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Acoustically tunable optical transmission through a subwavelength hole with a bubble
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Efficient manipulation of light with sound in subwavelength-sized volumes is important for applications in
photonics, phononics, and biophysics, but remains elusive. We theoretically demonstrate the control of light
with MHz-range ultrasound in a subwavelength, 300-nm-wide water-filled hole with a 100-nm-radius air bubble.
Ultrasound-driven pulsations of the bubble modulate the effective refractive index of the hole aperture, which gives
rise to spectral tuning of light transmission through the hole. This control mechanism opens up novel opportunities
for tunable acousto-optic and optomechanical metamaterials, and all-optical ultrasound transduction.

DOI: 10.1103/PhysRevA.95.033811

I. INTRODUCTION

The presence of a single circular hole with the diameter
w in an opaque metal film, with w much smaller than the
wavelength of incident light λ0, leads to optical phenomena
unpredicted by the classical aperture theories [1–3]. Such
phenomena include enhanced transmission of light through
the hole [1–3], Purcell effect and emission of nonclassical
light [4,5], as well as spectroscopy and sensing [6]. These
functionalities are achievable in both single and periodically
arrayed holes, and they are due to the interaction of light with
surface plasmon resonances at the surface of the metal film
and Fabry-Perot resonances of guided optical modes inside
the hole [1–3].

The Fabry-Perot resonances give rise to a peak in light
transmission through a single hole when λ0 ≈ λc, where
λc ∝ wnf is the cutoff wavelength of the fundamental guided
mode of the hole and nf is the refractive index of the material
filling the hole [3,4]. Thus, the transmission peak becomes
spectrally tunable by either changing w or controlling nf

[2,3]. This has been achieved by using stretchable metal
nanovoids [7], liquid crystals [8], nonlinear optical materials
[9], and electrically tunable semiconductor materials [10].
Spectral tuning of transmission has also been demonstrated
by applying external magnetic fields [11] and using surface
acoustic waves [12].

Other types of electromagnetic waves, e.g., microwaves,
may also be transmitted through subwavelength apertures in a
fashion similar to light [13]. Enhanced transmission of sound
through acoustically subwavelength apertures has also been
observed [14–16].

The coexistence of the waves of different nature in the same
structure allows us to control one wave with another (e.g.,
light in holes filled with a magnetodielectric material may be
controlled with microwaves and vice versa [17]). However,
despite the progress in the control of the interaction of light
with structural deformations of micro- and nanostructures
[18,19], spectral tuning of the optical transmission through
subwavelength apertures with ultrasound remains elusive.

In this work we theoretically demonstrate a spectral tuning
of light transmission with sound in a subwavelength-sized
volume. A water-filled, 300-nm-wide circular hole in a
400-nm-thick silver film acts as a subwavelength and deep
subwavelength aperture for light and ultrasound, respectively.
A spherical air bubble [20–22] with the 100 nm at-rest

radius is trapped and stabilized inside the hole [Fig. 1(a)],
which may be achieved by using a variety of techniques
[21–31]. In general, the bubble maintains its sphericity when it
harmonically pulsates, at the microsecond scale, in response to
ultrasound that evanescently enters and leaks into the hole. By
solving the Rayleigh-Plesset equation of the bubble dynamics
[20,21], we demonstrate that the pulsations of the bubble
allow for the tuning of light transmission as a function of the
ultrasound pressure. This tuning mechanism opens up novel
opportunities for photonics and phononics, such as all-optical
ultrasound transduction at the subwavelength scale and tunable
acousto-optic and optomechanical metamaterials.

II. ACOUSTICALLY TUNABLE OPTICAL TRANSMISSION

There are a number of techniques that may be used to
generate and trap a bubble inside subwavelength apertures
such as nanopores and nanochannels [21–31]. Although the
exact mechanisms of the bubble formation and trapping inside
nanoporous materials are yet to be confirmed, there exist
commercial devices that can trap and count nanometer-size
bubbles and particles [30,31]. In certain embodiments of such
devices, only a single nanopore is used, which makes them of
immediate relevance to our discussion. It has also been shown
that nanopores may be combined with a metal nanocavity that
supports plasmon modes [28]. In such plasmonic nanopores,
a plausible mechanism of the generation and trapping of
bubbles is the plasmon-induced Joule heating. Thus, the bubble
may potentially be generated and trapped inside the hole by
all-optical means.

As the bubble pulsates inside the hole, the optical cutoff
wavelength λc of the hole changes from ∼1.7wnwater for the
entire hole filled with water to reach the asymptotic value
∼1.7wnair for the air-filled hole [2–4], being nwater = 1.33
and nair = 1. Thus, for w = 300 nm the transmission will be
tuned from ∼700 nm (at the lowest bubble radius) to ∼510 nm
(at the largest radius), which is confirmed by three-dimensional
(3D) finite-difference time-domain (FDTD) simulations (solid
and dashed curves in Fig. 2). Numerical details of the FDTD
method are discussed in the Appendix.

For a spherical bubble in an unbounded liquid, the pulsation
implies a variation in the bubble volume, defined by the radius
of the bubble R(t) that harmonically varies around its at-rest
radius R0. In real systems, the pulsations are damped due to
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FIG. 1. (a) Schematic cross section of the water-filled hole with
an air bubble. The thickness of the silver thin film is h = 400 nm. The
diameter of the hole is w = 300 nm. The wavelength of ultrasound is
two orders of magnitude larger than w. (b) Instantaneous Ex electric
field amplitude snapshot in the cross section of the hole with a bubble.
The incident optical plane wave propagates in the +z direction.

acoustic losses, action of viscous stresses at the gas-liquid
interface, thermal conduction across the interface [21,32], and
other phenomena. The effect of these dissipation mechanisms
is discussed in Sec. III. Until that point, we will neglect losses
in our analysis because our main goal is to demonstrate the
effect of acoustically tunable optical transmission through
the hole.

Thus, we solve the following Rayleigh-Plesset equation that
models a bubble in an inviscid and incompressible liquid:

ρ(R̈R + 1.5Ṙ2) = p0(R0/R)3γ − p0 − P (t). (1)

FIG. 2. Optical transmission through the hole. Blue solid curve:
The hole is filled with air. Black dashed curve: The hole is filled
with water. Magenta dotted curve: The hole is filled with water and
an R0 = 100 nm air bubble. Red dashed-dotted line: The hole is
filled with water and an ellipsoidal air bubble with R0,x = R0,y =
100 nm and R0,z = 80 nm at-rest radii (see Fig. 1 for the coordinate
framework). All curves are normalized to the maximum transmission
value for the water-filled hole.

FIG. 3. Radial response R(t) of a 100-nm-radius air bubble in
water (blue solid curve) to the driving ultrasound pressure pulse P (t)
with the center frequency 50 MHz (red dashed curve). Note that this
result is obtained in the lossless approximation, which explains the
resonant pulsations of the bubble at t > 0.1 μs.

The initial values are R0 = 100 nm and Ṙ = 1 m/s [20,21].
The constant reference pressure is p0 = 100 kPa, the density
of water is ρ = 1000 kg/m3, and the polytropic exponent of
air is γ = 1.4 [21,33]. It is noteworthy that Eq. (1) is known to
produce a good agreement with experiments on both micron-
size and submicron bubbles (nanobubbles) [21,34–36].

In our analysis, in Eq. (1) the driving pressure P (t) (red
dashed curve in Fig. 3) is a Gaussian-enveloped sinusoid with
the frequency f = 50 MHz, which is detuned from the linear
resonance frequency f0 ≈ 30 MHz of the bubble in water
(f0R0 ≈ 3 m/s [20,21]). This detuning allows us to avoid
elevated acoustic forcing of the bubble to always keep R(t) <

w/2. Since the bubble is securely trapped inside the hole, we
neglect the feedback between the pulsations and translational
motion of the bubble [33,37].

Figure 3 (blue solid curve) shows that R(t) varies in
response to the driving pressure P (t) with a phase lag due
to the inertia of the surrounding water [20,21]. The maximum
(minimum) value of R(t) reached by the bubble is ∼130 nm
(∼ 80 nm). When P (t) = 0, the bubble continues pulsating
with a smaller amplitude because damping is not taken into
account in Eq. (1). However, in Sec. III we show that this
resonant tail disappears when acoustic losses are taken into
account.

By using the Og̃uz and Prosperetti theory [32] we show
that the pulsation frequency of the bubble inside the rigid
water-filled hole is ∼2 times smaller than that in unbounded
water f . This theory assumes that inside a water-filled rigid
circular tube a pulsating bubble maintains a spherical shape
but its pulsation frequency ftube is defined as

(
ftube

f
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= R2
tube

4R0

(
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FIG. 4. (a) Ultrasound pressure profile (dB-scale color bar) in the
vertical cross section of the hole without the bubble. (b) The same
as in (a) but the hole is loaded with a 100-nm-radius bubble (open
circle). Both results are obtained in the lossless approximation.

where Le
i = Li − h/2 + �L (i = 1,2) is the bubble position

inside the tube and the at-rest radius of the bubble R0 is
comparable with, but smaller than the radius of the tube Rtube.

In the derivation of Eq. (2), the spherical bubble was
replaced with a cylindrical one with the same volume,
occupying the entire cross section of the tube. The thickness
h of the cylindrical bubble enters the expression for Le

i . This
replacement simplifies the system to one-dimensional motion,
where the bubble provides the effective stiffness and the two
liquid columns to either side of the tube provide the effective
inertia, which allows us to determine the natural frequency
of the resulting spring-mass system [32,37]. The correction
factor �L = 0.62Rtube accounts for the inertia of the liquid
outside the tube [32].

In experiments in [37], the ratio of bubble radius to
tube radius is R0/Rtube = 0.55–0.8. Following the discussions
above, we assume that it is adequate to use Eq. (2) and the
results from [37] to describe the behavior of nanoscale bubbles.
By substituting Rtube with the radius of the hole, we obtain
R0/Rhole = 0.66, which lies within the experimentally verified
range. Finally, we obtain the pulsation frequency of the bubble
inside the hole fhole ≈ 0.48f .

The wavelength of f = 50 MHz ultrasound is λa = 30 μm
(the speed of sound in water is vwater = 1500 m/s), which
is 100 times larger than w. Thus, the hole operates in an
acoustically deep subwavelength regime, which was not the
focus of the previous relevant works [14–16]. It is instructive to
demonstrate that ultrasound may still be coupled to the hole de-
spite the fact that the cutoff frequency fc = 1.842vwater/(πw)
[38] of the fundamental guided mode of the hole is ∼60 times
larger than f .

We simulate the two scenarios of ultrasound normally
incident from above the water-filled hole without [Fig. 4(a)]
and with the air bubble [Fig. 4(b)]. We use a 3D acoustic
FDTD method that models the pressure waves in water
and air. However, because of a large mismatch between the

characteristic specific acoustic impedance of water and that of
silver, the silver film is modeled as a perfectly rigid object [20].

The perfectly rigid body approximation significantly sim-
plifies the simulation, but at the same time it allows us to
obtain a qualitatively correct physical picture of ultrasound
leakage into a single deep-subwavelength hole. Indeed, a
previous analytical theory [39] demonstrates that ultrasound
is transmitted through a single hole in a perfectly rigid film
approximately in proportion to the hole area. Thus, we do
not expect a high ultrasound transmission through the single
deep-subwavelength hole considered in this work, because its
area is very small. Furthermore, this theory also demonstrates
that the perfectly rigid model of the silver film may mostly
be applied to the case of single holes, because hole arrays in
perfectly rigid films do not exhibit full ultrasound transmission
due to the absence of lattice resonances. Consequently, we
stress that the results obtained with the 3D acoustic model are
mostly valid for the single holes.

The validity of the perfectly rigid body approximation is
additionally confirmed by a 3D elastodynamic FDTD model
that takes into account the real material parameters of silver.
However, this model requires significant computational efforts
as compared with the acoustic FDTD model. We demonstrate
(see Appendix) that the elastodynamic model confirms the
validity of the result obtained with the acoustic model. We
also note that in our acoustic simulations we neglect losses
in ultrasound transmission through the hole. The impact of
acoustic losses is discussed in Sec. III.

Because w << λa, ultrasound is reflected from the silver
film, which leads to the pressure doubling [38] in the region
above the film. For clarity, in Fig. 4(a) the pressure magnitude
above the hole is normalized such that Pa = 1. However,
ultrasound also evanescently enters the hole and decays inside
it, which leads to a partial transmission of pressure Pb to
the region below the hole. Without the bubble we obtain
Pa/Pb ≈ 15. In the middle of the hole, where the bubble
would be located, we observe Pa/Pbubble ≈ 2, which implies
that a two times larger driving pressure will be required to
compensate for the ultrasound attenuation in the hole. When
the bubble is inside the hole [Fig. 4(b)], its surface acts as
a highly reflecting pressure release boundary [38], in front
of which P ≈ 0. Nevertheless, we observe that the hole
loaded with the bubble remains partially transparent, with
Pa/Pb ≈ 50.

Now we discuss the optical transmission and reflection
spectra of the hole as a function of the bubble radius (Fig. 5).
Because the variations of R(t) are much slower than the
transient optical processes in the hole, the bubble is considered
to be at rest but its radius takes one of the possible values of
R(t) in Fig. 3.

In transmission [Fig. 5(a)], the resonance wavelengths
λres blueshift from ∼ 700 to ∼ 525 nm as the radius of the
bubble is increased from 80 to 130 nm. The pulsations of the
bubble are responsible for the blueshift, because they lead to a
change in the cutoff wavelength λc ≈ λres. A representative
profile of the fundamental guided mode of the hole is shown in
Fig. 1(b). The blueshift of the minima in the reflection spectra
[Fig. 5(b)] is effectively smaller than in transmission, because
light interacts with the hole either resonantly or nonresonantly,
but interference between these two mechanisms gives rise to
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FIG. 5. Transmission (a) and reflection (b) spectra of the hole in
the presence of the bubble at rest, plotted as a function of the bubble
radius. All curves are normalized to unity and offset along the y axis
for the sake of visualization. (a) and (b) The radius increases from 80
to 130 nm with a 5 nm increment, as indicated by the vertical arrow
in (a).

two differently asymmetric resonance profiles in transmission
and reflection [40]. These asymmetries lead to a spectral
offset between the corresponding transmission maxima and
reflection minima.

Figure 6(a) shows the intensity of light transmitted through
the hole at 561 nm, plotted as a function of the bubble radius

FIG. 6. (a) Transmitted light intensity through the hole at 561 nm
(blue dashed curved) and 632 nm (red solid curve), plotted as a
function of the bubble radius. (b) Transmitted light intensity at 561 nm
as a function of time (blue solid curve). The driving ultrasound
pressure P (t) (red dashed curve) can be measured by detecting the
intensity.

(blue dashed curve). The chosen wavelength corresponds to the
transmission peak for the hole with the 130-nm-radius bubble.
We observe a quasilinear dependence of the intensity on the
bubble radius. At 632 nm (red solid curve), which corresponds
to the peak of the light intensity transmitted through the hole
with the 100-nm-radius bubble, we obtain a bell-shaped curve
in which the same intensity corresponds to two different radii
of the bubble. Thus, at 561 nm each discrete value of the light
intensity can be unambiguously correlated with a unique value
of R(t). Also, the transmitted intensity contrast is ∼ 50% at
561 nm as compared with ∼ 15% at 632 nm.

Figure 6(b) (blue solid curve) shows that the monitoring
of the light intensity transmitted through the hole at 561 nm
allows us to recover the original line shape of P (t) (red dashed
curve). By fitting the resulting curve with the Rayleigh-Plesset
equation [Eq. (1)] we can obtain the frequency and amplitude
of P (t). This functionality may be used in the optical sensing of
ultrasound [41]. Such a liquid-state nanophotonic device may
be integrated with the existing liquid-state devices such as, e.g.,
liquid-core optical fibers [42] and lenses [43]. However, liquid-
state photonics still has a number of technical limitations and
we anticipate that, for example, to sense ultrasound with a
bubble one will need to reduce the impact of the limited
detection bandwidth.

Our discussion is expected to be valid when the pulsating
bubble becomes aspherical, which can happen, for example,
because of the impact of the hole. In general, rigorous nu-
merical simulations with a coupled boundary element method
and finite element method (BEM-FEM) have to be conducted
to model time-dependent aspherical oscillations of the bubble
[37], because there are no analytical or semianalytical theories
for a satisfactory prediction of aspherical oscillations.

However, such complex simulations are not required for
a qualitative analysis of the dynamic light-bubble interaction
and may be avoided by doing analysis in the static regime.
We use simulated data for an aspherical air bubble pulsating
inside a rigid tube with λa/Rtube = 150 [37], where λa is the
wavelength of ultrasound. Because for our hole λa/Rhole =
200, we expect a similar asphericity in our case. In [37], the
pulsating bubble was shown to be more elongated in the axial
direction of the tube on expansion and in the radial direction
on collapse. The maximum asphericity in the axial (radial)
direction was ∼ 25% (1%–2%).

Transmission of light through the hole is sensitive to
changes in the refractive index and effective volume of the
filling material [3]. As compared with the water-filled hole
without the bubble, the maximum spectral tuning of the
transmission is achieved when the hole is completely filled
by an air cylinder [44] (solid and dashed curves in Fig. 2).
Furthermore, any intermediate air-filling shape between the
sphere and the cylinder, such as an ellipsoid, gives rise to a
spectral shift that is close to that produced by a spherical hole
with comparable dimensions.

A representative ellipsoidal bubble with the above dis-
cussed aspherity from [37] is investigated in Fig. 2 (dashed-
dotted and dotted curves). We observe a small spectral shift as
compared with the case of the perfectly spherical bubble. Thus
it appears that bubbles of the other irregular shapes will also
produce a similar spectral shift. In particular, we point out that
spectral tuning will be achieved with surface nanobubbles and
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nanodroplets [45], which may be created at the solid-liquid
interface of the hole.

III. EFFECT OF ABSORPTION LOSSES

In the previous discussions, in our acoustic simulations
we have neglected losses in ultrasound transmission through
the hole, which is a valid approximation for ultrasound
propagating in a bulk liquid [46]. However, the presence of
viscous and thermal boundary layers [46] in close proximity
to the hole’s walls no longer warrants this approximation. This
is because the thickness of these layers becomes comparable
with the diameter of the hole and thus absorption losses cannot
be neglected any more [47].

In close proximity to the hole’s walls the tangential particle
velocity approaches zero, which gives rise to a viscous
boundary layer with the thickness dv = √

η/(πfρ), where f

is the frequency of ultrasound, ρ is the density, and η is the
viscosity of the liquid. Moreover, heat exchange between the
liquid and the walls gives rise to a thermal boundary layer
with the thickness dh = √

κ/(πfρcp), where κ is the thermal
conductivity of the liquid and cp is the corresponding specific
heat capacity at constant pressure. Hence, we calculate that
at f = 50 MHz dv ≈ 80 nm and dh ≈ 30 nm. Moreover,
because the pulsation frequency of the bubble inside the hole
is two times smaller than the frequency of the unbounded
bubble but the thickness of both viscous and thermal layers
scales as 1/

√
f , at f = 25 MHz we obtain dv ≈ 113 nm and

dh ≈ 43 nm. That is, in the latter case the thickness of the
viscous layer constitutes ∼ 75% of the hole radius.

To simulate the impact of the viscous and thermal boundary
layers, we use the FDTD formalism and the relevant material
constants from the Supplementary Information of [41]. Similar
to the case of bulk water, we assume that outside the hole the
losses are negligibly small, and we simulate the following
scenarios: (a) the entire hole volume absorbs ultrasound
through a combined viscous and thermal dissipation, (b)
absorption only happens near the walls of the hole in a
layer with the thickness dv = 80 nm (f = 50 MHz), and (c)
absorption only happens near the walls of the hole in a layer
with the thickness dv = 110 nm (f = 25 MHz).

We note that case (a) represents the worst case scenario in
which the total volume of the hole absorbs ultrasound due to
the boundary layer effect. Moreover, due to peculiarities of our
software implementation we assume that dh = dv in cases (b)
and (c). This simplification does not interfere with our analysis
because in water the contribution of the viscous effects to the
total absorption is Pr = cpη/κ ≈ 7 times larger as compared
with the contribution of the thermal effect, where Pr is the
Prandtl number.

Before we discuss our results, we note that the discus-
sion of the impact of the viscous and thermal boundary
layers in [47] is mostly focused on acoustic transmission
through subwavelength cavities supporting Fabry-Perot-like
resonances. In contrast, in this present work we investigate
a deep subwavelength aperture that does not support such
resonances but, from the acoustic point of view, supplies
ultrasound to the bubble via leakage into the hole.

Previous relevant studies of transmission through a non-
resonant system of periodic, very thin screens with air slits

demonstrated that viscous losses dramatically reduce the
transmission coefficient as compared with the nonviscous
case [48,49]. However, those papers, as well as [47], do not
investigate the pressure profile inside the aperture. In contrast,
in our case we do not require a high transmission coefficient
through the hole but we are mostly interested in the pressure
profile inside the hole, especially in the region where the
bubble would be located.

The results of simulations are shown in Fig. 7. When
the entire hole volume is modeled as an absorptive medium
[Fig. 7(a)], we observe that the transmission through the hole
is low with the characteristic ratio Pa/Pb ≈ 670. However,
in the region where the bubble would be located, i.e., in
the middle of the hole, we observe Pa/Pbubble ≈ 55. Recall
that in the lossless approximation we obtained Pa/Pb ≈ 15
and Pa/Pbubble ≈ 2. Thus, this result shows that absorption
losses have a significant adverse effect on ultrasound trans-
mission through the hole, but overall they do not qualitatively
affect the results obtained in the lossless approximation—
the ultrasound leaks into the hole and reaches the
bubble.

Simulations taking into account the two different thick-
nesses of the viscous boundary layer [Figs. 7(b) and 7(c)]
produce a better result than in the case of the entirely absorbing
hole volume: the transmission through the hole is Pa/Pb ≈ 460
(≈ 580) and Pa/Pbubble ≈ 40 (≈ 50) at 50 MHz (25 MHz).
This implies that due to the impact of the boundary layers one
has to increase the peak pressure of the incident ultrasound up
to ∼ 2 MPa, which is a feasible value [41].

Our simulations also demonstrate that the pressure profiles
inside the hole are qualitatively the same at 25 and 50 MHz
incident ultrasound frequency. This observation is in good
agreement with the conclusions about a broadband nature
of the viscous and thermal boundary layers effect drawn in
[47]. At the same time, our results are in agreement with the
theory from [39] according to which ultrasound is transmitted
through the hole approximately in proportion to the hole area.
The presence of the viscous and thermal boundary layers
effectively decreases the area of the hole and thus for the
thicker layers (25 MHz) the transmission through the hole is
smaller than for the thinner ones (50 MHz).

Now we discuss the impact of the dissipation mechanisms
on the pulsations of the bubble inside the hole. Strictly
speaking, in this case we cannot rely on the Og̃uz and
Prosperetti theory of the frequency of bubble oscillations
inside rigid apertures [32], because this theory was developed
for bubbles with > 10 μm radii. Indeed, the at-rest radius R0 of
the bubble considered in this work is two orders of magnitude
smaller than 10 μm.

Nevertheless, the analysis of the limiting cases of the
Og̃uz and Prosperetti theory allows us to neglect the acoustic
radiation and the losses of thermal origin, because these
dissipation mechanisms are dominant only for millimeter-size
bubbles [32]. Moreover, it is known that viscous losses are
always dominated by the thermal losses except for bubbles
with R0 < 10 μm. Thus, although nanobubbles were not
explicitly considered by Og̃uz and Prosperetti, it can be
assumed that viscous losses will also be a major dissipation
mechanism in the case of the 100-nm-radius bubble trapped
inside the hole.
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FIG. 7. Ultrasound pressure profile (dB-scale color bar) in the vertical cross section of the hole without the bubble. In contrast to the result
in Fig. 4(a) obtained in the lossless approximation, here we take into account viscous and thermal losses. (a) Entire hole volume absorbs
ultrasound through a combined viscous and thermal dissipation. (b) Absorption only happens near the walls of the hole in a layer with the
thickness dv = 80 nm (f = 50 MHz). (c) Absorption only happens near the walls of the hole in a layer with the thickness dv = 110 nm
(f = 25 MHz). (d) Absorption only happens near the walls of the hole in a layer with the thickness dv = 40 nm (f = 50 MHz). Note that in
(a)–(c) the temperature of water is T = 20 ◦C, but in (d) we model the scenario of T = 100 ◦C.

Og̃uz and Prosperetti also discuss the damping rate of the
bubble oscillation [32]. In a fashion similar to the derivation
of Eq. (2), they consider the bubble as a cylinder occupying
a slice of the hole. But unlike in Eq. (2), the oscillation
frequency is a complex number with the real part equal to
the oscillation frequency inside the hole and the imaginary
part equal to the viscous damping. Whereas the former value
is already given by Eq. (2), the viscous damping is a function
of the liquid viscosity. However, the resulting expression for
the damping rate does not have a closed-form solution at
arbitrary frequency. Consequently, Og̃uz and Prosperetti rely
on approximations to estimate the relative input of viscous
losses to the total damping of the oscillations. They conclude
that the oscillations of a bubble inside a hole have the same
damping rate as in the case of a bubble in an unbounded liquid.

Thus, the previous theory does not allow us to calculate a
decrease in the bubble pulsation radius R(t) due to viscous
losses. However, it allows us to neglect for a moment the
impact of the hole on the oscillation frequency of the bubble
and discuss R(t) of a bubble pulsating in an unbounded
viscous liquid. It is known [34–36] that R(t) of unbounded
nanobubbles pulsating in a viscous liquid may adequately
be described by a Rayleigh-Plesset equation with the viscous
term. Consequently, we solve the following Rayleigh-Plesset
equation [21,33]:

ρ(R̈R + 1.5Ṙ2) = p0(R0/R)3γ − p0 − P (t) − 4ηṘ

R
, (3)

where η is the liquid viscosity. The solution of this equation
will allow us to obtain R(t) as a function of η. Returning to the
scenario of the bubble inside the hole, according to the theory
R(t) should have the same dependence on η but the oscillation
frequency of the bubble will be ∼2 times lower as predicted
by Eq. (2).

We also note that in Eq. (3) we omitted the surface tension
term σ , which allows us to demonstrate the effect of the liquid
viscosity. The inclusion of σ will lead to an additional decrease
in the amplitude of the bubble pulsations.

Figure 8 compares the solutions of the lossless Eq. (1)
(blue dashed curve) and Eq. (3) (red solid curve, η = 1.002 ×
10−3 Pa s at 20 ◦C temperature). One can see that due to the
viscous losses the bubble pulsation amplitude decreases by a
factor of ∼4. In addition, the oscillations present in the blue
dashed curve at t > 0.1 μs disappear because the losses are

FIG. 8. Radial response R(t) of a 100-nm-radius air bubble
in water to the driving ultrasound pressure pulse with the center
frequency 50 MHz. Red solid curve: η = 1.002 × 10−3 P a s at 20 ◦C.
Black dotted curve: η = 0.282 × 10−3 Pa s at 100 ◦C. Blue dashed
curve: η = 0 (lossless approximation).
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now taken into account. These changes will be translated into
the corresponding decrease in the transmitted light intensity
through the hole, in a fashion similar to the result in Fig. 6.

Finally we note that the propagation of light through the
hole leads to optical absorption and Joule heating of the hole’s
walls [50], which eventually gives rise to an increase of the
temperature of water inside the hole. It is known [51,52] that
the viscosity of water gradually decreases as the temperature
is increased to reach η = 0.282 × 10−3 Pa s at 100 ◦C. Using
this value of the viscosity as a limiting case, in Fig. 8 we show
(black dotted line) that the amplitude of R(t) becomes just ∼2
times smaller than that in the lossless approximation.

Of course other factors will also influence the oscillations
of the bubble when the temperature is changed. For example,
an increase in the water temperature from 0 to 100 ◦C leads to
a 1.3-fold decrease in the surface tension σ and a concomitant
increase in the amplitude of R(t), which is a favorable effect.
Moreover, a decrease in the viscosity of water may affect the
stability of the bubble [52]. However, in our case this factor
is of secondary importance, because a high bubble stability is
mostly important in studies of single bubble sonoluminescence
where the highest emitted light intensity corresponds to the
largest achievable driving pressure [52].

We also note that the thermal conductivity κ of water
slightly increases as the temperature is increased, but at
the same time the values of density ρ and specific heat
capacity at constant pressure cp remain nearly unchanged [51].
Consequently, at 100 ◦C the thickness of the viscous boundary
layer decreases up to dv = 42 nm because the viscosity η

decreases, but the thickness of the thermal boundary layer
remains nearly the same: dh = 32 nm.

Furthermore, in our model the total viscosity of water is
defined as ηtot = ζ + 4η/3, where ζ is the bulk viscosity. The
value of ζ also quickly decreases as the temperature of water
is increased [53]. This property may open up an additional
degree of freedom in controlling the transmission of ultrasound
through the hole by tuning the intensity of incident light. Our
simulations confirm this possibility. Because data for ζ from
[53] are not readily available for temperatures above 50 ◦C,
we extrapolate them to obtain ζ for water at 100 ◦C. Then
we model the viscous layer thickness at 50 MHz and 100 ◦C
[Fig. 7(d)] and we show that the pressure inside the hole
increases by ∼2.5 times as compared with the case of water
at 20 ◦C.

IV. CONCLUSIONS

We have demonstrated a scheme for the control of light with
ultrasound in a subwavelength hole loaded with a bubble. The
scheme may find applications in novel optomechanic devices
[18] and acousto-optical metamaterials such as phoxonic
crystals [19], in which bubbles trapped inside the holes of
the periodic photonic crystal pattern may be used to control
the photonic band gap.

In a fashion similar to plasmonic subwavelength apertures
[54], bubbles may also be employed to control light in a
liquid-core optical fiber [42] or a liquid-filled dielectric slot
waveguide [55]. Liquid-state devices such as optical fibers [42]
and lenses [43] offer a number of potentially transformative
advantages for microphotonic systems. Consequently, a large

and growing body of research investigates novel liquid-based
systems [56,57]. We believe that the integration of bubbles
with subwavelength optical apertures may open up novel
opportunities for the development of acousto-optical liquid-
state photonic devices such as, e.g., optical hydrophones [41].

Our findings may also be useful in optofluidic laboratory-
on-a-chip flow cytometry [58], sonoporation (ultrasound-
mediated cell membrane disruption) [59], as well as in the
development of new methods of biological cell manipulation
[60]. For example, it has been proposed to both deform
biological cells and monitor their deformations by the acoustic
fields of an oscillating bubble, because the frequency of the
natural oscillations of many cells is in the MHz frequency
range and therefore the detection of such oscillations by Raman
or Brillouin scattering is challenging [61]. However, for this
promising technique to be implemented one has to control
and quantify the oscillation of the bubble. Our results suggest
that porous metal or metal-coated membranes may be used
to all-optically sense the behavior of the bubble. A similar
procedure may be useful in flow cytometry and sonoporation.

We expect that the presented scheme may also find
applications in classical microwave waveguide theory and
technique. This is possible because of a similarity between the
plasmonic holes and circular microwave waveguides [4]. This
similarity may be used to verify our theoretical prediction in
the microwave frequency range. Structures tested at microwave
frequencies are often easier to fabricate and experimentally
investigate than nanostructures, and this approach was used
in the past to verify theoretical predictions for dielectric
nanoantennas [62]. A suitable candidate for the verification of
our results may be a water-immersed brass plate with circular
holes with millimeter-size diameter and depth [16]. From the
point of view of electromagnetism, such holes may support
guided modes and Fabry-Perot resonances in the microwave
frequency range. On the other hand, such holes transmit
acoustic waves and they may also be used to trap gas bubbles.
Acoustically driven oscillations of the bubbles are expected to
control microwave signals in a fashion similar to the control
of light with bubbles.

The concept of acoustically controlled microwave trans-
mission through a waveguide may also find practical appli-
cations in, for example, absorptive microwave switches [63].
Absorptive switches are required for high-power applications
such as satellite communications, radars, and wide range
Internet, because they absorb the incoming waves and do
not generate potentially damaging reflections. Water-based
waveguide absorptive switches [63] operate by appropriately
placing water inside a waveguide to absorb the incident
microwave signals. However, the volume of the water-air
section of the waveguide has to be controlled manually, which
allows us to achieve a static operation only. The use of an
oscillating bubble may allow one to dynamically modify the
air-water section of the waveguide, which is expected to result
in a dynamic tuning of the absorption.
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APPENDIX: OPTICAL AND ACOUSTIC
FINITE-DIFFERENCE TIME-DOMAIN MODELS

Simulations of the optical response of the bubble-hole
structure require a numerical method capable of tackling
geometries with interfaces between materials with disparate
dielectric permittivities of silver, water, and air. The 3D optical
finite-difference time-domain (FDTD) method is one of the
numerical methods that offers this functionality [64]. The
time-dependent Maxwell’s equations (in partial differential
form) are discretized using central-difference approximations
to the space and time partial derivatives [64]. The resulting
finite-difference equations are solved in a leapfrog manner.
First, the electric field vector components in a volume of space
are solved at a given instant in time. Then the magnetic field
vector components in the same spatial volume are solved at the
next instant in time. The process is repeated until the desired
transient or steady-state electromagnetic field behavior is fully
evolved.

In our customized optical FDTD software, the spatial
resolution step equals 2 nm in all coordinate directions.
The temporal resolution is chosen according to the Courant
stability condition [64]. Optical perfectly matched layers
(PMLs) are implemented to avoid unphysical reflections from
the boundaries of the optical computational domain [64].

The Drude model εAg = ε∞ − ω2
p/[ω(ω − iγ )] is required

to simulate the frequency-dependent optical response of silver
[64]. We implement the Drude model in the time domain by
using the standard auxiliary differential equation method of
treatment of the Drude dispersion [64]. The parameters of the
Drude model for silver are: ε∞ = 4.96, h̄ωp = 9.54 eV, and
h̄γ = 0.055 eV.

We also employ a 3D acoustic FDTD method [65] to
model the transmission of ultrasound through the hole. The
acoustic FDTD is conceptually similar to the optical FDTD,
but the equations of linear acoustics are solved in a leapfrog
fashion instead of Maxwell’s equations [65]. The acoustic
material parameters of water used in the FDTD model are
[66]: density ρwater = 1000 kg/m3 and longitudinal speed
of sound vwater = 1500 m/s. The density of air is ρair =
1.2 kg/m3 and the speed of sound in air is vair = 343 m/s.
When viscous and thermal losses are taken into account, the
standard acoustic FDTD scheme is extended following the dis-
cussion in the Supplementary Information of [41] and we ad-
ditionally use the following material parameters: the shear vis-
cosity η = 1.002 × 10−3 Pa s, bulk viscosity ζ = 3.09 × 10−3

Pa s, specific heat capacity at constant pressure cp = 4.182
× 103 J/(kg K) and constant volume cv = cp/1.33, and ther-
mal conductivity κ = 0.597 W/(m K). Nonlinear phenomena
are neglected in our acoustic FDTD model. Mur’s absorbing
boundary conditions are implemented to avoid unphysical
reflections from the boundaries of the computational domain

[64,65]. The spatial resolution step used in the acoustic FDTD
method equals 2 nm.

The predictions of the acoustic 3D FDTD model were
verified by using an elastodynamic 3D Virieux-FDTD method
[67]. This software is capable of tackling geometries with
interfaces between water, air, and silver. Conceptually, the
Virieux-FDTD method is similar to the acoustic FDTD
method, but it is based on the equations of elastodynamics
that involve the components of the stress tensor T . We note
that in our model in liquids, the normal stress components
Txx, Tyy, Tzz are the same values, equal to the opposite of the
pressure of ultrasound, but the shear stress is zero. Thus, when
only liquids are present in the elastodynamic model, this model
effectively reduces to the acoustic FDTD model.

In addition to the material parameters of water and air
described above, in our elastodynamic model we use the
following material parameters of silver [66]: density ρAg =
10 490 kg/m3, longitudinal speed of sound vl,Ag = 3650 m/s,
and transversal speed of sound vt,Ag = 1610 m/s. The spatial

FIG. 9. (a)–(c) Amplitudes of the stress components Txx, Tyy, and
Tzz (linear color bar) in the vertical cross section of the hole without
the bubble. The contours of the silver film are denoted by the white
rectangles. Note that the simulated structure is slightly different from
that in Fig. 4, as discussed in the text of the Appendix. (d)–(f) The
same but in the presence of the bubble.
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resolution step used in the elastodynamic FDTD method equals
2 nm. Absorption phenomena such as viscous and viscoelastic
effects are neglected. Acoustic PMLs boundary conditions are
used to truncate the computational domain [67].

Because our simulations numerically diverge when the
silver film containing the hole contacts with the acoustic PMLs
(which is probably due to a limitation of the software [67]),
we have to reduce the area of the film such that it does not
contact with the boundaries of the computational domain. As
a result, the elastodynamic model differs from the acoustic
model in Fig. 4 because the incident ultrasound can partially
bend around the film. We cannot mitigate this artifact by
significantly increasing the size of the computational domain
because this manipulation leads to impractically large time and
memory consuming simulations. However, in the following we
demonstrate that this artifact does not interfere with our goal
to confirm the validity of the acoustic model used in the main
text.

In the left column of Fig. 9 we present the amplitudes of
the Txx, Tyy, and Tzz stress components plotted in the vertical
cross section of the hole without the bubble. The contours of
the silver film and hole are denoted by the white rectangles.
For the reason mentioned above, we observe that ultrasound
bends around the film and reaches the region below the film.
Nevertheless, similar to the profile in Fig. 4(a), one can see that
in the region above the film the pressure is higher than in the

region below the film, because of the reflection of ultrasound
from the film.

In the acoustic model used to produce Fig. 4(a), the incident
ultrasound is reflected from the top surface of the silver
film that is modeled as a perfectly rigid body. In contrast,
in the elastodynamic model the ultrasound propagates inside
the silver film. However, the stress amplitude inside the film
quickly decreases because of the reflection from the bottom
surface of the silver film. This can be seen by comparing the
amplitudes inside the white rectangles in Fig. 9 (left column)
with the amplitude in the region between the rectangles, which
corresponds to the vertical cross section of the hole. Thus,
we conclude that mostly ultrasound that leaks into the hole
contributes to the transmission process through the hole. We
notice that in the main text we arrived to the same conclusion
by using the 3D acoustic model.

Finally, by using the elastodynamic FDTD model we
simulate the scenario of the hole with an air bubble (right
column of Fig. 9). As in the case of the hole without the bubble,
we observe a good qualitative agreement between the results
predicted with the acoustic [Fig. 4(b)] and elastodynamic
models. For example, we observe that the pressure just above
the hole decreases as compared with the case without the
bubble, the pressure in front of the bubble decreases to zero, but
overall the hole with the bubble remains partially transparent
for ultrasound.
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[16] V. Gómez-Lozano, C. Rubio, P. Candelas, A. Uris, and F.
Belmar, Materials 9, 453 (2016).

[17] I. S. Maksymov, Nanomaterials 5, 577 (2015).
[18] M. Aspelmeyer, T. J. Kippenberg, and F. Marquardt, Rev. Mod.

Phys. 86, 1391 (2014).
[19] A. Khelif and A. Adibi, Phononic Crystals: Fundamentals and

Applications (Springer, New York, 2016).
[20] T. G. Leighton, The Acoustic Bubble (Academic, London, 1994).
[21] W. Lauterborn and T. Kurz, Rep. Prog. Phys. 73, 106501 (2010).
[22] H. Tsuge, Micro- and Nanobubbles: Fundamental and Applica-

tions (Pan Stanford, Singapore, 2014).
[23] D. Lapotko, Opt. Express 17, 2538 (2009).
[24] L. H. Thamdrup, F. Persson, H. Bruus, A. Kristensen, and H.

Flyvbjerg, Appl. Phys. Lett. 91, 163505 (2007).
[25] K. Uehara and Y. Yano, IEEE Trans. Magn. 47, 2604 (2011).
[26] C. Zhao, Y. Liu, Y. Zhao, N. Fang, and T. J. Huang, Nat.

Commun. 4, 2305 (2013).
[27] C. Duan, R. Karnik, M.-C. Lu, and A. Majumdar, PNAS 109,

3688 (2012).
[28] Y. Li, F. Nicoli, C. Chen, L. Lagae, G. Groeseneken, T.

Stakenborg, H. W. Zandbergen, C. Dekker, P. Van Dorpe, and
M. P. Jonsson, Nano Lett. 15, 776 (2015).

[29] T. Hofmann, D. Wallacher, J. Perlich, S. Koyiloth Vayalil, and
P. Huber, Langmuir 32, 2928 (2016).

[30] H. S. White, B. Zhang, R. J. White, and E. N. Ervin, US Patent
2010/0025263 A1 (2010).

[31] S. R. German and T. L. Mega, US Patent 2016/0041122 A1
(2016).

[32] H. N. Og̃uz and A. Prosperetti, J. Acoust. Soc. Am. 103, 3301
(1998).

033811-9

https://doi.org/10.1038/nature05350
https://doi.org/10.1038/nature05350
https://doi.org/10.1038/nature05350
https://doi.org/10.1038/nature05350
https://doi.org/10.1103/RevModPhys.79.1267
https://doi.org/10.1103/RevModPhys.79.1267
https://doi.org/10.1103/RevModPhys.79.1267
https://doi.org/10.1103/RevModPhys.79.1267
https://doi.org/10.1103/PhysRevLett.105.180502
https://doi.org/10.1103/PhysRevLett.105.180502
https://doi.org/10.1103/PhysRevLett.105.180502
https://doi.org/10.1103/PhysRevLett.105.180502
https://doi.org/10.1364/OE.19.005268
https://doi.org/10.1364/OE.19.005268
https://doi.org/10.1364/OE.19.005268
https://doi.org/10.1364/OE.19.005268
https://doi.org/10.1021/ar800074d
https://doi.org/10.1021/ar800074d
https://doi.org/10.1021/ar800074d
https://doi.org/10.1021/ar800074d
https://doi.org/10.1063/1.3247966
https://doi.org/10.1063/1.3247966
https://doi.org/10.1063/1.3247966
https://doi.org/10.1063/1.3247966
https://doi.org/10.1007/s11468-011-9248-x
https://doi.org/10.1007/s11468-011-9248-x
https://doi.org/10.1007/s11468-011-9248-x
https://doi.org/10.1007/s11468-011-9248-x
https://doi.org/10.1103/PhysRevB.66.205414
https://doi.org/10.1103/PhysRevB.66.205414
https://doi.org/10.1103/PhysRevB.66.205414
https://doi.org/10.1103/PhysRevB.66.205414
https://doi.org/10.1063/1.2804572
https://doi.org/10.1063/1.2804572
https://doi.org/10.1063/1.2804572
https://doi.org/10.1063/1.2804572
https://doi.org/10.1016/j.revip.2016.03.002
https://doi.org/10.1016/j.revip.2016.03.002
https://doi.org/10.1016/j.revip.2016.03.002
https://doi.org/10.1016/j.revip.2016.03.002
https://doi.org/10.1103/PhysRevB.76.235427
https://doi.org/10.1103/PhysRevB.76.235427
https://doi.org/10.1103/PhysRevB.76.235427
https://doi.org/10.1103/PhysRevB.76.235427
https://doi.org/10.1063/1.4900999
https://doi.org/10.1063/1.4900999
https://doi.org/10.1063/1.4900999
https://doi.org/10.1063/1.4900999
https://doi.org/10.1038/nphys774
https://doi.org/10.1038/nphys774
https://doi.org/10.1038/nphys774
https://doi.org/10.1038/nphys774
https://doi.org/10.1103/PhysRevLett.101.084302
https://doi.org/10.1103/PhysRevLett.101.084302
https://doi.org/10.1103/PhysRevLett.101.084302
https://doi.org/10.1103/PhysRevLett.101.084302
https://doi.org/10.3390/ma9060453
https://doi.org/10.3390/ma9060453
https://doi.org/10.3390/ma9060453
https://doi.org/10.3390/ma9060453
https://doi.org/10.3390/nano5020577
https://doi.org/10.3390/nano5020577
https://doi.org/10.3390/nano5020577
https://doi.org/10.3390/nano5020577
https://doi.org/10.1103/RevModPhys.86.1391
https://doi.org/10.1103/RevModPhys.86.1391
https://doi.org/10.1103/RevModPhys.86.1391
https://doi.org/10.1103/RevModPhys.86.1391
https://doi.org/10.1088/0034-4885/73/10/106501
https://doi.org/10.1088/0034-4885/73/10/106501
https://doi.org/10.1088/0034-4885/73/10/106501
https://doi.org/10.1088/0034-4885/73/10/106501
https://doi.org/10.1364/OE.17.002538
https://doi.org/10.1364/OE.17.002538
https://doi.org/10.1364/OE.17.002538
https://doi.org/10.1364/OE.17.002538
https://doi.org/10.1063/1.2801397
https://doi.org/10.1063/1.2801397
https://doi.org/10.1063/1.2801397
https://doi.org/10.1063/1.2801397
https://doi.org/10.1109/TMAG.2011.2157898
https://doi.org/10.1109/TMAG.2011.2157898
https://doi.org/10.1109/TMAG.2011.2157898
https://doi.org/10.1109/TMAG.2011.2157898
https://doi.org/10.1038/ncomms3305
https://doi.org/10.1038/ncomms3305
https://doi.org/10.1038/ncomms3305
https://doi.org/10.1038/ncomms3305
https://doi.org/10.1073/pnas.1014075109
https://doi.org/10.1073/pnas.1014075109
https://doi.org/10.1073/pnas.1014075109
https://doi.org/10.1073/pnas.1014075109
https://doi.org/10.1021/nl504516d
https://doi.org/10.1021/nl504516d
https://doi.org/10.1021/nl504516d
https://doi.org/10.1021/nl504516d
https://doi.org/10.1021/acs.langmuir.5b04560
https://doi.org/10.1021/acs.langmuir.5b04560
https://doi.org/10.1021/acs.langmuir.5b04560
https://doi.org/10.1021/acs.langmuir.5b04560
https://doi.org/10.1121/1.423043
https://doi.org/10.1121/1.423043
https://doi.org/10.1121/1.423043
https://doi.org/10.1121/1.423043


IVAN S. MAKSYMOV AND ANDREW D. GREENTREE PHYSICAL REVIEW A 95, 033811 (2017)

[33] A. A. Doininkov, Phys. Fluids 14, 1420 (2002).
[34] R. Holyst, M. Litniewski, and P. Garstecki, Phys. Rev. E 82,

066309 (2010).
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