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We consider optical systems where propagation of light can be described by a Dirac-like equation with
PT -symmetric Hamiltonian. In order to construct exactly solvable configurations, we extend the confluent Crum-
Darboux transformation for the one-dimensional Dirac equation. The properties of the associated intertwining
operators are discussed and the explicit form for higher-order transformations is presented. We utilize the results
to derive a multiparametric class of exactly solvable systems where the balanced gain and loss represented by
the PT -symmetric refractive index can imply localization of the electric field in the material.
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I. INTRODUCTION

In specific situations, the propagation of light can be
described by equations that are at home in quantum mechanics.
Indeed, the Helmholtz equation in paraxial approximation
acquires the form of a Schrödinger-like equation [1]. One
deals with coupled differential equations of the Dirac-type
within the context of the coupled-wave theory of distributed
feedback lasers [2,3]. The interaction present in the associated
Hamiltonians depends on the optical properties of the material
the light is propagating in. These optical characteristics can be
described by the refractive index. It can be position-dependent
in an optically inhomogeneous material; it can be also complex
valued when gain and loss occur in the system [4–6].

The description of optical systems with complex refractive
index departs from the concept of standard quantum me-
chanics, where the operators are required to be Hermitian.
However, a link can be still established within the realm of
PT -symmetric quantum mechanics, where the requirement of
Hermiticity is relaxed and replaced by PT symmetry, where
P is the space inversion and T is the time reversal operator
[7–12]. The relation between optics and PT -symmetric
quantum mechanics has been exploited extensively in recent
years. Optical systems described by a Schrödinger equation
with complex PT -symmetric potential were analyzed, e.g., in
[13–20]. Those described by Dirac equation were discussed in
[21] where the attention was paid to the spectral singularities
and the PT -symmetry breaking.

The light propagating through a nonuniform Bragg grating
with small fluctuations of the refractive index can be well
described by the coupled mode theory [3,22]. In the case of a
monochromatic electromagnetic field of the form

E = e1[E(x3)e−iωt + E∗(x3)eiωt ],

H = e2[H (x3)e−iωt + H ∗(x3)eiωt ],

the Maxwell equations reduce to ∂
∂x3

E(x3) = iωμ0H (x3) and
∂

∂x3
H = iωε0n

2(x3)E(x3) where n(x3) is the refractive index.
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Combining the two equations, we find that the electric field
has to satisfy

∂2

∂x2
3

E(x3) + k2

(
n(x3)

n0

)2

E(x3) = 0. (1)

Here, k = ωn0/c, μ0ε0 = c−1, and n0 is the reference re-
fractive index. Fixing the electric field in the form of two
counterpropagating waves,

E(x) = u(x) exp

(
ix + i

2
φ(x)

)
+ v(x) exp

(
−ix − i

2
φ(x)

)
, x = k0x3, (2)

where k0 is defined as the wave number of light at the Bragg
scattering resonance frequency ω0 = ck0/n0, the equation (1)
can be brought into the form of two coupled equations [22],

∂xu = i[ρ(x)u(x) + κ(x)v(x)],

∂xv = − i[ρ(x)v(x) + κ(x)u(x)], (3)

where ρ(x) = σ (ξ ) + 
 − 1
2∂xφ(x) and 
 = (ω − ω0)/ω0.

The functions σ (x), κ(x) determine the profile of the refractive
index n(x) = n0{1 + σ (x) + 2κ(x) cos[2x + φ(x)]}. In order
to keep fluctuations of n(x) small, we require |σ (x)| << 1 and
|κ| << 1. With the use of F = (u,v)T , we can rewrite (3) as

HF (x) = [−iσ3∂x + iσ2ρ(x) − σ1κ(x)]F (x) = 0, (4)

which coincides with the one-dimensional non-Hermitian
stationary Dirac equation at zero energy.1 The systems
described by Eq. (4) will be of our main interest.

1Using the ansatz E(x,t) = u(x,t) exp[ix + i

2 φ(x)] + v(x,t)
exp[−ix − i

2 φ(x)], there would appear i∂tF on the right-hand
side of (4); see [3]. Let us notice that the Dirac-like equa-
tion appears also in the description of another optical system
where two identical coupled PT wave guides are considered;
see [25].

2469-9926/2017/95(3)/033807(8) 033807-1 ©2017 American Physical Society

https://doi.org/10.1103/PhysRevA.95.033807
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The Crum-Darboux transformation is a differential operator
that annihilates fixed eigenstates of the initial, known,2 Hamil-
tonian [23,24]. There exists an unambiguous prescription for
the new Hamiltonian such that it is intertwined with the initial
one by this transformation. The intertwining relation implies
that the exact solutions for the stationary equation of the new
system are obtained by acting on the eigenstates of the initial
Hamiltonian with the intertwining operator. Besides being very
fruitful for quantum mechanics, see, e.g., Ref. [26] for a review,
it proves to be an effective tool for the analysis of optical
systems [27–31].

When the Crum-Darboux transformation annihilates eigen-
states and Jordan states associated with a single eigenvalue it
is called confluent. In the literature, it was discussed mostly for
Schrödinger Hamiltonians in the context of quantum systems
[32–38], as well as for optical settings with complex refractive
index [39,40]. Recently, it was also used for the construction
of a limited class of Dirac Hamiltonians in [41].

In the current article, we will find ρ(x) and κ(x) with the
help of the Crum-Darboux transformations such that (4) is
exactly solvable. We modify the confluent Crum-Darboux
transformation for the use with Dirac Hamiltonians with a
generic potential. We consider chains of confluent Crum-
Darboux transformations and show explicit formulas for both
the higher-order intertwining operator and the new Hamilto-
nian. In particular, we focus on Crum-Darboux transforma-
tions that render the new Hamiltonian PT -symmetric. Finally,
we construct a class of PT -symmetric Dirac operators whose
relevance for the description of optical systems is discussed.

II. FIRST-ORDER TRANSFORMATIONS
AND THEIR CHAINS

In order to introduce the confluent Crum-Darboux transfor-
mations, let us start with the simplest case, the transformation
of the first order. We set the initial, one-dimensional Dirac
Hamiltonian in the following form:

H0 = −iσ3∂x + V0, (5)

where V0 is an arbitrary matrix valued function. Following
[42], we make the following ansatz for the intertwining
operator

L1 = ∂x − UxU
−1. (6)

Since we assume U is an invertible matrix and Ux ≡ ∂xU ,
by construction, the above equation means that L1U = 0. We
want L1 to be an intertwining operator between H0 and another
Hamiltonian H1 = −iσ3∂x + V1. Hence the explicit form of
both L1 and V1 should be fixed such that

L1H0 = H1L1. (7)

2The solutions of the associated initial stationary equation are
supposed to be known.

The intertwining relation captures the essence3 of the Crum-
Darboux transformation L1; it allows one to map the eigen-
states of the initial Hamiltonian H0 into those of H1.

When comparing the coefficients of the corresponding
derivatives in Eq. (7), we get two equations for the unknown
matrices V1 and U ,

V1 = V0 − i[UxU
−1,σ3], (U−1H0U )x = 0. (8)

The first one fixes V1. The second one is a differential equation
for U . It is satisfied whenever H0U = U� with � being a
constant matrix. As any matrix with complex elements can be
transformed into a Jordan form, we can fix U in such a way that

H0U = U�, for �=
(

λ1 0
0 λ2

)
or �=

(
λ 1
0 λ

)
. (9)

Hence we can write down U as

U = (1,2). (10)

The spinors 1 and 2 either satisfy H0a = λaa , in
the case when � is diagonal,4 or (H0 − λ)1 = 0 and
(H0 − λ)2 = 1 when � has the form of a Jordan block.
The latter choice represents a direct generalization of [42],
where only a diagonal � was considered.

Once U is fixed, the intertwining operator L1 as well as
H1 are uniquely defined. The operator (6) annihilates both
vectors a , La = 0, a = 1,2. It is worth noticing that, at the
moment, the present construction is formal and additional care
is needed to obtain a physically relevant result. In particular, the
requirement of regularity has to be imposed on the intertwining
operator such that the new Hamiltonian H1 does not contain
any new singularities. This is equivalent to the requirement that
det U �= 0 for the considered domain of x. We will discuss this
issue later on.

Let us continue our discussion with the case of a chain
of two consecutive first order Crum-Darboux transformations.
We focus on the situation where the intertwining operators are
systematically constructed from the Jordan states associated
with a fixed eigenvalue λ∗. First, we shall fix the notation.
Given a Hamiltonian H0, we denote the two independent (not
necessarily physical) eigenvectors of H0 corresponding to an
eigenvalue λ as �0 and �̃0,

(H0 − λ)�0 = 0, (H0 − λ)�̃0 = 0. (11)

The Jordan states χ
(n)
0 and χ̃

(n)
0 associated with �0 and �̃0, re-

spectively, can be defined as the solutions of the (n + 1)th iter-
ated Dirac equation, (H0 − λ)n+1χ

(n)
0 = (H0 − λ)n+1χ̃

(n)
0 = 0,

in the following form [37,45]:

χ
(n)
0 = ∂n�0

∂λn
+

n−1∑
k=0

(
c

(n)
k χ

(k)
0 + d

(n)
k χ̃

(k)
0

)
,

(H0 − λ)nχ (n)
0 = �0, (12)

3In quantum mechanics, the energy spectra of the Hamiltonians H0

and H1 are typically identical up to a single discrete energy level
[24,42]. The transformation also serves for the analysis of integrable
systems; see e.g. [43,44].

4Let us notice that H1 reduces to H0 when λ1 = λ2; see (9).
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χ̃
(n)
0 = ∂n�̃

∂λn
+

n−1∑
k=0

(
c̃

(n)
k χ

(k)
0 + d̃

(n)
k χ̃

(k)
0

)
,

(H0 − λ)nχ̃ (n)
0 = �̃0, (13)

where c
(n)
k , c̃

(n)
k , d

(n)
k , and d̃

(n)
k are some complex numbers

and χ
(0)
0 = �0 and χ̃

(0)
0 = �̃0. In particular, the Jordan states

satisfy

(H0 − λ)χ (n)
0 = χ

(n−1)
0 , (H0 − λ)χ̃ (n)

0 = χ̃
(n−1)
0 . (14)

The fact that the functions χ
(n)
0 and χ̃

(n)
0 are solutions of

the equations in (12) and (13) can be understood when the nth
derivative of the stationary equation (11) with respect to λ is
calculated. Considering n = 1, we get

∂

∂λ
(H0 − λ)�0 = (H0 − λ)

∂�0

∂λ
− �0 = 0. (15)

Hence the function χ
(1)
0 ≡ ∂�0

∂λ
+ c

(1)
0 �0 + d

(1)
0 �̃0, where �0

and �̃0 are solutions of the homogeneous equation (11), solves
the inhomogeneous equation in (12) for n = 1.

As the first link in the chain of transformations we are going
to discuss, we define L1 such that it annihilates �0 and χ

(1)
0 ,

(H0 − λ∗)�0 = (H0 − λ∗)χ (1)
0 − �0 = 0, and intertwines H0

with the Hamiltonian H1,

L1�0 = L1χ
(1)
0 = 0, L1H0 = H1L1. (16)

The eigenstates �1 and �̃1 of H1, (H1 − λ)�1 = (H1 −
λ)�̃1 = 0, can be written for any λ as

�̃1 = L1�̃0, �1 =
{

L1�0 for λ �= λ∗,

L1χ
(2)
0 for λ = λ∗.

(17)

Here, we have utilized (14) and (16) which imply L1χ
(1)
0 =

L1(H0 − λ∗)χ (2)
0 = (H1 − λ∗)L1χ

(2)
0 = 0. The Jordan states

χ
(1)
1 or χ̃

(1)
1 of H1 associated with either �1 or �̃1, (H1 −

λ)χ (1)
1 = �1, (H1 − λ)χ̃ (1)

1 = �̃1, are

χ̃
(1)
1 = L1χ̃

(1)
0 , χ

(1)
1 =

{
L1χ

(1)
0 for λ �= λ∗,

L1χ
(3)
0 for λ = λ∗.

(18)

For the second link of the chain, we fix L2 such that L2�1 =
L2χ

(1)
1 = 0, (H1 − λ∗)�1 = 0, and (H1 − λ∗)χ (1)

1 = �1. Then
there exists H2 such that the following relations hold true:

L1H0 = H1L1, L2H1 = H2L2, L2L1H0 = H1L2L1. (19)

We can identify the chain of the two Darboux transformations
with a second-order intertwining operator L2 = L2L1 that
directly intertwines H0 with H2. L2 can be defined directly as
the operator that annihilates �0, χ

(1)
0 , χ

(2)
0 , χ

(3)
0 , see (17) and

(18), and the coefficient at the highest derivative is normalized
to one. The chain is illustrated in Fig. 1.

The Hamiltonians H0, H1 are not Hermitian in general.
Hence the construction of the intertwining operator L

�

1 which
satisfies H0L

�

1 = L
�

1H1 is less straightforward than in the
Hermitian case. Let us define L

�

1 = ∂x − U
�
x (U�)−1 where

U� = (�̃1,χ̃
(1)
1 ). Then L

�

1 intertwines H1 and H0,

H0L
�

1 = L
�

1H1, L
�

1�̃1 = L
�

1χ̃
(1)
1 = 0. (20)

FIG. 1. Schematically illustrated action of L1, L2 (red arrows)
and L

�

1, L�

2 (dashed blue arrows) on the eigenvectors of the associated
Jordan states of H0 (left box), H1 (center), and H2 (right).

To prove this relation, notice first that L
�

1L1 = (H0 − λ∗)2 as
the operators have the same kernel and the same coefficient at
the highest derivative. Then, we can rewrite [L�

1L1,H0] = 0 as
(L�

1H1 − H0L
�

1)L1 = 0. Hence the relation (20) is valid on the
space of all eigenstates and associated Jordan states of H1. The
operator L

�

1 acts like the “inverse” operator to L1; see Fig. 1
for illustration.

III. INTERTWINING OPERATORS OF HIGHER ORDER

One can construct a chain of Darboux transformations
of arbitrary length n and identify it with a higher-order
intertwining operator Ln such that

LnH0=HnLn, Ln�0=Lnχ
(j )
0 = 0, j = 1,2, . . . ,n − 1.

(21)

We are going to write down the explicit form of Hn and Ln.
Let us fix the initial Hamiltonian H0,

H0 =
(−i∂x q0

r0 i∂x

)
, (22)

where q0(x) and r0(x) are arbitrary complex functions, and a
set of 2n spinors,

S2n = {�1,�2, . . . ,�2n−1,�2n}, �i =
(

fi

gi

)
. (23)

Let us notice that the function in S2n are sometimes called
seed solutions in the literature. For the purpose of the analysis
of the confluent Crum-Darboux transformation, we fix (23)
as a sequence of an eigenstate �0 of H0 corresponding to
the eigenvalue λ∗ and its associated Jordan states, S2n =
{�0,χ

(1)
0 ,χ

(2)
0 , . . . ,χ

(2n−1)
0 }, (H0 − λ∗)�0 = 0.

The operator Ln for n = 1 was discussed in the previous
section. It can be written explicitly in terms of the seed
solutions �1 and �2. It is given by

L1 =

⎛⎜⎝∂x + f ′
2g1−f ′

1g2

f1g2−f2g1

f ′
1f2−f1f

′
2

f1g2−f2g1

g1g
′
2−g′

1g2

f1g2−f2g1
∂x + f2g

′
1−f1g

′
2

f1g2−f2g1

⎞⎟⎠, (24)

where the term f1g2 − f2g1 in the denominators corresponds
to the Wronskian determinant for the Hamiltonian (22). It is
not difficult to check that this operator annihilates �1 and �2,

L1

(
f1

g1

)
= L1

(
f2

g2

)
= 0 . (25)
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It intertwines H0 with H1 where the latter operator has the
following explicit form:

H1 =
(

−i∂x q0 + 2i
f ′

1f2−f1f
′
2

f1g2−f2g1

r0 + 2i
g′

1g2−g1g
′
2

f1g2−f2g1
i∂x

)
. (26)

The second-order transformation L2 is fixed such that it
annihilates the seed solutions �1, �2, �3, and �4. It can

be factorized as L2 = L2L1 = L2L1, where the operator L2

satisfies L2(L1�3) = 0 and L2(L1�4) = 0. Its explicit form
can be inferred from (24) by inserting the corresponding
components of L1�3 and L1�4. Following the same steps
[the factorization and the interative use of (24)], one could
find Ln for any n. However, this, rather tedious, approach can
be bypassed by writing Ln directly as

Ln =
(

∂n
x + ∑n−1

�=1
det A[f (�)]

det W ∂�
x

∑n−1
�=1

det A[g(�)]
det W ∂�

x∑n−1
�=1

det B[f (�)]
det W ∂�

x ∂n
x + ∑n−1

�=1
det B[g(�)]

det W ∂�
x

)
, Ln�j = 0, j = 1,2, . . . ,2n. (27)

In the definition (27), we have denoted

A =

⎛⎜⎜⎜⎜⎜⎜⎜⎝

f (n) f (n−1) . . . f g(n−1) . . . g ′ g

f
(n)
1 f

(n−1)
1 . . . f1 g

(n−1)
1 . . . g ′

1 g1

f
(n)
2 f

(n−1)
2 . . . f2 g

(n−1)
2 . . . g ′

2 g2

...
...

f
(n)
2n f

(n−1)
2n . . . f2n g

(n−1)
2n . . . g ′

2n g2n

⎞⎟⎟⎟⎟⎟⎟⎟⎠
, (28)

B =

⎛⎜⎜⎜⎜⎜⎜⎜⎝

g(n) f (n−1) . . . f g(n−1) . . . g ′ g

g
(n)
1 f

(n−1)
1 . . . f1 g

(n−1)
1 . . . g ′

1 g1

g
(n)
2 f

(n−1)
2 . . . f2 g

(n)
2 . . . g ′

2 g2

...
...

g
(n)
2n f

(n−1)
2n . . . f2n g

(n)
2n . . . g ′

2n g2n

⎞⎟⎟⎟⎟⎟⎟⎟⎠
. (29)

The matrix A[h(i)] (B[h(i)]) in (27) is obtained from A (B) by substituting all the entries in the first row by zeros except the
position h(i) where h(i) → 1. Here, h is either f or g. To get A[f (1)] in the case n = 2, we have to substitute the first row
[f ′′,f ′,f,g′,g] in the matrix A by [0,1,0,0,0]. The matrix W corresponds to the generalized Wronskian of the set (23),

W =

⎛⎜⎜⎜⎜⎜⎝
f

(n−1)
1 f

(n)
1 . . . f1 g

(n−1)
1 . . . g ′

1 g1

f
(n−1)
2 f

(n)
2 . . . f2 g

(n−1)
2 . . . g ′

2 g2

...
...

f
(n−1)
2n f

(n)
2n . . . f2n g

(n−1)
2n . . . g ′

2n g2n

⎞⎟⎟⎟⎟⎟⎠. (30)

The Hamiltonian Hn, defined in Eq. (21), acquire the following form:

Hn =
(−i∂x qn

rn i∂x

)
, (31)

where

qn = q + 2i
det Dq

det W
, rn = r + 2i

det Dr

det W
, (32)

and

Dq =

⎛⎜⎜⎜⎜⎜⎝
g

(n−2)
1 g

(n−3)
1 . . . g1 f

(n)
1 . . . f ′

1 f1

g
(n−2)
2 g

(n−3)
2 . . . g2 f

(n)
2 . . . f ′

2 f2

...
...

g
(n−2)
2n g

(n−3)
2n . . . g2n f

(n)
2n . . . f ′

2n f2n

⎞⎟⎟⎟⎟⎟⎠, (33)
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Dr =

⎛⎜⎜⎜⎜⎜⎝
g

(n)
1 g

(n−1)
1 . . . g1 f

(n−2)
1 . . . f ′

1 f1

g
(n)
2 g

(n−1)
2 . . . g2 f

(n−2)
2 . . . f ′

2 f2

...
...

g
(n)
2n g

(n−1)
2n . . . g2n f

(n−2)
2n . . . f ′

2n f2n

⎞⎟⎟⎟⎟⎟⎠. (34)

Then the operators H0, Hn, and Ln as defined (22) and
(27)–(34) satisfy the intertwining relation

LnH0 = HnLn. (35)

The formulas (27)–(34) coincide with those that appear in the
literature for the usual Crum-Darboux transformations, e.g.
[46].

In the end of the section, let us finally comment on
the construction of the inverse intertwining operator for the
operator (22) and (31). The Hamiltonians (22) and (31) satisfy
the following symmetry relation:

H0 = σ1H
t
0σ1, Hn = σ1H

t
nσ1 , (36)

where t stands for transposition. Transposing and multiplying
(35) by σ1 from both sides, we get σ1(HnLn)t σ1 = σ1(LnH )t σ1

that can be written as(
σ1Lt

nσ1
)
Hn = H0

(
σ1Lt

nσ1
)
, (37)

which is the inverse intertwining relation for H0 and Hn.

IV. PT -SYMMETRIC DIRAC OPERATORS

In order to simulate a balanced gain and loss in the system,
we require the Hamiltonian Hn to be PT -symmetric, where
P is the spatial inversion (PxP = −x) and T is the time
reversal operator (T xT = x, T iT = −i). Let us suppose that
the Hamiltonian H0 is PT -symmetric, i.e.,

[H0,PT ] = 0,

that implies [PT,q0] = [PT,r0] = 0. Both eigenstates �, �̃

and the associated Jordan states χ
(n)
0 , χ̃

(n)
0 of H0 can be fixed

in such a way they have definite parity ε with respect to the
operator PT ,

PT �0 = ε�0, PT �̃0 = −ε�̃0, (38)

PT χ
(n)
0 = ε χ

(n)
0 , PT χ̃

(n)
0 = −ε χ̃

(n)
0 , ε2 = 1. (39)

To satisfy these relations, the Jordan states (12) and (13) are
fixed as

χ
(n)
0 = ∂n�0

∂λn
+

n−1∑
k=0

(
c

(n)
k χ

(k)
0 + i d

(n)
k χ̃

(k)
0

)
,

χ̃
(n)
0 = ∂n�̃0

∂λn
+

n−1∑
k=0

(
i c̃

(n)
k χ

(k)
0 + d̃

(n)
k χ̃

(k)
0

)
, (40)

where the constants c
(n)
k , c̃

(n)
k , d

(n)
k , and d̃

(n)
k must acquire real

values.
We fix S2n in (23) such that it contains PT -symmetric

functions �0 and χ
(1)
0 ,χ

(2)
0 , . . . ,χ

(2n−1)
0 ; see (38) and (39).

Using directly the formulas (30), (33), and (34) we can see

that

[PT, det W ] = 0, {PT, det Dq} = 0, {PT, det Dq} = 0,

(41)

which imply that [PT,qn] = [PT,rn] = 0. As there also
holds PT det A[ψ (i)]PT = (−1)n−i det A[ψ (i)], the Hamilto-
nian Hn is therefore PT -symmetric,

[Hn,PT ] = 0. (42)

The intertwining operator Ln either commutes or anticom-
mutes with PT , dependent on the value of n. For any �,
PT � = ε�, we have PTLn� = ε(−1)nLn�.

It is desirable that the potential terms of Hn, more specifi-
cally qn and rn, do not display any new singularities. It is the
Wronskian determinant, det W , which encodes singularities of
both qn and rn. Thus, when we require the Hamiltonian Hn to
be regular, the Wronskian determinant should be nodeless. Let
us take n = 1 and fix χ

(1)
0 = ∂λ�0 + id

(1)
0 �̃0, where d

(1)
0 ∈ R;

see (40). Then we have

det W
[
�0,χ

(1)
0

] = det W [�0,∂λ�0] + id
(1)
0 det W [�0,�̃0].

(43)

When the first term is a PT-symmetric function with a non-
vanishing imaginary part, we can fix d1 such that (43) is node-
less. Indeed, the second term is a nonzero number (�0 and �̃0

are the two independent solutions of the stationary equation)
which is purely real as there holds PT det W [�0,�̃0]PT =
− det W [�0,�̃0]. It implies that the imaginary part of (43) is
independent of d

(1)
0 , whereas the real part of (43) contains d

(1)
0

as an additive constant. Hence one can always fix d
(1)
0 such

that the zeros of the real and imaginary parts of (43) are mis-
matched, giving rise to a singularity-free determinant det W .

V. INTENSITY OF THE ELECTRIC FIELD IN
PT -SYMMETRIC GRATINGS: EXAMPLES

Let us apply here the confluent Crum-Darboux transforma-
tion on an explicit Hamiltonian H0, giving as a result almost
isospectral ones.

We identify the following initial Dirac Hamiltonian that, in
quantum mechanics, would correspond to a free particle with
possibly nonvanishing mass,

H0 = −iσ3∂x + σ1δ =
(−i∂x δ

δ i∂x

)
, δ � 0. (44)

Its spectrum5 consists of two bands of negative and positive
energies ε ∈ (−∞, − δ] ∪ [δ,∞), divided by a energy gap of

5Here, we borrow terminology of quantum mechanics. The eigen-
functions associated with the allowed eigenvalues are either square
integrable or correspond to the quantum mechanical scattering states.
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magnitude 2δ. When comparing H1 with the Hamiltonian in
(4), we find that ρ = q1−r1

2 , κ = − q1+r1

2 , i.e.,

H1 = −iσ3∂x +
(

0 q1

r1 0

)
= −iσ3∂x + q1 − r1

2
σ2 + q1 + r1

2
σ1. (45)

The eigenstates of H1 can be obtained via (17). However,
we are concerned only with the zero modes of H1 as their
components represent the intensities of the electric field of the
counterrunning light in the grating.

The zero modes of H1 differ qualitatively in dependence on
the spectral gap of H1 and the utilized transformation, based on
the chosen seed states. When there is a gap, the two solutions of
(4) either expand exponentially towards infinity or one of them
can be square integrable. If there is no gap, the zero modes
correspond to the threshold of the continuous spectrum. One
of them can be a bounded function. Let us elaborate these two
cases below.

A. Exponentially decaying electric field

For δ > 0, it is convenient to parametrize the eigen-
functions and eigenvalues of H0 in the following manner:

�θ =
(

cosh (δ sin θ x + iμ)

cosh (δ sin θ x + iθ + iμ)

)
,

�̃θ =
(

sinh (δ sin θ x + iμ)

sinh (δ sin θ x + iθ + iμ)

)
, (46)

H0�θ = δ cos θ �θ , H0�̃θ = δ cos θ �θ , (47)

where θ controls the magnitude of the eigenvalues while μ

reflects the translational invariance of H0. The states (46) have
a definite parity with respect to PT as long as both θ and
μ are simultaneously real or imaginary. In the latter case,
they represent scattering states (linear combination of plane
waves) with the eigenvalues λ = δ cosh |θ |. The scattering
states corresponding to −λ can be obtained by multiplication
of the former ones by σ2 as there holds {H0,σ2} = 0.

Let us fix the following eigenstate and the associated Jordan
state of H0,

� = α�θ + iβ�̃θ , χ (1) = ∂�

∂θ
+ ν�θ + iη�̃θ . (48)

The coefficients α, β, ν, and η have to be fixed such that
definite PT -parity of the states is guaranteed. For real θ and
μ, all α, β, ν, and η have to be real as well. When θ and μ are
purely imaginary, we have to take α and ν real and β and η

purely imaginary.
Substituting (46) and (48) into either (8) or (32) with n = 1,

the components of the potential term of the new Hamiltonian
H1 can be written as

q1 = δ

(
−1 + 4 sin θ

[α cosh(xδ sin θ + iμ) + iβ sinh(xδ sin θ + iμ)]2

D

)
, (49)

r1 = δ

(
−1 − 4 sin θ

[α cosh(xδ sin θ + iθ + iμ) + iβ sinh(xδ sin θ + iθ + iμ)]2

D

)
, (50)

where

D = 2αβ cosh(2xδ sin θ + iθ + 2iμ) − (α2 − β2)i sinh(2x sin θ + iθ + 2iμ) (51)

+ (α2 + β2 + 2αη − 2βν) sin θ − ix(α2 + β2)δ sin 2θ. (52)

The Hamiltonian H1 possesses a bounded zero mode
provided that θ = π/2 + kπ , where k is an integer. For other
values of θ , the zero modes are exponentially expanding.
Fixing θ = π/2, the zero modes of H1 are �(1) = L1χ

(2)
π/2

and �̃(1) = L1�̃π/2. The state �(1) expands exponentially for
|x| → ∞, whereas �̃(1) is exponentially decaying. Its explicit
form is

�̃(1) =
( 2αδ[α cosh(xδ+iμ)+iβ sinh(xδ+iμ)]

α2+β2+2αη−2βν+(α2−β2) cosh(2xδ+2iμ)+2iαβ sinh(2xδ+2iμ)
2αδ[β cosh(xδ+iμ)−iα sinh(xδ+iμ)]

α2+β2+2αη−2βν+(α2−β2) cosh(2xδ+2iμ)+2iαβ sinh(2xδ+2iμ)

)
.

(53)

Substituting (49) and (50) into (45) and utilizing the definition
of n(x) below (4), we can find the explicit form of the refractive
index which is presented in Fig. 2 together with (53).

B. Power-law decay of the electric field

When H0 lacks the mass term, δ = 0, the parametrization
(46) is not suitable. Instead, we fix the eigenfunctions in the

following manner:

�λ = (1,0)t eiλx, �̃λ = (0,1)t e−iλx, (54)

H0�λ = λ �λ, H0�̃λ = λ �̃λ. (55)

We fix the kernel of the intertwining operator L1 as

� = α�0 + β�̃0, χ (1) = αχ
(1)
0 + βχ̃

(1)
0 + ν�0 + η�̃0,

(56)

i.e., L1� = L1χ
(1) = 0. �0 and �̃0 are zero modes of H0.

The associated Jordan states are χ
(1)
0 = (ix,0)t eiλx and χ̃

(1)
0 =

(0,−ix)t e−iλx and satisfy H0χ
(1)
0 = �0, H0χ̃

(1)
0 = �̃0. Here,

the states have definite parity provided that the coefficients α,
β, ν, and η are all either purely real or purely imaginary. Then
the potential term of the Hamiltonian H1 reads

q = 2α2e2iλx

αη − βν − 2ixαβ
, r = − 2β2e−2iλx

αη − βν − 2ixαβ
. (57)
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Re δn

Im δn

|Ψ(1)
1,1|

|Ψ(1)
2,1|x

FIG. 2. Real (solid red) and imaginary (solid blue) part of the fluctuations δn of the (dimensionless) refractive index n(x), δn(x) = n0 − n(x)
(notice that the real part is even while the imaginary part is odd with respect to PT ). Absolute values of the upper (dashed black) and lower
(dotted green) components of �̃ (1) (measured in volts). We fixed ρ(x) = σ (x), θ = π/2, δ = 0.02, μ = 0.5, η = 1, α = 1, β = 0, ν = 0, and
n0 = 1.

From the two zero modes of H1 only one is bounded and reads

�̃(1) = iβ

αη − βν − 2ixαβ

(
α

−β

)
, (58)

and is obtained from �̃(1) ∼ L1�0 ∼ L1�̃0. Let us notice that
the upper and lower components of �̃(1) coincide for β = −α.
The plot of the modulus of the components of �̃(1) together
with the corresponding fluctuations of the refractive index are
in Fig. 3.

VI. DISCUSSION AND OUTLOOK

In the current article, we focused on the analysis of
the optical systems described in (4) with a PT -symmetric
potential that simulates a balanced gain and loss of signal
in the optical setting. In order to construct exactly solvable
models with these properties, we presented the extension of
the confluent Crum-Darboux transformation mechanism for
the one-dimensional Dirac equation. The construction of the
intertwining operator between Dirac Hamitonians as well as
chains of Crum-Darboux transformations were discussed in
detail. We presented the explicit form of the higher-order
intertwining operator and the associated new Hamiltonian, see
(27) and (31), which can be used not only for the confluent
Crum-Darboux transformation but also for usual and combined
ones. The machinery was illustrated in the preceding section,
where the transformation was utilized for construction of

exactly solvable Dirac Hamiltonians that corresponded to mild,
complex fluctuations of the refractive index. We presented
regimes where the intensity of the electric field is localized
and decays either exponentially or as ∼1/x.

It is worth noticing that, in [41], the confluent Crum-
Darboux transformation coincided with the intertwining op-
erator between two Schrödinger-type operators, obtained as
the squares of the first-order Dirac Hamiltonians. Hence the
construction presented there was limited to Dirac Hamiltonians
with pseudoscalar potentials. In our case, the intertwining
operator is constructed such that it intertwines directly the
Dirac Hamiltonians and the potential term of the Hamiltonian
is not restricted. In [21], an optical realization of PT -
symmetric relativistic systems was discussed such that a more
general ansatz for the electric field in Bragg grating was used;
the functions u and v were allowed to depend on time. Then
(4) acquires the form of time-dependent Dirac equation; see
the footnote below (4). The confluent Darboux transformation
was utilized in [40] for the analysis of the optical systems with
invisible defects. It might be interesting to analyze similar
systems described by Hamiltonians of the Dirac type with the
use of our current results.

The framework presented here is based on the time-
independent, one-dimensional Dirac Hamiltonian. The scheme
presented here could be extended to the analysis of the
time-dependent systems that are useful in the context of
solutions of nonlinear integrable equations, e.g., equations
of the integrable Ablowitz-Kaup-Newell-Segur hierarchy

Re δn

Im δn

|Ψ(1)
1,1|

|Ψ(1)
2,1|

xx

|Ψ(1)
1,1|

|Ψ(1)
2,1|

FIG. 3. Real (solid red) and imaginary (solid blue) part of the fluctuations δn of the (dimensionless) refractive index n(x), δn(x) = n0 − n(x).
Absolute values of the upper (dashed black) and lower (dotted green) components of �̃ (1) (measured in volts). The two components of
�̃ (1), H1�̃

(1) = 0, coincide for α = −β. We fixed α = −1, β = 1, ν = 18, η = 11, and n0 = 1 in the left figure while we fixed β = 1.1
in the right figure.
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[47]. In this context, confluent Crum-Darboux transforma-
tions of the Schrödinger-type Hamiltonian were utilized to
find PT -symmetric multisoliton solutions with nontrivial
behavior [48].

The current results can be also employed for the analy-
sis of the Schrödinger operators with matrix potentials. In
[49], Crum-Darboux transformation for Dirac Hamiltonian
was utilized for construction of Schrödinger operators with
transparent matrix potential. It is worth noticing that these
operators were analyzed recently in a different manner in

[50,51]. However, such an analysis would go beyond the scope
of the present article.
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