraction [17], single-photon addition [18], and single-photon
frequency conversion [19,20]. SPRINT was recently demon-
strated experimentally, realizing a single-photon router [21]
and a single-photon extractor [22] using a single 87Rb atom.
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Not limited to atomic systems, it was also demonstrated with
superconducting qubits for frequency conversion [23] and
detection of single microwave photons [24].

The underlying mechanism of SPRINT is illustrated by first
considering the simpler case of a lossless two-level system
coupled to a single-mode waveguide [Fig. 1(a)]. Assuming the
two-level system has no preferential direction, its steady-state
response to a weak resonant probe would be to radiate equally
to both directions at amplitude x (taking the amplitude of
the probe arbitrarily to be 1). In the forward direction, the
atomic radiation interferes with the transmitted input, and as
a result t = 1 + x. In the backward direction there is no such
interference, and so r = x. Conservation of energy dictates that
in steady state |r|2 + |t |2 = 1. The only nontrivial solution is
therefore x = −1. Namely, in the weak field limit in which the
two-level transition is not saturated, a two-level system reflects
all incoming light due to destructive interference between
its forward radiation and the probe. This is in fact the very
mechanism responsible for the complete reflection from a
metallic mirror: The induced displacement of the free charges
lags by a π/2 phase compared to the driving field, and the
far-field radiated by the charges lags by another π/2, leading
to destructive interference in the forward direction, and hence
to complete reflection [25].

SPRINT relies on a three-level version of this scenario, in
which each “leg” of the � system (with ground states G1 and
G2 and excited state e) is coupled to a different mode, for
example, a different direction of the waveguide as depicted in
Fig. 1(b). The fact that each leg of the � system couples to
only one direction (and not to both) makes this configuration
equivalent to the two-level scenario. Assuming the radiation
amplitudes to both directions are equal, the result therefore
remains total destructive interference in the forward direction,
and the incoming photon will be reflected. Yet, this can only
occur through the e → G2 transition, if G1 is the initial ground
state of the � system. The result is single-photon Raman
interaction (SPRINT), namely the Raman transfer of the �

system from G1 to G2 by the action of a single photon. Since a
photon arriving from the opposite direction would not interact
with the � system, leaving it in G1, we can see that this �
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FIG. 1. (a) A two-level system coupled to a single-mode waveg-
uide resulting in complete reflection of the probe. (b) A three-level
� system in which reflection of a single photon enforces a Raman
transfer from one ground state to the other.

system behaves like a passive single-photon memory, in which
the direction of the incoming photon is mapped to the resulting
state of the � system. Additionally, the initial state of the �

system is mapped to the direction of the outgoing photon.
Most importantly, the entire process is coherent and therefore
works also for superposition states of both the photon and the �

system. This means that SPRINT actually performs a quantum
SWAP gate between a flying photonic qubit (superposition
of modes) and a stationary material qubit (superposition of
ground states), and then acts as a quantum memory [13].

In the following section we describe the implementation of
SPRINT in Refs. [21,22]. In Sec. III, we analytically model
SPRINT, define its fidelity, and analyze various imperfections
and the means to minimize their effects. Finally, in Sec. IV
we describe the results of a full numerical simulation taking
into account most of the practical imperfections present in
our experimental realization and discuss the optimal choice of
parameters.

II. REALIZATION OF SPRINT WITH A SINGLE ATOM
COUPLED TO A WGM RESONATOR

The coupling of material systems to waveguides is typically
performed by optical resonators, which provide the necessary
Purcell enhancement of the coupling to the guided modes
compared to the free-space ones. By confining light inside a
very small volume for an extended period of time, the electric
field of even a single photon becomes sufficient to significantly
affect the dynamics of a quantum emitter (e.g., a single atom)
that interacts with the cavity modes.

The most general description of cavity-assisted SPRINT
is a � system inside a single-sided Fabry-Perot resonator,
namely a resonator in which one of the mirrors is a perfect
reflector and the other is the input-output coupler (Fig. 2).
In the SPRINT configuration, each “leg’ of the �-system
is coupled to a different mode of the resonator—a different
frequency, polarization or even spatial mode [17]. In this
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FIG. 2. Schematic of an atomic three-level � system inside a
single-sided cavity.

work we consider an equivalent configuration based on a
whispering-gallery mode (WGM) microresonator [26], in
which photons are confined by continuous total internal
reflection. The microresonator is nanofiber-coupled, so that
photons coming from the left and right in the fiber excite the
counterpropagating cavity modes through evanescent-wave
coupling (Fig. 3). A single WGM is brought to resonance with
a 87Rb atom by tuning the temperature of the microresonator.
The other WMGs are assumed to be far-detuned, so that their
influence on the dynamics can be neglected.

The equivalence to a single-sided Fabry-Perot cavity is
created by using transverse magnetic (TM) modes, which
have the remarkable property that their evanescent-wave
polarization is circular to a high degree [27–29], with the
handedness of the polarization depending on the direction of
propagation. This creates the unique situation in which the
counterclockwise (a) and clockwise (b) rotating photons may
interact with different atomic transitions due to their opposite
spin. Specifically, in the case of an atomic � system as depicted
in the inset of Fig. 3, a interacts only with the σ+ polarized
G1 ↔ e transition, whereas b interacts only with the σ−
polarized G2 ↔ e transition, thereby creating the necessary
single-sided cavity configuration.

III. THEORETICAL MODEL AND INFLUENCE
OF LOSSES AND IMPERFECTIONS

The mechanism of SPRINT is most conveniently mod-
eled using quantum trajectory theory with cascaded sys-
tems [17,30]. A single-sided source cavity described by its
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âin âout

b̂out

b̂in
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FIG. 3. Schematic of the theoretical model; in inset, the atomic
� system.
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annihilation operator âs and with a decay rate of 2κs emits
a single-photon pulse to the right, which then couples to
the mode a of the WGM microresonator at a rate 2κex. The
photon’s field then interacts with the atom’s left and right
ground states (through the excited state) at rates g1 and g2,
respectively, and eventually leaks back into both directions of
the nanofiber, as described by the right and left output field
annihilation operators [31]:

âout =
√

2κsâs +
√

2κexâ, (1a)

b̂out =
√

2κexb̂, (1b)

where the vacuum input operators âs,in and b̂in have been
discarded, since we only consider normally ordered operators.
Equation (1a) exhibits the fact that a transmitted output photon
cannot be exclusively attributed to the event of a photon
emitted by the microresonator to the right, or to a transmitted
photon that did not enter the microresonator in the first place.
Rather, it is the interference between both that creates the
resulting output field.

A. Ideal SPRINT model, influence of losses

The Hamiltonian that governs the dynamics of this system
is (setting h̄ = 1)

Ĥ0 = −2i
√

κsκex âs â
† − iκs â

†
s âs

+ (g∗
1 â

†σ̂1e + g1σ̂
†
1eâ) + (g2b̂

†σ̂2e + g∗
2 σ̂

†
2eb̂)

− i(κ + iδC)(â†â + b̂†b̂) − i(γ + iδa)σ̂ee. (2)

It can be subdivided in three parts. The first row corresponds
to the emission from the source cavity into mode a of the
microresonator. The driving term is non-unitary, in accordance
with the unidirectional character of the interaction. Indeed, the
resonator cannot re-emit the photon to the source cavity [30].
The second row describes the Jaynes-Cummings interaction
between each of the two counterpropagating WGM modes,
and the corresponding atomic transition. Here, σ̂ke denotes
the lowering operator from the excited state to ground state
Gk . The photon-atom coupling rates g1 and g2 are complex
quantities to account for the motion of the atom during the
SPRINT process. Finally, the third row describes detunings
and losses of the two WGM modes and the atom. 2κ =
2κex + 2κi is the total WGM decay rate due to coupling
to the nanofiber and intrinsic loss, respectively. 2γ is the
atomic spontaneous emission rate into free space, which is
multiplied by the excited state population σee. Among these
loss mechanisms, only the coupling to the nanofiber will result
in detectable output photons, as emphasized by Eq. (1). The
detuning of the atomic transitions δa , and the detuning of
the cavity modes δC with respect to the driving frequency
are taken to be zero unless otherwise specified. The two
counterpropagating WGMs are degenerate by symmetry, and
the two ground states are assumed here to be degenerate as
well. However, this degeneracy is not required for SPRINT as
long as every mode is resonant with one of the transitions.

The initial state |ψ(0)〉 = |1s0a0bG1〉 containing a photon
in the source cavity and an atom prepared in its left ground

state evolves according to the Schrödinger equation to

|ψ(t)〉 = e−κs t |1s0a0bG1〉 + α(t)|0s1a0bG1〉
+ β(t)|0s0a1bG2〉 + ξ (t)|0s0a0be〉, (3)

with

α̇(t) = −2
√

κsκexe
−κs t − ig∗

1ξ − κα,

β̇(t) = −ig2ξ − κβ, (4)

ξ̇ (t) = −ig1α − ig∗
2β − γ ξ.

Ideally, long pulses should be used, so that κs would become
the lowest rate of the system. |ψ(t)〉 is then close to steady
state at all times, and the derivatives can be put equal to zero,
yielding

α(t) = −2
√

κsκex

κ

[
1 − |g1|2

|g1|2 + |g2|2
2Ctot

1 + 2Ctot

]
e−κs t ,

β(t) = 2
√

κsκex

κ

g1g2

|g1|2 + |g2|2
2Ctot

1 + 2Ctot
e−κs t , (5)

ξ (t) = 2i
√

κsκex

g1

|g1|2 + |g2|2
2Ctot

1 + 2Ctot
e−κs t ,

where the total cooperativity,

Ctot = |g1|2 + |g2|2
2κγ

(6)

quantifies the tendency of the atom to emit into both microres-
onator modes, rather than into free space. In this long-pulse
limit, the fact that the source-cavity formalism results in an
exponentially decaying input pulse is irrelevant, and the results
below apply for any pulse shape. Using Eq. (1) the transmission
and reflection probabilities can be calculated, giving

T =
∫ ∞

0
〈â†

outâout〉 dt =
∣∣∣∣2κex

κ

|g1|2
|g1|2 + |g2|2

2Ctot

1 + 2Ctot
+ t0

∣∣∣∣
2

,

(7a)

R =
∫ ∞

0
〈b̂†outb̂out〉 dt =

∣∣∣∣2κex

κ

g1g2

|g1|2 + |g2|2
2Ctot

1 + 2Ctot

∣∣∣∣
2

, (7b)

where

t0 = −κex − κi

κ
(8)

is the “bare” forward transmission when the atom is absent.
Inspection of Eqs. (7) and (8) reveals three requirements for

efficient operation of SPRINT, i.e., for R close to unity: First,
the intrinsic loss of the microresonator must be considerably
smaller than κex. Secondly, the coupling strengths of the
two transitions must be equal in their absolute values [32].
Finally, the cooperativity must be significantly larger than one,
ensuring that the spontaneous emission is primarily directed
into the mircroresonator, rather than into free space. This
situation can be realized both in the strong coupling regime
(in which g 	 κex 	 κi,γ ) and in the fast-cavity or Purcell
regime (with κex 	 g 	 κi,γ ).

In a realistic system, photons may be lost to the environment
by the resonator or the atom, reducing the efficiency η =
R + T of the SPRINT process. If the photon is not lost,
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various deviations from the ideal model may still cause an
undesired final atom-photon state. We will quantify this by
defining SPRINT fidelity, the overlap of the final state with the
ideal state (reflection of a photon, together with the toggling
of the atom) provided the photon was not lost in the process:

F = P (R,toggle)

η
. (9)

Note that the SPRINT fidelity effectively provides the lower
bound on the SWAP gate fidelity. This is because the SWAP

operation involves the case in which both the photonic and
the atomic states are toggled together and the case in which
no interaction should occur, the fidelity of the latter being
obviously larger than the fidelity of the former. For this reason,
we focus in this work on F , the fidelity of the first case.

Equation (7a) shows that for ideal SPRINT operation, the
forward radiation of the atom and the forward transmission
when the atom is absent should have equal magnitude but
opposite sign, leading to perfect destructive interference. This
may suggest that limited cooperativity and intrinsic resonator
losses will cause nonzero transmission, and hence a reduced
SPRINT fidelity. However, SPRINT fidelity can always be
unity by choosing

κopt
ex = κi

√
1 + 2Ci, (10)

where we took g1 = g2 ≡ g, and defined the total intrinsic
cooperativity Ci = |g|2/κiγ . Hence, by tuning the coupling
strength (for example, by varying the distance between
the microresonator and the nanofiber), one can ensure that
complete destructive interference is maintained in the forward
direction. The photon can then either be reflected, or lost
due to dissipation, but never transmitted—allowing heralded
operation of SPRINT. One can gain more insight by noting
that for large enough intrinsic cooperativity Eq. (10) becomes
2κi/κ

2 = γ /|g|2, suggesting that the loss rate in the cavity
should compensate for the loss rate in the atom. Note that in
any case κi needs to be smaller than κex, otherwise the crucial
destructive interference becomes a constructive one.

B. Influence of a nonideal circular polarization

This section is dedicated to the study of a nonideal circular
polarization in the evanescent part of the WGM. The analytical
solution of Maxwell’s equations for a microsphere [33] shows
the existence of a non-negligible π -polarized (i.e., perpendic-
ular to the WGM plane) electric field, and also a component
of circular polarization with opposite handedness. The ratios
of the unwanted electric field component to the desired one
are denoted rσ for the opposite circular polarized field, and rπ

for the π -polarized field. This nonideal polarization may, for
example, cause a photon in mode b to drive a σ+ transition of
the atom, disrupting the SPRINT mechanism.

1. Undesired σ polarization

For the idealized �-type three-level system where no π

transition is possible, the dynamics with nonideal circular

polarization is governed by the following Hamiltonian:

Ĥ1 =Ĥ0 + rσ (g∗
2 â

†σ̂2e + g2σ̂
†
2eâ) + rσ (g1b̂

†σ̂1e + g∗
1 σ̂

†
1eb̂)

:=Ĥ0 + Ĥrσ
, (11)

with Ĥ0 the Hamiltonian from Eq. (2). As before, the
Schrödinger equation is solved analytically and leads to the
transmission and reflection probabilities,

T =
∣∣∣∣∣2κex

κ

|g1|2
|g1|2 + |g2|2

2Ctot

1 + 2Ctot
(
1 + r2

σ

) + t0

∣∣∣∣∣
2

+
∣∣∣∣∣rσ

2κex

κ

g1g2

|g1|2 + |g2|2
2Ctot

1 + 2Ctot
(
1 + r2

σ

)
∣∣∣∣∣
2

:= T1 + T2, (12a)

R =
∣∣∣∣∣rσ

2κex

κ

|g1|2
|g1|2 + |g2|2

2Ctot

1 + 2Ctot
(
1 + r2

σ

)
∣∣∣∣∣
2

+
∣∣∣∣∣2κex

κ

g1g2

|g1|2 + |g2|2
2Ctot

1 + 2Ctot
(
1 + r2

σ

)
∣∣∣∣∣
2

:= R1 + R2, (12b)

where t0 is still given by Eq. (8).
Comparing Eq. (12) with Eq. (7), we see that one ad-

ditional contribution to both the transmission and reflection
probabilities arises from the consideration of a nonzero rσ :
The photonic mode a can now also interact with the σ−
polarized transition |e〉 → |G2〉 (term T2); and mode b with the
σ+ polarized transition |e〉 → |G1〉 (term R1). Note that the
SPRINT mechanism (term R1) dominates for small rσ since
the ratio R1/R2 scales as r2

σ .
From Eq. (9), the fidelity here equals R2/(R + T ). Its

optimum, which is no longer unity, can be achieved by
choosing the extrinsic coupling rate as

κopt
ex = κi × (−Cir

2
σ +

√
1 + 2Ci

(
1 + r2

σ

) + C2
i r

4
σ

)
, (13)

and equals

F
(
κopt

ex

) = 1

1 + 2r2
σ

, (14)

where we took g1 = g2. Numerical evaluations of this result
with realistic parameters will be performed in Sec. V.

2. π polarization

We now consider the effect of the π component of
polarization while leaving the undesired σ component aside.
The ground state G0 (mF = 0) is added to the three-level �

system considered so far and g0 denotes the coupling rate
between the levels G0 and e. The Hamiltonian becomes

Ĥ2 =Ĥ0 + rπ (g∗
0 â

†σ̂0e + g0σ̂
†
0eâ) + rπ (g0b̂

†σ̂0e + g∗
0 σ̂

†
0eb̂)

:=Ĥ0 + Ĥrπ
, (15)
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FIG. 4. Fidelity as a function of rσ or rπ for optimized (solid line)
and nonoptimized κex (dashed line).

and leads to the transmission and reflection probabilities,

T =
∣∣∣∣∣2κex

κ

|g1|2
|g1|2 + |g2|2

2Ctot

1 + 2
(
Ctot + 2r2

πC0
) + t0

∣∣∣∣∣
2

+
∣∣∣∣∣rπ

2κex

κ

g1g0

|g1|2 + |g2|2
2Ctot

1 + 2
(
Ctot + 2r2

πC0
)
∣∣∣∣∣
2

:= T1 + T0, (16a)

R =
∣∣∣∣∣2κex

κ

g1g2

|g1|2 + |g2|2
2Ctot

1 + 2
(
Ctot + 2r2

πC0
)
∣∣∣∣∣
2

+
∣∣∣∣∣rπ

2κex

κ

g1g0

|g1|2 + |g2|2
2Ctot

1 + 2
(
Ctot + 2r2

πC0
)
∣∣∣∣∣
2

:= R2 + R0, (16b)

with C0 = |g0|2
2κγ

.

The choice g1 = g2 = g0 results in a complete analogy
between Eqs. (12) and (16) under the exchange of rσ and rπ .
The fidelity is therefore maximized by choosing the extrinsic
coupling parameter,

κopt
ex = κi × (−Cir

2
π +

√
1 + 2Ci

(
1 + r2

π

) + C2
i r

4
π

)
, (17)

and equals

F
(
κopt

ex

) = 1

1 + 2r2
π

. (18)

We end this section by comparing the optimal fidelity from
Eq. (14) [respectively, Eq. (18)] with the nonoptimized one.
The latter can be deduced from Eq. (12) [respectively, Eq. (16)]
and, in the case that allows an efficient operation of SPRINT,
i.e., g1 = g2 = g0, κex 	 κi , and Ct 	 1, it takes the simple
form:

F(κex 	 κi) ≈ 1(
1 + r2

j

)2 , (19)

with j ∈ {σ,π}. These quantities are shown in Fig. 4 as a
function of rσ (respectively, rπ ), in the optimized (solid line)
and nonoptimized (dashed line) cases. For small values of rσ

and rπ , we see that varying κex is not beneficial for the fidelity.

C. Influence of the parasitic coupling between optical modes

Rayleigh scattering between the optical modes a and b at a
rate 2h can also affect the fidelity as a photon can be reflected
without the atom being involved. The Hamiltonian including
h is given by

Ĥ3 =Ĥ0 + h(â†b̂ + b̂†â) := Ĥ0 + Ĥh, (20)

resulting in the transmission and reflection probability coeffi-
cients

T =
∣∣∣∣ 2κex

κ + h2/κ

|g1|2
|g1|2 + |g2|2

2Ctot

1 + h2/κ2 + 2Ctot
+ t0

∣∣∣∣
2

+
∣∣∣∣r0

g1g2

|g1|2 + |g2|2
2Ctot

1 + h2/κ2 + 2Ctot

∣∣∣∣
2

:= T1 + T2, (21a)

R =
∣∣∣∣r0

(
1 − |g1|2

|g1|2 + |g2|2
2Ctot

1 + h2/κ2 + 2Ctot

)∣∣∣∣
2

+
∣∣∣∣ 2κex

κ + h2/κ

g1g2

|g1|2 + |g2|2
2Ctot

1 + h2/κ2 + 2Ctot

∣∣∣∣
2

:= R1 + R2, (21b)

where t0 = κ2
i −κ2

ex+h2

κ2+h2 and r0 = 2κexh

κ2+h2 are, respectively, the
transmission and reflection when the atom is absent. Note
that the coupling between optical modes results in nonzero r0.

Comparing Eq. (21) with Eq. (7), we highlight the contri-
butions arising from the optical mode coupling h: a photon
emitted in mode b̂ through the transition |e〉 → |G2〉 can be
subsequently reflected into â (term T2); and noncomplete
destructive interference between the incoming probe and
the radiative field can occur in reflection since the mode â

associated with |e〉 → |G1〉 can be changed into b̂ (term R1).
Note that the event R1 is rarer than R2 by a factor (h/κ)2,
therefore ensuring that reflections can be mostly associated
with SPRINT for small values of h.

Then, the value for κex resulting in a maximal (although
not unit) fidelity is found by numerically solving the equation
∂κexF = 0. When h is small compared to the other system
parameters (in particular κi), a perturbative resolution of this
equation leads to

κopt
ex = κi

√
1 + 2Ci

×
[

1 + h2

κ2
i

(1 + Ci)

(1 + 2Ci)(1 + √
1 + 2Ci)

+ o

(
h2

κ2
i

)]
,

(22)

where we again took g1 = g2, and the optimized fidelity equals

F
(
κopt

ex

) = 1 − h2

κ2
i

(3 + 2Ci − 2
√

1 + 2Ci)

C2
i

+ o

(
h2

κ2
i

)
. (23)

D. Influence of rσ , rπ and h combined

We now consider jointly the nonideal circular polariza-
tion and the optical mode coupling in the four-level sys-
tem {G0,G1,G2,e} by deriving its state evolution with the
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Hamiltonian:

Ĥ4 =Ĥ0 + Ĥrσ
+ Ĥrπ

+ Ĥh. (24)

Nonzero h causes the formation of an azimuthally varying
field. Since every atomic transition interacts with both a and b

due to the nonideal circular polarization, the azimuthal location
of the atom, represented by the phase of the coupling constants,
starts to play a role.

The transmission and reflection probabilities are given by

T = 1 + 2Re(α1) + |α1|2 + |α2|2 + |α0|2, (25a)

R = |β1|2 + |β2|2 + |β0|2, (25b)

with

α1 = −p

(
1 + u(g1)u(g∗

1 )

|g1|2 + |g2|2
2Ctot

D

)
,

α2 = p
u(g1)v(g∗

2 )

|g1|2 + |g2|2
2Ctot

D
,

α0 = p
u(g1)w(g0)

|g1|2 + |g2|2
2Ctot

D
,

β1 = p

(
h

κ
+ u(g1)v(g1)

|g1|2 + |g2|2
2Ctot

D

)
,

β2 = p
u(g1)u(g2)

|g1|2 + |g2|2
2Ctot

D
,

β0 = p
u(g1)w(g∗

0 )

|g1|2 + |g2|2
2Ctot

D
, (26)

and

u(g) = rσ

h

κ
g∗ + ig, v(g) = −rσ g + i

h

κ
g∗,

w(g) = rπ

(
h

κ
g∗ + ig

)
,

D = 1 + h2

κ2
+ 2

[(
1 + r2

σ

)
Ctot + 2r2

πC0
]

− 4i
h

κ

(
rσ C̃tot + r2

π C̃0
)
,

C̃tot = Re
(
g2

1 + g2
2

)
2κγ

, C̃0 = Re
(
g2

0

)
2κγ

,

p = 2κex

κ + h2/κ
. (27)

The 12 contributions leading to the reflection probabilities
|β1|2, |β2|2, and |β0|2 from Eq. (25b) are sketched in Fig. 5,
where rσ represents a transition driven by the unwanted circu-
lar polarization, rπ a transition driven by the π polarization,
and h stands for the reflection of the photon because of the
coupling between optical modes. Among them, the four terms
of |β2|2 lead to the desired atomic toggle from G1 to G2: The

(a) |β1|2 terms
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(b) |β2|2 terms
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â

e

1G 2G

â
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(c) |β0|2 terms
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FIG. 5. Illustration of the 12 contributions to the reflection
coefficient R, associated with no atomic toggle (a), and an atomic
toggle to the state G2 (b) or to the state G0 (c). The SPRINT term is
shown in a box.

frame i. depicts the actual SPRINT term, and the frames ii.

to iv. show the imperfections h and rσ compensating each
other. For small h, rσ and rπ , this probability |β2|2 exceeds the
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e

e

e e1 2

(b)

F = 1

F = 0

F = 1

FIG. 6. (a) Two excited states instead of one provide two path-
ways for SPRINT. Depending on the signs of the coupling strengths,
the symmetry required for SPRINT can be either maintained or
removed. (b) Actual level scheme of the 87Rb D2 line. Transitions
that are weak due to polarization mismatch are shown in gray. Note
that the transition G0 → e′ is forbidden, and that the effect of the
excited state F ′ = 2 is negligible, due to its large detuning and low
coupling strength to F = 1.

unwanted terms |β1|2 and |β0|2 as follows:

|β1|2
|β2|2 = h2

κ2

(
1 + Ctot

Ctot

)2

+ r2
σ + o

(
hi

κi
rj
σ

)
i+j=2

, (28a)

|β0|2
|β2|2 = r2

π + o

(
hi

κi
rj
π

)
i+j=2

. (28b)

E. Multiple excited states

In practical systems, the presence of various excited states
[see Fig. 6(a)] can create multiple pathways for Raman
passage, which interfere with each other, and therefore affect
the operation of SPRINT. The parameters h, rσ , and rπ being
here neglected, this situation can be analyzed by adding
to the Hamiltonian of Eq. (2) two Jaynes-Cummings terms
corresponding to the second excited state e′, along with its
associated loss γ ′ and detuning δ′

a:

Ĥ5 = Ĥ0 − i(γ ′ + iδ′
a)σ̂e′e′ + (g′∗

1 â†σ̂1e′

+ g′
1σ̂

†
1e′ â) + (g′

2b̂
†σ̂2e′ + g′∗

2 σ̂
†
2e′ b̂)

:= Ĥ0 + Ĥe′ . (29)

The Schrödinger equations corresponding to this new Hamil-
tonian can be easily solved by assuming g′

1 = ηg1 and g′
2 =

sηg2, with s = ±1. In the case of coupling strengths of equal
sign, i.e., s = +1, we obtain

T =
∣∣∣∣2κex

κ

|g1|2
|g1|2 + |g2|2

2(Ctot + C ′
tot)

1 + 2(Ctot + C ′
tot)

+ t0

∣∣∣∣
2

, (30a)

R =
∣∣∣∣2κex

κ

g1g2

|g1|2 + |g2|2
2(Ctot + C ′

tot)

1 + 2(Ctot + C ′
tot)

∣∣∣∣
2

, (30b)

where C ′
tot = (|g′

1|2 + |g′
2|2)/2κ(γ ′ + iδ′

a) is the complex co-
operativity associated with the detuned second excited state.
Not surprisingly, since the symmetry between the coupling
strengths of both sides is maintained, the four-level system
effectively behaves like a symmetric � system with cooper-
ativity equal to the sum of the cooperativities of the separate

transitions. However, if s = −1 we obtain

T =
∣∣∣∣∣∣
2κex

κ

|g1|2
|g1|2+|g2|2

2(Ctot+C ′
tot)+16 |g1|2+|g2|2

|g1|2 C1C
′
2

1+2(Ctot+C ′
tot)+16C1C

′
2

+ t0

∣∣∣∣∣∣
2

,

(31a)

R =
∣∣∣∣2κex

κ

g1g2

|g1|2 + |g2|2
2(Ctot − C ′

tot)

1 + 2(Ctot + C ′
tot) + 16C1C

′
2

∣∣∣∣
2

,

(31b)

where we defined single-transition cooperativities C1 =
|g1|2/2κγ and C ′

2 = |g′
2|2/2κ(γ ′ + iδ′

a). In this case, the
symmetry between the two “sides” of the system is broken,
removing the balance necessary for SPRINT. Still, unit fidelity
can be attained by slightly detuning the cavity. The necessary
detuning and fiber-resonator coupling can be determined by
replacing κi → κi + iδC in Eq. (31a), and setting T = 0 for
both the real and imaginary parts. A useful approximation is
then obtained by taking γ ′ � iδ′

a , reflecting the fact that the
detuning of the second excited state is high compared to its
linewidth. The optimal parameters then become

δ
opt
C = κiC

′
i

1 + 2Ci

1 + Ci

, (32a)

κopt
ex = κi

√(
1 + 2C ′

i

γ ′

δ′
a

+ C ′2
i

(1 + Ci)2

)
(1 + 2Ci), (32b)

where we took g1 = g2 ≡ g, and g′
1 = −g′

2 ≡ g′ and defined
the total intrinsic cooperativity of the detuned excited state
C ′

i = |g′|2/κiδ
′
a .

IV. SIMULATIONS

A. Model

In this section we analyze the imperfections of SPRINT
jointly and specific to its realization in Ref. [21], which uses
87Rb atoms coupled to silica microsphere resonators. We
already mentioned that the coupling constant between optical
modes h should be taken into account. As for the nonideal
polarization, calculation at the location where the atom feels
the strongest field yields rσ � 0.18 for the opposite circular
polarized field, and rπ � 0.13 for the π -polarized field. The
presence of the unwanted fields also entails that otherwise
uncoupled atomic levels can now take part in the dynamics.
In 87Rb, all three ground states of F = 1 should then be
taken into account [see Fig. 6(b)], as well as the excited state
F ′ = 0 and all three excited states in F ′ = 1. Furthermore,
another major hurdle is the fact that trapping atoms near WGM
microresonators is a highly challenging task that has not yet
been realized. As a result, the atoms fly past the microresonator
or crash into its surface, causing the coupling strength to vary
from run to run, and during a single run. This can be taken into
account by assuming a normally distributed coupling strength
with independently determined mean ḡ and standard deviation
σg , truncated at the minimally detectable and maximally
available coupling strengths. Finally, the effect of different
pulse lengths and shapes can be included by introducing a
time-varying κs . All these effects can be taken into account
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by simulating the evolution of the state of the system with the
complete Hamiltonian, including all transitions of interest in
87Rb:

Ĥ6 = Ĥ4 + Ĥe′ − i(γ ′ + iδ′
a)σ̂e′

1e
′
1
− i(γ ′ + iδ′

a)σ̂e′
2e

′
2

− rσ

(
g′∗â†σ̂2e′ + g′σ̂ †

2e′ â
) + rσ

(
g′b̂†σ̂1e′ + g′∗σ̂ †

1e′ b̂
)

− rπ

(
g′∗â†σ̂1e′

1
+ g′σ̂ †

1e′
1
â
) − rπ

(
g′b̂†σ̂1e′

1
+ g′∗σ̂ †

1e′
1
b̂
)

+ rπ

(
g′∗â†σ̂2e′

2
+ g′σ̂ †

2e′
2
â
) + rπ

(
g′b̂†σ̂2e′

2
+ g′∗σ̂ †

2e′
2
b̂
)

+ (
g′∗â†σ̂0e′

2
+ g′σ̂ †

0e′
2
â
) − (

g′b̂†σ̂0e′
1
+ g′∗σ̂ †

0e′
1
b̂
)

− rσ

(
g′∗â†σ̂0e′

1
+ g′σ̂ †

0e′
1
â
) + rσ

(
g′b̂†σ̂0e′

2
+ g′∗σ̂ †

0e′
2
b̂
)
,

(33)

where we used the fact that in our case all coupling strengths
to a given excited state manifold are of equal magnitude. The
signs, however, vary, and in particular, one should set g′

1 = g′

and g′
2 = −g′ in Ĥe′ , and g1 = g2 = g in Ĥ4, resulting in

the deterioration of SPRINT fidelity. The best strategy is to
work with the F = 1 → F ′ = 1 manifold on resonance, rather
than with F = 1 → F ′ = 0. This serves a double purpose: the
efficiency of SPRINT can be increased, because g′ = √

5/4g,
resulting in an increased cooperativity. For the same reason, the
interference with the red-detuned F = 1 → F ′ = 0 transitions
is reduced.

In order to assess the performance of SPRINT in an
actual experimental setting, we simulated the dynamics using
realistic system parameters (κi,ḡ,σg,h,γ,γ ′,δa,δ

′
a) = 2π ×

(6,16,6,1,3,3, − 72,0) MHz [21]. Moreover, we used the
optimal nanofiber-microresonator coupling rate and microres-
onator detuning (κex,δC) = 2π × (30, − 7) MHz, a 53-ns full
width at half maximum (FWHM) Gaussian input pulse, and a
uniformly distributed atomic azimuthal location. As shown in
Table I, a simulation using the Hamiltonian of Eq. (33) with
the atom initialized in ground state G1 results in an optimal
SPRINT fidelity of ∼82%, and a photon loss probability of
∼51%. A reflection event heralds a successful transfer of the
atom to the opposite ground state with a probability of ∼94%.
After a first photon toggled the atom to G2, a second photon

TABLE I. Statistics of atomic and photonic final states for (a) the
atom initially in G1, and (b), the atom initially in G2. R stands for
probability of reflection, T for probability of transmission, and L for
probability of photon loss. The atom can either toggle to the other
ground state, remain in the initial one, or end up in G0 or in F = 2
[not shown in Fig. 6(b)], in which case it is considered lost.

(a) R T L Total

Toggle 39.97% 1.39% 17.03% 58.39%
No toggle 2.17% 4.18% 30.15% 36.50%
Atom lost 0.50% 0.43% 4.16% 5.09%
Total 42.64% 6.00% 51.34% 100%

(b) R T L Total

Toggle 0.06% 1.39% 0.59% 2.04%
No toggle 1.55% 41.97% 51.72% 95.24%
Atom lost 0.01% 1.76% 0.95% 2.75%
Total 1.62% 45.12% 53.26% 100%

that is sent from the source cavity still has some probability
of being reflected, due to the nonideal circular polarization. A
simulation with the atom initially in G2 yields a normalized
reflection probability of ∼3.5%, but this reflection no longer
induces the Raman passage of the atom.

We finally included the trajectory of the atoms falling on
or around the microresonator. Because of surface effects, the
dynamics of the atomic state is also taken into account [34,35].
Our calculations of the electric field in the evanescent region
of a microsphere are based on [33]. Simulations with the
above system parameters show that the resulting fidelity is
about 75%.

B. Means to overcome SPRINT imperfections

This part numerically investigates to what extent the dis-
ruptions of the SPRINT mechanism induced by the parameters
(h, rσ , rπ , κi) can be reduced by tuning two parameters
accessible to the experimentalist, namely the nanofiber-
microresonator coupling κex and microresonator detuning δc,
in order to retrieve a maximum SPRINT fidelity. The influence
of each of these flaws is discussed separately. Unless otherwise
specified, the numerical values of the system parameters are
those of the previous section.

To begin with, we consider κex as a means to improve the
fidelity. We study first the behavior of the fidelity with respect
to h, as shown in Fig. 7(a) for values of κex ranging from 30
to 70×2π MHz. Although the fidelity always drops with h,
it can be efficiently optimized by varying κex: for a value of
h = 2π×20 MHz, the fidelity increases by 36% when κex is
optimized. Specifically, the value of κex needed to maximize
the fidelity is shown in the inset, and the corresponding fidelity
as the dashed line of the main frame. The analytical expressions
of Eqs. (22) and (23) are a good approximation only for the
restricted range h � κi = 6×2π MHz.

We study next the evolution of the fidelity with the nonideal
polarization by considering rσ , whose value exceeds that of rπ .
Over the range rσ = [0,0.3] considered here, tuning κex does
not help to improve the fidelity, in conformity with the analyt-
ical results from Sec. III B 1. We therefore show in Fig. 7(b)
the fidelity for κex = 30×2π MHz. When these numerical
simulations are performed in the framework of Sec. III B 1
(i.e., a three-level system driven by an exponentially decaying
pulse, where rσ is the only imperfection and g is constant),
they are in perfect agreement with the analytical results of
Eqs. 13 and 14.

In Fig. 7(c), we show the evolution of the fidelity with
respect to the intrinsic loss parameter κi for various values of
κex. Accordingly, the optimal κex and corresponding maximal
fidelity are, respectively, presented in the inset and as a dashed
line in the main frame. We see that the variation of the
optimized fidelity within the range κi = [0,20]×2π MHz is
as low as 3.5%, which shows the importance of choosing the
appropriate κex. Note, however, that a higher κi inevitably
lowers the efficiency.

We turn next to the second parameter that one can access
experimentally, the cavity detuning δC . Simulations show that
tuning δC is beneficial only to restore the drop in fidelity arising
from the presence of multiple excited states, resulting in a value
of δC = −7×2π MHz.

033814-8



ANALYSIS OF DETERMINISTIC SWAPPING OF . . . PHYSICAL REVIEW A 95, 033814 (2017)

h (2π MHz)
0 5 10 15 20

F
(%

)

30

40

50

60

70

80

90

h (2π MHz)
0 10 20

κ
op

t
ex

(2
π

M
H

z)

30

40

50

60

70

F (κopt
ex )

70

50

60

(a)
40

30

rσ

0 0.05 0.1 0.15 0.2 0.25 0.3

F
(%

)

70

75

80

85

90(b)

30

κi (2π MHz)
0 5 10 15 20

F
(%

)

40

50

60

70

80

90

κi (2π MHz)
0 10 20

κ
op

t
ex

(2
π

M
H

z)

20

30

40

50

F (κopt
ex )

20

25

40

30

(c) 50

FIG. 7. Fidelity as a function of h (a), rσ (b), and κi (c) for
different values of κex written in the figure in units of 2π MHz. For
(a) and (c), the insets give the value of κex that maximizes the fidelity;
the corresponding maximal fidelity is shown as a dashed line in the
main frames. In (b), F is insensitive to the choice of κex.

Then, to sum up this part dedicated to the optimization of
the fidelity regarding h, rσ , rπ , and κi , we showed that κex

is the relevant parameter and can compensate for h and κi .
The contour plots in Figs. 8(a) and 8(b) therefore give a direct
reading of the optimal κex (a) and the corresponding fidelity
(b) for any h and κi within the range [0,20] MHz.
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ex that maximizes the fidelity and

(b) the corresponding maximal fidelity F(κopt
ex ) as a function of both

h and κi .

We finish this section by noting that the application of a
magnetic field so as to induce a Zeeman splitting of the energy
levels would increase the fidelity for two reasons. First, it
would reduce the rσ and h coefficients, hence improve the
directionality. Secondly, a spectral discrimination could be
made on photons resulting from the atomic relaxation through
the wrong transition.

C. Comparison to the analytical models

In this section, we compare the different analytical models
of Sec. III with the previous numerical simulations. In order
to do so, we present calculations and simulations that include
separately or jointly the parameters h, rσ , and rπ , the spread
of the parameter g, and the actual energy levels of the
87Rb D2 line with multiple excited states. The resulting
fidelity, optimized by κex and δC , is shown in Fig. 9 as a
function of κi . The solid lines correspond to the simulations
involving a 53-ns FWHM Gaussian temporal input pulse in
accordance with the experiment, while the dashed lines are the
analytical calculations involving a long exponentially decaying
input pulse. Unless otherwise specified below, the parameters
are those from Sec. IV A.

The plot (1) corresponds to the model of Sec. III A
where only the � system F = 1 → F ′ = 1 is involved, the
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δC , as a function of κi . In solid lines, simulations with a realistic
Gaussian input pulse (left inset) taking into account the transient
dynamics. In dashed lines, calculations only involving the steady state
with a long input pulse (here exponentially decaying, right inset);
simulations with a wide Gaussian pulse coincide. Labels 1–5 refer
to the following:
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The dashed line 1 becomes the dotted line 1 when the transient
dynamics is considered, with κs = 0.1×2π MHz. In all cases,
γ = 3×2π MHz.

g parameter is taken constant (g = ḡ), and h = rσ = rπ = 0.
One setting at a time is then changed in (2), (3), and (4).
Specifically, (2) involves two excited states as in Sec. III E
[see Fig. 6(a)]. We note that its optimized fidelity coincides
with that of (1). (3) takes into account the spread of g. It is
presented in two variants depending on which � system is
chosen, and only a small difference occurs. (4) sets h �= 0,
rσ �= 0, and rπ �= 0 as in Sec. III D. Finally, (5) is the full
realistic simulation already shown in Fig. 7(c) that takes into
account all the previous sources of loss jointly.

First of all, a discrepancy occurs between the two sets of
curves, in solid and dashed lines. It arises from the transient
temporal dynamics, which was not included in the analytical
models of the previous sections. In particular, we see that the
solid curve (1) does not reach unity for all κi , not even for
κi = 0 MHz because of nonzero γ , unlike the dashed curve
(1) that is always at steady state. Still, the fidelity is only
affected by a few percents, which shows the validity of our
analytical approach. Both sets of curves coincide for long
enough Gaussian input pulses, of the order of 1 μs FWHM.

A further comparison to the analytical models is given from
a derivation that includes the transient dynamics in the case
of ideal SPRINT with exponentially decaying input pulse. It
is presented in Appendix A and results in the dotted line 1
presented in Fig. 9 for κs = 0.1 × 2π MHz. The fidelity tends
to reach one when κs decreases.

Next, we see that the deterioration of the optimized fidelity
is primarily due to nonzero h, rσ , and rπ (7.8%, at our
experimental value κi = 2π × 6 MHz), then to the spread of
g (5.1%), and to a very small extent to the transient temporal
dynamics (0.5%). The presence of a second excited state that
enables an extra pathway for SPRINT does not affect the
fidelity by virtue of tuning κex and δC .

V. CONCLUSION

In this work we analyzed the performance of single-photon
Raman interaction, which operates as a SWAP gate between
an optical and a material qubits. SPRINT is inherently
deterministic and passive since no active control of the material
state is required. As such it is also orders of magnitude faster
than active protocols, since it occurs on the time scale of the
cavity-enhanced spontaneous emission rate (a few ns). We
defined the process fidelity F , which provides a lower limit
for the SWAP gate fidelity. We showed its robustness against
various experimental flaws. While atomic emission to free
space and intrinsic cavity losses unavoidably result in photon
loss (reduced efficiency), the fidelity can still be optimized
by choosing the coupling rate between the nanofiber and the
microresonator appropriately, even in the case of parasitic
coupling between the optical modes, albeit at the price of
further lowering the efficiency. The effect of multiple excited
states that disrupts the operation of SPRINT can be annulled by
slightly detuning the cavity resonance. The analysis presented
in this work provides the tools for realistic optimization of
SPRINT, applicable to any three-level � system, bringing it
into the regime in which it could form the basis for a scalable
quantum network.

ACKNOWLEDGMENTS

This work was partially supported by the Israel Science
Foundation, the Wolfson Foundation, and the Crown Photonics
Center. This research was made possible in part by the historic
generosity of the Harold Perlman Family.

S.R. and A.B. contributed equally to this work.

APPENDIX: IDEAL SPRINT WITH TRANSIENT
TEMPORAL DYNAMICS

This appendix gives an analytical resolution of the ideal
SPRINT governed by the Hamiltonian Ĥ0 from Eq. (2) in the
case where the state |ψ(t)〉 from Eq. (3) cannot be considered
to be at steady state at all times. The evolution of its probability
amplitudes is given by

α(t) = −c1e
−κt + g∗

1 [c−v+e−λ+ t + c+v−e−λ− t ] + α0,

β(t) = c1e
−κt + g2[c−v+e−λ+ t + c+v−e−λ− t ] + β0, (A1)

ξ (t) = c−e−λ+ t + c+e−λ− t + ξ0,
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where

λ± = 1

2
(γ + κ ±

√
(γ − κ)2 − 4(|g1|2 + |g2|2)), v± = 2i

γ − κ ±
√

(γ − κ)2 − 4(|g1|2 + |g2|2)
,

c1 = −2
√

κsκex

κ − κs

g1g2

|g1|2 + |g2|2 e−κs t , c± = ±2
√

κsκex

v− − v+

g1

|g1|2 + |g2|2
1

1 + 2Ctot
e−κs t

(
1

κ − κs

+ 2iCtotv±

)
, (A2)

and α0, β0, and ξ0 are α, β and ξ from Eq. (5) with

Ctot = |g1|2 + |g2|2
2(κ − κs)(γ − κs)

. (A3)
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