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Direct calibration of click-counting detectors
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We introduce and experimentally implement a method for the detector calibration of photon-number-resolving
time-bin multiplexing layouts based on the measured click statistics of superconducting nanowire detectors. In
particular, the quantum efficiencies, the dark count rates, and the positive operator-valued measures of these
measurement schemes are directly obtained with high accuracy. The method is based on the moments of the
click-counting statistics for coherent states with different coherent amplitudes. The strength of our analysis is
that we can directly conclude—on a quantitative basis—that the detection strategy under study is well described
by a linear response function for the light-matter interaction and that it is sensitive to the polarization of the
incident light field. Moreover, our method is further extended to a two-mode detection scenario. Finally, we
present possible applications for such well-characterized detectors, such as sensing of atmospheric loss channels
and phase sensitive measurements.
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I. INTRODUCTION

For successful implementations of upcoming quantum tech-
nologies, e.g., quantum computing [1], quantum metrology
[2], or quantum communication [3], it is crucial to have a
deep understanding of the involved quantum processes. This
requires a profound knowledge of the used measurement
devices that are employed to reveal and exploit the quantum
features of an experimentally generated state. However, no
detector is known in quantum optics that allows one to
perfectly resolve the photon statistics of a light field.

For this reason, in the regime of a few photons, quasi-
photon-number-resolving detectors (qPNRDs) have gained
major importance. One element of these devices is the on/off
detector, which has only a binary outcome. It either produces
a “click” if photons are absorbed or, otherwise, remains silent.
Examples are avalanche photodiodes in the Geiger mode and
superconducting nanowire detectors. Experimentally, it is fa-
vorable to employ superconducting nanowire detectors as they
achieve a high quantum efficiency [4]. Another key element
of a qPNRD is an optical system that equally distributes the
impinging photons to several such on/off detectors. This can
be implemented in various ways [5–11]. In order to efficiently
implement a qPNRD, one also uses time-multiplexed detectors
[12–14] as a resource-saving realization. The combination
of the optical splitting and the on/off detectors characterizes
a click-counting device. With the help of a closed-formula
description of such qPNRDs [15], several quantum effects
have been successfully identified in theory and experiment,
solely based on the measured click statistics [16–21].

The key quantity which characterizes a detector is the
detector response function [22,23]. It basically describes the
transfer from the properties of the incoming radiation field
to the detector output signal. Especially, it accounts for the
light-matter interaction within the device. Therefore, it renders
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it possible to relate the impinging radiation field and the
produced detector signal. Once the detector response function
is determined, it therefore allows for the characterization of
arbitrary incident light fields with this detector. Despite this
importance for quantum optical experiments, the direct mea-
surement of the response function is typically not considered
in the existing literature. Closing this gap is one of the aims of
this paper.

In order to fully characterize optical measurement devices,
different methods have been studied. One possible approach is
to apply general detector tomography techniques [24–27], e.g.,
to access properties of qPNRDs [27–34]. Those methods use
well-known and controlled input states in order to numerically
reconstruct the positive operator-valued measure (POVM) of
the detector. This approach is universal, as it does not assume
physical models of the detector. That is, the measurement
device is treated as a black box. However, the application of de-
tector tomography bears the intrinsic problem of an inversion
from a finite set of measurement outcomes to the POVM, which
is acting on an infinite Hilbert space that describes the radiation
field. This is an ill-defined problem. Hence, systematic
uncertainties of such an approach have to be propagated along
with numerical errors. Another way for retrieving the detector
response is the use of so-called twin beams [35–38]. They
exploit the correlated photon statistics of such states and,
therefore, can be seen as a generalization of the method by
Klyshko [39] for single-photon detectors [36]. This technique
has the drawbacks that the correlations between the individual
beams—one or both being probed by unknown detection
systems—have to be well defined and prepared with high accu-
racy. Furthermore, the photon statistics, on which the method
is based, cannot be measured; instead, one experimentally
obtains the corresponding click-counting statistics. However,
an inversion from the click-counting statistics to the photon-
number statistics suffers from a systematic error which scales
with one over the number detection bins [15]. In the case of
eight bins, this yields already a systematic error of above 12%.

As mentioned above, the need of properly characterized
detection devices is vital for the application of quantum light.
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For instance, the reliable generation of quantum states for
quantum information tasks requires the knowledge of the
detector response function [40]. Furthermore, some free-space
communication scenarios demand a transmission of quantum
light together with the monitoring of the turbulence of the
atmosphere [41]. For example, one can send a quantum signal
in one polarization mode and a classical reference in the
perpendicular polarization [42,43]. Thus, it would be also
beneficial if one can perform a polarization dependent sensing
of a random loss media with the same detection device.
Additionally, the well-characterized qPNRD systems can be
used to perform phase sensitive measurements [44–46]. With
such setups, the quantum properties of the radiation field can
be directly revealed.

In this paper, we introduce an efficient technique to charac-
terize qPNRDs and directly determine their detector response
function based on moments of the measured click-counting
statistics. Our method places only minimal assumptions on
the detector and a set of measurements with power-controlled
coherent light. In particular, no truncation of the Fock space or
inversion from the click to the photon statistics is needed. From
a regression of the obtained data, we can infer the detector
characteristics such as quantum efficiencies and dark count
probabilities. From this analysis, we can also immediately
extract the POVM elements of the detector circumventing the
difficulties stemming from ill-posed problems, e.g., a trunca-
tion of the Fock space as is needed for detector tomography. We
test the method with a two-mode time-bin multiplexing layout
and superconducting nanowire on/off detectors. Besides the
easy applicability of our method, the obtained results yield
an accuracy which is as good as the best results reported
for the experimentally elaborated twin-beam based method.
Moreover, we investigate the polarization dependency of the
two detector modes and discuss their behavior. Finally, we
present two applications of such a well-characterized qPNRD:
first, how they can be used for sensing the properties of
turbulent atmospheric channels based on a similar theoretical
approach and, second, how such detectors systems can be
utilized in order to perform phase-sensitive measurements.

The paper is structured as follows. In Sec. II we introduce
the calibration method based on the click-counting statistics.
The used experimental setup is described in Sec. III. In Sec. IV
we apply our method to the experimental data and investigate
the polarization dependence of the detector response function.
Possible experimental imperfections due to polarization effects
are discussed in Sec. V. Applications of well-characterized
qPNRDs are given in Sec. VI. Finally, we summarize and
conclude in Sec. VII.

II. CLICK-MOMENT BASED DETECTOR
CHARACTERIZATION

In this section, we describe the theoretical technique to
calibrate qPNRDs. Our aim is to infer a detector response
function �̂ that contains the dependency of the detector
response (bulk matter of the on/off detector) on the photon
number of the incident light field (described by the photon-
number operators n̂). In doing so, we will be also able to
retrieve the detection efficiency η and the dark count rate ν.
Therefore, we briefly summarize the theoretical description

(a)

(b)

(c)

FIG. 1. Possible implementations of qPNRDs. Three different
architectures of qPNRDs with N = 4 detection bins are shown.
Each resulting bin is recorded with on/off detectors, the sum of
clicks of which yields our desired click-counting statistics. (a) In
the detector array scenario, an array of on/off detectors is equally
illuminated. (b) A spatial multiplexing setup is shown in which the
incident light is equally divided by multiple 50:50 beam splitters.
(c) A time-bin multiplexing setup is illustrated, which resembles our
implementation.

of qPNRDs and show how we can extract the detector
characteristics and the corresponding POVM elements from
measured click statistics.

Before we discuss click-counting detection and introduce
our calibration method, let us consider different architec-
tures of qPNRD to which our method applies and which
are schematically shown in Fig. 1. This includes equally
illuminated array detectors [Fig. 1(a)], spatial multiplexing
[Fig. 1(b)], and time-bin multiplexing [Fig. 1(c)] (see, e.g.,
[6,11], [5,20], and [7,10] for their according implementations).
All these realizations have in common that the incident light
field is equally split into N different bins (N = 4 in Fig. 1) and
the light in each bin is subsequently recoded with an on/off
detector. The on/off detectors themselves can be avalanche
photodiodes in the Geiger mode or superconducting nanowire
detectors. The latter ones are employed in our experiment. Note
that such qPNRD schemes are frequently used in quantum
optical experiments [5–14,18–21].

Throughout this paper, we mainly deal with two separated
click-counting detector systems—labeled as A and B—each
consisting of Nj (j = A,B) on/off detectors or time bins.
However, the treatment can easily be extended to any number
of detectors or relaxed to a single one [17]. Then, the system
under study is described by a joined click-counting probability
ckA,kB

, where we have kA clicks from the first detector system
and simultaneously kB clicks from the second one (0 � kj �
Nj ). The normalization reads

∑NA

kA=0

∑NB

kB=0 ckA,kB
= 1. The

single-mode marginals of the joint click-counting statistics
are obtained by ckA

= ∑
kB

ckA,kB
and ckB

= ∑
kA

ckA,kB
. For

detection systems with equal splitting ratios, the corresponding
normalized click-counting statistics follows the quantum
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version of a binomial distribution [15,17]:

ckA,kB
=

〈
:

(
NA

kA

)
m̂

NA−kA

A (1̂A − m̂A)kA

×
(

NB

kB

)
m̂

NB−kB

B (1̂B − m̂B)kB :

〉
, (1)

where : · : indicates the normal-ordering prescription.
The operators m̂j , the normally ordered expectation values

of which yield the no-click probabilities, are given by

m̂j = e−�̂j , (2)

where �̂j = �j (n̂H
j /Nj ,n̂

V
j /Nj ) is the sought detector re-

sponse function operator [17]. Note that �̂j depends on the
photon-number operator n̂H

j (n̂V
j ) for the horizontal(vertical)

polarization. A typical example is a linear response function
�j , i.e.,

�̂j = �j

(
n̂H

j

Nj

,
n̂V

j

Nj

)
= ηH

j n̂H
j

Nj

+ ηV
j n̂V

j

Nj

+ νj , (3)

with η
H/V
j and νj denoting the quantum efficiency and

dark count probability per click, respectively. Note that we
will write �j (n̂j /Nj ) if only one polarization component is
considered.

In the following, we describe how we infer the detector
response function �j directly from the click statistics. For
this reason, we consider normally ordered moments of the
operators m̂j : 〈

:m̂lA
A m̂

lB
B :

〉 = 〈:e−lA�̂Ae−lB �̂B :〉, (4)

with lj = 0, . . . ,Nj for j = A,B. They are obtained from the
click statistics via the sampling formula [17]

〈
:m̂lA

A m̂
lB
B :

〉 =
NA−lA∑
kA=0

NB−lB∑
kB=0

(
NA−kA

lA

)(
NB−kB

lB

)
(
NA

lA

)(
NB

lB

) ckA,kB
. (5)

Let us consider any two-mode quantum state in a given
polarization which can be written in the Glauber-Sudarshan P
function [47,48] as

ρ̂ =
∫

d2α d2β P (α,β)|α〉〈α| ⊗ |β〉〈β|. (6)

Using this representation, we can now evaluate the expectation
value 〈:m̂lA

A m̂
lB
B :〉 [see Eq. (4)]. Due to the normal ordering of

the expectation value, the photon-number operators n̂j can be
replaced by the absolute square of the coherent amplitudes and
we obtain〈

:m̂lA
A m̂

lB
B :

〉 =
∫

d2α d2β P (α,β)

× e−lA�A(|α|2/Ni )e−lB�B (|β|2/Ni ). (7)

From Eq. (7) we see that it is sufficient to know the
detector response functions �j in dependence on the coherent
amplitude in order to determine the expectation value for any
quantum state given in the form of Eq. (6). Therefore, it is
sufficient to consider coherent states to determine the response
function from the moments. For a two-mode coherent state

|α,β〉 in a given polarization Eq. (7) reduces to〈
:m̂lA

A m̂
lB
B :

〉 = e−lA�A(|α|2/Ni )e−lB�B (|β|2/Ni ). (8)

This is an important relation because it connects the sampled
moments with the detector response. If we now choose either
lA = 0 or lB = 0, Eq. (8) reduces to the single-mode form〈

:m̂
lj
j :

〉 = e−lj �j (|γ |2/Nj ), (9)

with γ = α and β for j = A and B, respectively. Moreover,
selecting the coherent light field in either horizontal or vertical
polarization, we can study polarization specific properties of
the detector response.

This allows us to relate the detector response function �j

to the measured moments 〈:m̂lj
j :〉 and, by rewriting Eq. (9), we

directly get an expression for the detector response function:

�j

( |γ H|2
Nj

,
|γ V|2
Nj

)
= − 1

lj
ln

(〈
:m̂

lj
j :

〉)
, (10)

where the coherent amplitude γ is decomposed into its
horizontally (vertically) polarized part γ H (V ). It is also worth
mentioning that 〈:m̂lA

A m̂
lB
B :〉 is less than 1 for all lA = lB �= 0.

This follows from the fact that the click-counting statistics
for coherent light is a true binomial one [15], ckA,kB

=∏
j=A,B[(Nj

kj
)p

Nj −kj

j (1 − pj )kj ], with 0 � pj � 1, and the

moments can be written as 〈:m̂lA
A m̂

lB
B :〉 = ∏

j=A,B p
lj
j . Hence,

we immediately observe that �j , as given in Eq. (10), is always
positive.

Applying Eq. (10), we can determine the absolute func-
tional behavior of �j (x). By performing a series of mea-
surements with coherent states of different known amplitudes
{|γn|}n, we infer the corresponding set of values for the
response function {�j (|γn|2/Nj )}n. Via an appropriate regres-
sion of this data set, {(|γn|2,�j (|γn|2/Nj )}n, we can directly
estimate the detector response function. Now, the detector is
fully characterized as, in particular, its POVMs are given by

	̂kA,kB
=:

(
NA

kA

)
e−(NA−kA)�̂A (1̂A − e−�̂A )kA

×
(

NB

kB

)
e−(NB−kB )�̂B (1̂B − e−�̂B )kB : (11)

[see also Eq. (1)]. Let us emphasize that once the detector
response is determined, it gives us the possibility to estimate
the POVMs [Eq. (11)], which are applicable to any kind of
quantum state. While it is possible to utilize Nj (j = A,B)
different ways to characterize each detection system [lj values
in Eq. (10) between 1 and Nj ], we will only consider the
first moment (lj = 1) of the click statistics. The reason is that
the statistical significance of higher-order click moments is
typically lower than those of the first moment.

The main strength of our calibration method is that it
is very resource efficient, both from the experimental and
the theoretical point of view. We only need to perform
a phase-insensitive measurement with power-controlled co-
herent states. We require minimal additional knowledge of
the detector system, i.e., that it behaves as a click-counting
device [15]. On this basis we directly estimate the physical
characteristics of the detector system. From Eq. (3), we can
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infer the quantum efficiency and the dark count probability.
General detector tomography methods do not yield this
information, as the detector is treated as a black box. Only
when giving up the generality of the approach by applying less
general detector models [29], this information can be extracted.

III. EXPERIMENTAL SETUP

For the particular detection scenario at hand, we are
interested in the polarization dependence of superconducting
nanowire detectors. This is due to the inner geometry of this
on/off detector. That is, the wires themselves are aligned
mostly in parallel to each other [4]. Hence, the orientations
of our two click detectors are set up in such a way that they
measure the horizontal and vertical polarization with maximal
and minimal efficiency, respectively.

In Fig. 2, a schematic overview of the experimental setup is
given. To obtain experimental data for the detector calibration,
we send 35-ps pulses with a repetition rate of 250 kHz to
a polarization control (PC) and a polarizing beam splitter
(PBS) to clean the polarization of our impinging pulses at a
wavelength of 1550 nm. After that, we control the polarization
via a half-wave plate (HWP) and launch the pulses into a
single-mode fiber (SMF-28) network. The action of a variable
attenuator (Var. Att.), that decreases the laser power by 0.2 dB
every 50 s, is monitored at a 90% tap-off with a power meter.
Before the arrival at the time-multiplexed detector (TMD),
the pulses undergo further 25-dB attenuation. Then, they are
split at a 50:50 coupler. Finally, the pulses impinge on the
eight-bin TMD and are detected by superconducting nanowire
detectors (SNSPDs). To minimize the influence of the input
polarization, the TMD is built from polarization-maintaining
single-mode fibers. However, as the attenuation components
and beam splitter in front of the TMD are not polarization
maintaining, we still see a polarization mixing effect in the
TMD that affects the detection efficiencies of the different time
bins. We discuss the impact of experimental imperfections on
the results and the method in Sec. V.

FIG. 2. Schematic of the experimental setup. Laser pulses at
1550 nm are polarization cleaned and two different polarization states
are fed into a fiber-based variable attenuator (Var. Att.). The attenuated
power is referenced by a 90% tap-off with a power meter. Afterward,
the pulses are further attenuated by 25 dB and split by a 50:50 coupler.
Finally, they enter the time-multiplexed detection scheme consisting
of an eight-bin time-multiplexed fiber-loop detector (TMD) and two
superconducting nanowire detectors (SNSPDs).

IV. APPLICATION OF THE METHOD

In this section, we perform a full characterization of the
two-mode TMD system described above with the use of the
method introduced in Sec. II. We first determine the detector
response for both horizontally and vertically polarized light,
as the nanowire detectors show a polarization dependent
quantum efficiency [33]. Furthermore, we extract the detector
characteristics such as the quantum efficiency, as well as the
POVMs of the detector. Additionally the response functions
for intermediate polarizations are determined.

A. Reconstruction of the response function

First, we show how to obtain the click-counting statistics
and its moments from the measured data. The experiment
delivers the measured event distribution CkA,kB

. Normalizing
this distribution by the overall number of events, C =∑NA

kA=0

∑NB

kB=0 ckA,kB
, yields the joint click-counting statis-

tics ckA,kB
. We directly sample the corresponding moments

〈:m̂lA
A m̂

lB
B :〉 from the measurement data [see Eq. (5)]. The

overlines indicate the sampled mean values. The statistical
error (i.e., the standard error of the mean) of the moments is
determined by the sample standard deviation, which is given
by [19]

σ
(〈

:m̂lA
A m̂

lB
B :

〉)
= σ

(〈
:m̂lA

A m̂
lB
B :

〉)
√

C − 1
= 1√

C − 1

×

√√√√√N−lA∑
kA=0

N−lB∑
kB=0

ckA,kB

((
N−kA

lA

)(
N−kB

lB

)
(
N

lA

)(
N

lB

) −〈
:m̂lA

A m̂
lB
B :

〉)2

. (12)

Eventually, we get the estimated moments, 〈:m̂lA
A m̂

lB
B :〉 =

〈:m̂lA
A m̂

lB
B :〉 ± σ (〈:m̂lA

A m̂
lB
B :〉). As we directly extract the mo-

ments from the measured click statistics, no additional data
processing is needed. This allows us to obtain the first required
quantity for the characterization based on Eq. (10).

The second quantity, the intensities |γn|2, are obtained from
the reference power measurement. The power meter monitors
the power of the coherent laser light which is used for the
calibration (see Fig. 2). For the measured power, we introduce
the power operator P̂ . The corresponding photon-number
operator per pulse is

n̂j = χP̂ (13)

for both modes j = A,B, where χ = (1.77 ± 0.17) ×
108 W−1 is the attenuation factor between the reference tap-off
and the power that enters the TMD. The corresponding error
in χ originates from uncertainties of the power meter via
error propagation. The reference power is recorded with a
measurement uncertainty of ±5%. The measured intensities
then are given by 〈n̂i〉 = |γk|2. For both polarizations, we
record the click-counting statistics for 45 different intensities
(powers).

To retrieve the unknown detector responses �i , we use
Eq. (10) with the first moments as argued in Sec. II. We
plot the obtained values of the response functions �i for
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FIG. 3. Detector responses for horizontal and vertical polarization. (a) Measured data points including error bars for the detector response
over the measured intensities (blue points) and the linear regression for �H

A (red line). (b) Analysis of detector B depicting the regression of
�H

B . (c) Regression of �V
A . (d) Regression of �V

B .

both modes A and B for horizontally or vertically polarized
light in Fig. 3. We depict the data points for the �j (blue)
over the different incident powers with their measurement
uncertainties. We indicate the different polarizations by a
superscript of H and V for horizontal and vertical. Note that
the uncertainties of the obtained �j = − ln〈: m̂ :〉, which are
determined by the statistical uncertainties of the measured �j ,
are so small that they are almost not resolved in the plots (see
Fig. 3). Hence, it becomes clear that the dominating errors are
the ones originating from the power measurement.

To infer the functional behavior of the response functions,
an appropriate regression of the data points is needed. In order
to get a direct relation to the measured quantity, the power
〈P̂ 〉, we will further express the response function in terms
of P̂ instead of n̂ using the relation Eq. (13). This allows us
to directly work with the observed physical quantities. For
applying the regression we expand the response function in a
Taylor series:

�j (P̂j /Nj ) =
∞∑
t=0

�̃
(t)
j (P̂j /Nj )t . (14)

The coefficients �̃(0) and �̃(1)—neglecting the lower index—
are the constant and linear contribution to this expansion,
respectively. Note that the coefficients which correspond to
the expansion in the power P̂ are indicated with a tilde. To
determine the influence of nonlinear contributions, we first use
the Taylor expansion up to the third order. This yields, for both

polarizations and both modes, a ratio between the quadratic and
the linear coefficient �̃(2)/�̃(1) and cubic and linear coefficient
�̃(3)/�̃(1) of the order of 10−3 and 10−4, respectively. Hence,
higher-order terms can be neglected as the response function
is properly described by a linear function only.

The expansion coefficients �̃(0) and �̃(1) are also related
to the dark count rates ν and the quantum efficiencies η,
respectively; see also Eqs. (3) and (13). Namely, �̃(0) itself
is the dark count rate, �(0) = ν = ν̃, whereas �̃(1) is the scaled
quantum efficiency per nanowatt, �̃(1) = χη = η̃. Thus, we
can determine the coefficients of the linear response:

�j (P̂j /Nj ) = η̃j P̂j /Nj + ν̃j . (15)

Similar to the higher-order terms we find that �̃
(0)
j /�̃

(1)
j ≈ 0

and we can perform a regression of the form f (x) = ax. This
means the detectors are dark count free, which agrees with
the known behavior of SNSPDs of being virtually dark count
free [49]. We use a weighted total least-squares regression
algorithm [50], which takes into account the measurement and
statistical uncertainties. In Fig. 3, the resulting linear functions
(red lines) are plotted. It can be seen that they fit the data
properly. In addition, Table I summarizes the results from the
linear regressions for the two TMD detectors and the two
polarizations.

As already discussed above, the detector is fully charac-
terized by its response function; see [22] for photoelectric
detection models. Using the parameters from Table I, we
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TABLE I. Parameters and error estimates (σ ) of the linear detector
response in Eq. (15).

� η̃ (1/nW) ση̃ (1/nW) η (%) ση (%) Figure

�H
A 52.86×10−3 0.04×10−3 29.8 2.8 3(a)

�H
B 46.83×10−3 0.02×10−3 26.4 2.5 3(b)

�V
A 33.23×10−3 0.04×10−3 18.7 1.8 3(c)

�V
B 28.63×10−3 0.01×10−3 16.1 1.6 3(d)

evaluate the accuracy of our detector characterization. We
see that with our method, the slope η̃ can be determined
with a relative uncertainty up to 0.04%. Other approaches
to calibrate qPNRDs use twin beams and reach relative
uncertainties of 0.18% in [35], 0.04% [36], 0.39% [37], and
5% [38]. For example, the general detector tomography in
[29] yields a relative error estimated of about 8%. Compared
to these benchmarks, our approach provides a comparable or
even better accuracy requiring only measurements with laser
light.

So far, we have considered the detector response in
terms of the measured power which let us directly infer the
behavior of the detector system in terms of the experimental
quantities. Yet, the interpretation of the parameters of the
linear response in this representation has another intuitive
physical interpretation. One might also directly identify the
quantum efficiency η [see Eq. (3)]. Let us also stress that
the quantum efficiencies represent the overall efficiencies of
the whole TMD detector system and even account for all losses
behind the 50:50 beam splitter in Fig. 2 as well as the detection
efficiency of the nanowire detectors. With this information,
we have completely characterized the two-mode TMD system
and we can determine the POVMs of the system via Eq. (11).
Using the extracted data from Table I, we evaluate the accuracy
of our detector characterization. From Table I, we see that
with our method the quantum efficiency can be determined
with a relative uncertainty of 9.4%. The absolute error for
the quantum efficiencies is determined and limited by the
accuracy of the scaling factor χ = (1.77 ± 0.17) × 108 W−1.
In our case, the uncertainty in χ was dominated by the
accuracy of the power meter at small powers that arrived at
the TMD. The optimization of this accuracy is, however, an
experimental issue of the available equipment and does not
limit our characterization method in general.

B. Polarization dependency

Let us now study the polarization dependency of the quan-
tum efficiencies for both modes. For 17 different polarizations,
we recorded the data sets for extracting the detector response
in the same way as described above. As all response functions
show a linear behavior and the detector is virtually dark count
free, the comparison of the different polarizations reduces to
the comparison of the quantum efficiencies. The quantum
efficiencies for these mixed polarizations [see the general
expression in Eq. (3)] and the errors for both modes are shown
in Fig. 4. We fit the data with the function

η(φ) = ηmax − ηmin

2
cos[4(φ + φ0)] + ηmax + ηmin

2
, (16)

0 20 40 60 80
0.10

0.15

0.20

0.25

0.30

0.35
H V

HWP angle in degree

Η A

0 20 40 60 80
0.10

0.15

0.20

0.25

0.30

0.35
H V

HWP angle in degree

Η B

FIG. 4. The polarization dependency of the determined quantum
efficiencies ηA (top) and ηB (bottom) and their errors. The solid lines
provide a cosine fit function [cf. Eq. (16)]. The horizontal and vertical
polarizations are indicated.

where φ is the angle of the HWP in degree and ηmax and ηmin

correspond to the maximal and minimal quantum efficiency,
respectively.

For mode A we get ηA,max = 30.2, ηA,min = 19.3, and
φA,0 = 1.5◦. Especially, ηA shows a cosine dependency
where positions of the minimum and maximum agree with
the horizontal (H) and vertical (V) polarization as φA,0 is
almost zero. This represents the polarization dependency
one would expect for such nanowire detectors due to their
geometry [51].

In the case of mode B we examine a different behavior
and get ηB,max = 28.2, ηB,min = 12.8, and φB,0 = 13.5◦. We
immediately see that the cosine function is significantly shifted
by φB,0 and, hence, ηB,max and ηB,min do not coincide with
the H and V polarization, respectively. Additionally, ηB,min

is by a factor of 0.66 smaller than ηA,min while the ratio
between ηB,max and ηA,max is 0.93. These effects lead to the
question of why the two detector modes A and B exhibit such
a different behavior or, rather, why mode A shows a com-
prehensible polarization dependency and why mode B does
not.

To understand this we have to consider the difference in
the detection of the detector modes. From Fig. 2 we see that
the only distinction between the detector modes is that the
light of mode B first passes an optical fiber, which serves as a
delay line, before it enters the detector. The overall polarization
shift may be explained by a polarization rotation in the delay
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line. However, this is superimposed by polarization mixing
effects in the whole TMD as the fibers are only polarization
maintaining for the H and V polarization. The strength of
this effect depends on the length of the fiber the radiation
field passes through and, hence, is different for every time
bin. In the following section we will discuss the polarization
effects and how to interpret the obtained results in more
detail.

V. EXPERIMENTAL IMPERFECTIONS AND IMPACT
ON THE MODEL

In the previous sections, we have introduced and applied
the detector calibration by click moments to experimental
data. While we have shown that the calibration method is
reliable, numerically stable, and yields accurate results, our
model is based on assumptions that are not necessarily fulfilled
in an experiment. More specifically, we assumed that the
click statistics follow a binomial distribution, compare Eq. (1),
which holds only true if the radiation field is equally distributed
on the different time bins and each bin exhibits the same
quantum efficiency. In an experimental implementation this
will not always be the case. In particular, we observed a
strong polarization dependency of the detector which one
has to account for. Therefore, let us consider the distribution
of the output signals of the different time bins of the
qPNRD.

In Fig. 5(a), we have depicted the output signal of the time
bins by measuring the TMD pulse train on a polarization-
insensitive photodiode. While some imbalance is observable
in the peak heights, it is fairly small and within the fabrication
uncertainties of the used 50:50 fiber couplers. Although even
the slight imbalance in the peak height distribution will enter a
quantifiable error to our method, it will still be relatively small
and may be neglected. This situation changes when measuring
the splitting ratio with the superconducting nanowire detectors
and horizontal polarization in Fig. 5(b). It can be directly
seen that the signal ratios of the TMD are drastically changed
compared to the polarization insensitive measurement in
Fig. 5(a). In contrast to the photodiode measurement in
Fig. 5(a), the peak heights in Fig. 5(b) are governed not only
by the splitting ratios of the fiber components but also by a
polarization mixing effect due to the different fiber lengths of
the TMD. Then, the light is for each time bin in a different
polarization state and this yields different detection efficiencies
for each bin. Hence, one needs to account for this polarization
dependency and possible polarization mixing.

Concerning the detector calibration, the imbalance of the
splitting ratios and possible polarization effects imply that
the determined detector response cannot be interpreted as the
response for each bin separately anymore, but as the average
of all bins of the detector. This effects especially the mode
B (see Fig. 4 and the related discussion). Therefore, let us
consider an incoming coherent state |α〉 which is (unequally)
split onto N bins |t1α, . . . ,tNα〉, with

∑
i |ti |2 � 1. Note that

in a balanced and lossless splitting case |ti |2 = 1/N holds.
For the general case, we consider ln〈:e�1(n̂1) . . . e�N (n̂N ):〉 =∑N

i=1 �i(|α|2/|ti |2). By Taylor expanding this quantity, we
get �(|α|2) = ∑∞

j=0

∑
i c

(j )
i (|α|2)j = ∑∞

j=0 c(j )(|α|2)j . Here,
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FIG. 5. Effect of polarization mixing in the TMD. The solid
and dashed curves correspond to the two physical detectors. In
(a), we have measured the direct splitting ratios of the TMD
on a polarization insensitive photodiode and plotted the voltage
response. While the splitting ratios are not completely even, they
are within the specified uncertainty of the used components. In (b)
we have plotted the SNSPD time response for a measurement with
horizontal polarization. However, the observable imbalance cannot
be completely explained by unequal splittings. A time-bin dependent
mixing of the polarization state arriving at the detectors leads to
uneven detection efficiencies, lowering the overall performance of
the TMD.

the overlines denote the average over all bins. In particular,
one receives the averaged quantum efficiency as η = c(1).
In this sense, one can characterize a qPNRD in mean,
with the restriction that the response of the individual bins
cannot be determined. Taking the imbalanced splitting and
the polarization dependency of the quantum efficiencies by
the above treatment into account, we see that our results in
Sec. IV have to be interpreted in this fashion, i.e., they represent
averaged efficiencies of the individual bins. Let us stress again
that this is no problem in principle. It just means that the
entire qPNRD setup is characterized, but not its individual
components.

From the experimental point of view, there are solutions
to circumvent the inequality of the bins. For polarization
independent click detectors, such as avalanche photodiodes,
one only has to assure an equal splitting ratio. In the
polarization dependent case one can rely only on polarization
maintaining fiber-integrated components for both attenuators
and splitters, or one has to control the polarization directly
in front of the TMD. This solution is practical, but requires
some care to align the polarization correctly in the fiber-
integrated network, as the physical splitting ratios of the
50:50 couplers are superimposed with the different detection
efficiency.
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VI. APPLICATION OF CALIBRATED CLICK DETECTORS

We will discuss applications of well-characterized qPN-
RDs. By knowing the full detector response, one can use the
detectors in order to characterize the losses in an unknown
quantum channel. Here, we will demonstrate how one can
sense the moments of fluctuating loss in atmospheric channels.
Furthermore, a system of well-characterized qPNRDs can be
used to realize phase sensitive measurements.

A. Sensing the turbulent atmosphere

Assume a well-characterized qPNRD with a dark-count-
free linear response function. For the following considerations
it is useful to rename �(n̂/N ) = ηdetn̂/N , with the previously
determined efficiency ηdet. We consider a coherent probe state
|α〉 which first propagates through a turbulent loss channel
before it arrives at the qPNRD.

The action of the turbulent loss is described by an
appropriate probability distribution of the transmittance P(η)
[52–54], where η is the intensity transmittance of the channel.
The detected moment for a coherent state then reads as

〈: e−(ηdetn̂/N) :〉tur =
∫ 1

0
dηP(η)e−(ηηdet|α|2/N). (17)

By a Taylor expansion of e−(ηηdet|α|2/N) in |α|2 around |α|2 = 0
one can then retrieve the moments of the probability distribu-
tion of the transmittance,P(η). Note that this Taylor expansion
corresponds to an extrapolation of e−(ηηdet|α|2/N) to |α|2 = 0
and, hence, can be obtained from a set of measurements similar
to that described in Sec. II. For an expansion of Eq. (17) up to
the second order, we get

〈: e−(ηdetn̂/N) :〉tur ≈ 1 − ηdet〈η〉tur|α|2 + 1
2η2

det〈η2〉tur|α|4,
(18)

where 〈ηj 〉tur = ∫ 1
0 dηP(η)ηj (j ∈ N) are the corresponding

moments of the transmittance which characterize P(η). The
properties of atmospheric channels, i.e., the moments of P(η),
can be sensed in this way, which is important to identify
which nonclassical effects of the radiation field can survive
in such channels [55,56]. Such an analysis is the basis for
the development of optimal schemes for global quantum
communication using atmospheric free-space links.

B. Phase sensitive measurements

Another application of well-characterized qPNRDs are
phase sensitive measurement setups. In particular, it is possible
to transfer the concepts of balanced and unbalanced homodyne
detection to the few-photon regime by using qPNRDs (see [44]
and [45], respectively). Even multiport homodyne detection
with qPNRDs has been studied [46]. By doing so, phase sensi-
tive features of the quantum state understudy can be examined.

In the case of balanced homodyne click detection, the
quantum state understudy is mixed with a phase and amplitude
controlled coherent reference state (local oscillator) at a 50:50
beam splitter. Subsequently, both output modes are measured
with qPNRDs. It has been shown that such a setup yields the
measurement of a nonlinear quadrature operator [44]:

X̂(ϕ) = N (m̂A − m̂B), (19)

with m̂j = e−�̂j . Here A and B denote the two detection modes
and N is the number of click detectors. We directly see that the
generalized quadrature operator X̂(ϕ) depends on the detector
response function. Hence, the characterization of the used
qPNRDs, i.e., the determination of �j , is crucial for such
a measurement setup. Specifically, such a characterization is
helpful for the design of a phase sensitive experiment in order
to specify conditions under which certain quantum effects can
be observed [46].

In the case of unbalanced homodyne detection, the signal
state is also mixed with a coherent local oscillator beam at a
beam splitter but only one qPNRD is recording one of the
output modes. With such a setup it is possible to directly
sample a click version of a s parametrized quasiprobability
phase-space distribution [45]:

PN (α; s) = 2

π (1 − s)

N∑
k=0

[
ηdet(1 − s) − 2

ηdet(1 − s)

]k

ck(α; ηdet).

(20)
Here α is the coherent amplitude of the local oscillator
beam and the ck(α; ηdet) are the recorded elements of the
click-counting statistics given the detector efficiency ηdet.
Negativities in PN (α; s) directly indicate quantum properties
of the signal light field. It is obvious from Eq. (20) that the
knowledge about the detector quantum efficiency ηdet is crucial
for this approach. Hence, a characterization of the detector
response function is indispensable.

VII. CONCLUSION

In this paper, we have presented a calibration method based
on the click moments for qPNRDs. We have applied this
method to click statistics measured with a superconducting
nanowire system and a time-bin multiplexing setup. By doing
so, we have demonstrated that our method can compete with
existing calibration methods, yet being very resource efficient,
both from the experimental and the theoretical point of view.

Furthermore, we found a strong polarization dependency
of the of the detector response function. In particular, we
showed how to account for polarization mixing effects, due
to nonpolarization maintaining optical components in the
setup, by interpreting the retrieved response function as an
average over all response functions of the individual bins.
This effect may be circumvented by using only polarization
maintaining components. Finally, we proposed applications of
well-characterized qPNRDs for sensing turbulent atmospheric
channels and performing phase sensitive measurements.
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