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Beam dynamics in disordered PT -symmetric optical lattices based on eigenstate analyses
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Wave functions will experience a localization process when evolving in disordered lattices. Here, we have
demonstrated the effects of disordered PT -symmetric potentials on wave-function characteristics in optics
based on eigenstate analyses. In weak-disorder cases, by using the tight-binding approximation method, a
conclusion is obtained that the increasing of the imaginary part of potential can enhance the diffraction, while
the increasing disorder will block the diffraction and lead to localization. In the general case, band theory is
used for band-structure analysis of three bands. We find that the disorder has a smaller effect on the higher-order
band, which is proved by the beam evolutions. Our work may be instructive for realizing beam path control by
manipulating the strengths of disorder and gain and/or loss of lattice.
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I. INTRODUCTION

Anderson localization is the absence of diffusion of waves
due to multiple scattering in a disordered medium [1–3]. The
phenomenon of Anderson localization is general in physics,
ranging from solid-state physics [4], acoustics [5], and matter
wave physics [6,7] to optics [3,8]. In optical fields, it has
been studied in severely deformed lattices [9], quasiperi-
odic lattices [10–12], disordered plasmonic arrays [13], and
fibers [14–16]. Among them, the optical lattice is an ideal
platform to explore light localization for allowing experimen-
tal implementation of controllable disorder [10–12]. Unlike
the Bloch modes in a periodic lattice which are extended
states, the eigenstates in a disordered lattice are localized.
And the localized eigenstates have a unique property: modes
near the band edges are tightly localized, whereas those near
the band center are typically broader [17]. Lahini et al. have
experimentally observed the transition from a ballistic wave-
packet expansion to an exponential localization for single-site
excitation [10].

Compared to conservative systems, a non-Hermitian system
can produce much more interesting results for disorder-
induced localization. Recent experiments observed diffusive
transport, even though the non-Hermiticity lattice is peri-
odic [18]. In pioneering papers, the delocalization transition
and the existence of a mobility edge were demonstrated in non-
Hermitian disordered lattices [19–22]. Such results suggest
that not all the eigenstates are localized in a non-Hermitian
system. Recently, robustly unidirectional light transport was
realized in disordered non-Hermitian photonic lattices via a
non-Hermitian delocalization transition [23].

The non-Hermitian Hamiltonians can have real eigenvalue
spectra as long as they obey PT symmetry [24]. A necessary
condition for a Hamiltonian to be PT symmetric is the
potential function satisfying V (x) = V ∗(−x). In particular,
the spectra of a PT -symmetric system possess a phase
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transition point below which the spectra are real and the PT
symmetry is unbroken, and above which the spectra become
partially or completely complex and the PT symmetry is
broken [25]. Wave propagation in PT -symmetric lattices can
show a wide variety of interesting effects, such as double
refraction, power oscillations, and nonreciprocity [26,27]. In a
special non-Hermitian system, what would happen if disorder
is introduced in a PT -symmetric lattice? In a disordered two-
dimensional lattice, the presence of PT -symmetric potentials
enhances the light localization [28]. However, Bendix et al.
found that for a sufficiently long chain with PT -symmetric
impurities, the exact PT -symmetric phase is retained only
for an exponentially small parameter region [29]. In binary
diagonal-disorder arrays, the presence of PT symmetry
tends to inhibit the transport of localization excitations [30].
However, in the off-diagonal disordered lattice, the light
localization is suppressed and restored, mediated by PT
symmetry breaking [31]. A similar conclusion was drawn for
a quasiperiodic optical lattice [32].

In this paper, we theoretically demonstrate the beam
dynamics in disordered PT -symmetry lattices. In weak-
disorder cases, the coupling equation with conjugated two
coupling coefficients is obtained by using the tight-binding
approximation method. Through the analyses of the coupling
coefficients, eigenstates, mobility edges, and beam evolutions,
we can conclude that the increase of the imaginary part of
the potential can enhance diffraction, while the increasing
disorder will block diffraction and lead to beam localization.
In general cases, the eigenstates and propagation constants
for the multiband model are analyzed by using band theory.
Eigenstates of the three bands have different degrees of
localization where the higher band is relatively more weakly
localized. Finally, that the disorder has a smaller influence on
the higher-order band is proved by the beam evolutions.

II. PHYSICAL MODEL

We consider the normalized equation of diffraction with
complex potential modulated by the refractive index and the
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gains and/or losses in transverse direction. The model is
governed by the Schrödinger equation [26,33,34]:

i
∂ψ

∂ξ
+ 1

2

∂2ψ

∂η2
+ V (η)ψ = 0, (1)

where ξ , η are the transverse and longitudinal coordi-
nates, respectively. The complex valued function ψ(ξ , η)
describes the electric field envelope along a propagation
distance ξ . V (η) = V ∗(−η) = ∑

m (1 + δVm)V0(η − mD) is
an amplitude-disorder potential describing the refractive index
and the gain and/or loss profile of the optical lattice, D is the
regular lattice period, δVm is the potential fluctuation depth of
the mth guide (uniformly distributed in [−W/2, W/2]), and W
determines the strength of disorder. To ensure PT symmetry,
the complex potential of a single channel satisfies the condition
V0(η) = V0

∗(−η) and the disorder fluctuations δVm are set to
be correlated as δVm = δV−m.

In this paper, we consider the optical lattice
with PT -symmetric potential of V0(η) = Vr exp(−η6/a6) +
iViη exp(−η6/a6), where a is the waveguide width, and the
parameters Vr and Vi are the modulation depth of refractive
index and the amplitude of loss and/or gain, respectively. The
system exhibits linear gain in domains with Im{V(η)} > 0
and one-photon absorption in domains with Im{V(η)} < 0.
The similar potential functions have been investigated in
Refs. [31,35,36] for different points. To facilitate the following
study, we set Vi = 8,a = 0.5, and D = 2; the corresponding
values in realities are given in [31]. The symmetry-breaking
threshold is Vi

th ≈ 18.5 for the single site and Vi
th ≈ 16.9

for the regular array. In the following we will analyze PT -
symmetric arrays of the weak disorders (W�1) and general
cases of disorders, separately. All the analyses are based on
the so-called “unbroken PT -symmetric phase” with only
real propagating constants, because exponential growth is
unavoidably excited when the PT symmetry is broken.

III. THEORY FOR WEAK DISORDERS

We use the tight-binding approximation method to illustrate
the role of PT -symmetric potential in the localization. The
basic idea of this method is that the disordered lattice is
considered as a composition of many single-site waveguides
and only the interactions of adjacent-site light modes are
taken into account. Consider the scattering matrix of the
single-site Schrödinger operator

�

Lm = (1/2)d2/dη2 + V0(η −
mD)(1 + δVm) and the eigenvalue problem L̂mφm = βmφm,
where we consider the highest eigenvalue βm as the propa-
gating constants [37] and φm(η) represent the corresponding
normalized eigenstates. The eigenstates φm(η) compose the or-
thogonal basis (i.e.,

∫
φ∗

m(η)φn(η)dη = δmn, m = −N, . . . ,N ,
and 2N + 1 is the number of lattice sites). Like δVm, the
propagating constants βm are uniformly distributed with mean
value β0 and variance μ2. The static solution of Eq. (1)
can be expressed as a superposition of single-site eigenstates
with different weights: ψβ(η,ξ ) = ∑

m umφm(η) exp(iβξ ),
where um represents the mode occupancy coefficients.
By substituting this expansion into Eq. (1), multiplying
by φ∗

m(η), and integrating over η, one can obtain a set
of discrete eigen equations: βum = βmum + Cm,m−1um−1 +

FIG. 1. Diagram of localization in weak-disorder lattices.
(a) Calculated eigenstates and eigenvalues for the parameters Vi = 16
and W = 0.02 for one realization. Insets 1 and 3 show the localized
modes formed near the edges of the band, while inset 2 denotes
the extended modes near the band center. (b) Statistically averaged
widths of eigenstates for various parameters of Vi and W. The phase
and absolute value of coupling coefficient (c) and the mobility edges
(d) vs the imaginary part of the guiding potential Vi are shown.

Cm,m+1um+1, where Cm,m±1 = ∫ +∞
−∞ φ∗

m
(η)Vm(η)φm±1(η)dη.

For a weak-disorder lattice, i.e., W � 1, the parameters
Cm,m±1 become independent of m to a very good approxi-
mation, so the eigen equations can be expressed as

βum = βmum + Cum+1 + C∗um−1, (2)

where C = ∫ +∞
−∞ φ∗

0 (η)V0(η)φ1(η)dη, which can be written
as C ≡ |C|eih. This is a typical non-Hermitian discrete
equation [19,20]. Because only the fundamental mode of a
single guide is considered at the start, this theoretical model
is only efficient under the symmetry-breaking threshold of
the optical lattice. The eigenstates and eigenvalues of the
disordered lattice can be calculated by solving a set of 2N + 1
eigen equations [Eq. (2)], and 2N + 1 = 201 waveguides
are contained in the following calculations. The eigenvalue
curve is shown in Fig. 1(a) with parameters of Vi = 16 and
W = 0.02. There is only one band calculated because only the
highest eigenvalue of the single-site waveguide is considered.
The eigenvalue band almost keeps the cosine shape of a
perfectly ordered lattice. The eigenstates with eigenvalues
near the band edges (insets 1 and 3) are exponentially
localized, whereas the modes (inset 2) near the band center are
typically extended; this phenomenon also arose in a Hermitian
lattice [10,17]. Furthermore, the integral width of intensity
|ψ(ξ,η)|2 is calculated as w = [

∫ |ψ |2dη]
2
/
∫ |ψ |4dη. For

each Vi and W, we operate Q = 1000 realizations of disordered
PT -symmetric lattices and then get the statistically average
width wa = Q−1 ∑Q

k=1 wk . Figure 2(b) depicts the relation
of average width of all the eigenstates to eigenvalues for
different values of Vi and W. It is obvious that the increasing
Vi and weaker disorder can broaden the mode widths. This
can be explained by exploring the coupling coefficient C. In
Fig. 1(c) we show the dependencies of the phase h and absolute
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FIG. 2. Evolutions of statistically averaged intensity (a) and one
illustrative realization (b) with parameters of Vi = 9 and W = 0.04.
(c) Evolutions of statistically averaged beam widths with different Vi

and W [solid red (solid gray) line — Vi = 3,W = 0.02; dash-dot red
(dash-dot gray) line—Vi = 9,W = 0.02; black line—Vi = 14, W =
0.02; light gray line—Vi = 9,W = 0.04]. (d) Decomposition of input
used in (a) and (b) for eigenstates in the lattice with potential
distribution as in (b).

value |C| of the coupling coefficient on the imaginary strength
Vi of potential. When Vi = 0, i.e., the disordered lattice is
Hermitian, the coupling coefficient C is real and |C| reaches
its minimum. With Vi increasing, both h and |C| are enhanced,
which causes diffraction to gradually dominate. In a Hermi-
tian disordered system, the eigenstates are always localized,
while the situation is changed in a non-Hermitian system when
the eigenvalues fail in the region of −βc < β − β0 < βc. The
delocalization transition point βc is called a mobility edge.
Here the mobility edge can be computed as [20]

βc ≈ [4|C|2 − μ2/(2|h|)]1/2, (3)

where μ2 denotes the variance of βm. This formula can
approximately reflect the regularity of the delocalization
transition. The relation of the mobility edge to Vi is shown in
Fig. 1(d) for different disorder strengths of W. The imaginary
part of the guiding potential is responsible for the existence of
the mobility edge, and the strength of the disorder determines
the value of Vi where βc > 0 starts to occur.

In order to investigate the beam dynamistic in a disordered
lattice, the statistically averaged intensity is calculated as
Iav = Q−1 ∑Q

k=1 |ψk|2. The beam propagation in the lattice
can be considered as a coherent superposition of eigenstates
ψ(ξ,η) = ∑

β c(β)ψβ(ξ,η), where the modal coefficients c(β)
can be obtained from the representation transformation c =
f/M , where M denotes the eigenvalue matrix of Eq. (2),
fm = ∫ +∞

−∞ φ∗
mG(η)dη(η), and G(η) is the input beam profile.

Figure 2 depicts the beam dynamistic of the single-channel
excitation, and the input is a narrow Gaussian-profile beam
G(η) = exp[−(η/0.5)2] at normal incidence. The statistically
averaged intensity approaches a steady state after the initial
expansion, as shown in Fig. 2(a). In each realization the inten-
sity oscillation between several channels exists as illustrated
in Fig. 2(b), which is caused by the coherent superposition
of eigenstates with different propagation constants. The

eigenstate coherence mentioned above determines the average
widths of eigenstates and beams ψ(ξ , η) following the same
variation for various Vi and W by comparing Fig. 1(b) with
Fig. 2(c). One can see that the increase of the imaginary part
of the potential can enhance the diffraction by increasing the
waveguide coupling, while the increasing disorder can weaken
the diffraction by random scattering. Figure 2(d) shows the
mode occupancy coefficients of G(η) for the lattice with the
disordered potential distribution as in Fig. 2(b). For identical
G(η), the distribution of c(β) is specific for one realization of
the lattice potential.

The tight-binding model is very effective to take the mode
analysis and beam evolution for a weakly disordered lattice in
a PT -symmetric phase. However, the mentioned theory has
only considered the fundamental mode of a single guide and
thus there are only one-band eigenmodes calculated. In order
to obtain a more generalized model, band theory will be used
in the following discussion.

IV. THEORY FOR GENERAL CASES

Band theory is based on the idea that the eigenstate of
a disordered lattice can be considered as the mixed state of
a corresponding periodic lattice. Therefore the basic starting
point in this section should be the periodic lattice. For the
PT -symmetric periodic lattice with Schrödinger operator
�

L(0) = 1/2d2/dη2 + ∑
m V0(η − mD), the eigenvalue prob-

lem L̂(0)φkm = βkmφkm, where φkm represents the normalized
Floquet-Bloch (FB) modes in band m and Bloch momentum k,
and βkm denotes the propagation constants. Here the FB modes
satisfy the typical orthogonality condition of PT symmetry,∫

φ∗
−k′n(−η)φkm(η)dη = dkmδnmδkk′ , where dkm = {±1} [26].

In the calculation with 2N + 1 waveguides contained, the
Bloch wave number k is discrete for the periodic boundary
condition (e.g., k = 2πl/(2N + 1)D, l = −N, . . . ,N). For a
PT -symmetric disordered lattice, the eigenstates can be writ-
ten as ψβ = ∑

m,k ukmφkm(η)eiβξ , where ukm represents the
mode occupancy coefficients. By substituting this expression
into Eq. (1), multiplying by φ∗

−km(−η), and integrating over η,
we obtain a set of discrete equations:

βukm = βkmukm + dkm

∑

n,k′
Ckm,k′nuk′n, (4)

where Ckm,k′n ≈ ∑
l δVle

ilD(k−k′)
∫ D/2
−D/2 φ∗

−km(−η)V0(η)φk′n

(η)dη represents the mode interactions, which satisfy
the conjugate relation Ckm,k′n=C∗

k′n,−km
for PT symmetry.

Equation (4) is the eigenvalue problem, which can be solved
by the numerical method. In the following calculations, only
the highest three bands of the periodic lattice are considered;
thus one can obtain the highest three bands of propagation
constants and eigenstates of the disordered lattice by solving
the eigen equation of Eq. (4). The solved propagation-constant
distributions of the first three bands are shown in Fig. 3(a)
for 2N + 1 = 101 waveguides with parameters of Vi = 10,
W = 0 (i.e., periodic arrays, denoted by red dots), and
Vi = 10, W = 0.1 (blue dots). Here the three bands are
studied by band theory as a general case. From the insets one
can see that the propagation constants of the higher-order
band deviate more slightly from the corresponding band of
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FIG. 3. Triple-band mode analysis for a disordered lattice.
(a) Propagation constant distributions for parameter Vi = 10 [red
(gray) dots—periodic arrays, black dots—disordered arrays with
W = 0.1]. Insets are the enlarged pictures of propagation constants
for the first and second bands. (b) Averaged widths of eigenstates for
different combinations of Vi and W.

the periodic lattice compared to the lower-order band. And
the averaged eigenstate widths of the higher-order band are
bigger than the lower-order band, as shown in Fig. 3(b). For
a higher-order band such as the second and third bands, the
eigenstates near the band centers are much broader than the
eigenstates near band edges, as the eigenstates of the first band
did when discussed in the weak-disorder case. The averaged
eigenstate widths of the second band are mainly dominated
by the disorder strength W, while the averaged widths of the
third band are mainly determined by the amplitude of the
imaginary potential Vi , which seems to imply that the disorder
has a smaller effect on the third band than the second band.
The specific eigenstate distributions are displayed in Fig. 4
for the first three bands. One can see that the higher the order
of the band, the broader the eigenstates, and the eigenstates
near the band centers are much broader than the eigenstates
near band edges, which coincides with the description in
Fig. 3(b).

From the analysis above, it seems that the disorder has a
smaller effect on the higher-order band. To confirm this, we

FIG. 4. One realization of the eigenstate distributions for a
disordered lattice with Vi = 10, W = 0.1. The curves in (a) (b), (c)
(d), and (e) (f) are the eigenstates in the first, second, and third band,
respectively. (a, c, e) The centers of the corresponding bands; (b, d,
f) the edges of the bands.

FIG. 5. The intensity evolutions of a wide tilt beam exciting the
periodic (a) and disordered (b, e, f) lattices. The inset of (b) is the
individual propagation of the second band on a smaller scale of color
bar. (c) FB decomposition of the input in (a) for the first three bands
[black line–1st, red (gray) line–2nd, orange (light gray) line–3rd),
and the inset shows the corresponding band structure. (d) Disordered
lattice eigenstate decomposition of the input in (b) for three bands.
Here Vi = 10 and 2N + 1 = 401 in all cases, and W = 0.1, 0.01, and
0.05 for the disordered lattices of (b), (e), and (f), respectively.

investigate the beam evolutions in the periodic and disordered
PT -symmetric state when excited by one identical wide tilt
beam of incidence, as shown in Fig. 5. The input can be
approximately regarded as a Gaussian-shape beam, with beam
width of 30.7 and tilt angle of 24◦ in homogeneous media. The
intensity evolutions in Fig. 5 have three pathways due to the
double-refraction process that has been studied in Ref. [26].
For an input beam profile G(η), its beam evolutions can be
expressed as

ψp(η,ξ ) =
∑

m,k

fkmφkm(η)eiβkmξ ,

(5)
ψd (η,ξ ) =

∑

n

cnψβn
(η)eiβnξ ,

in periodic and disordered lattices, respectively, where βn is
the propagation constant of the nth eigenstate of the disordered
lattice, fkm = ∫

φ∗
−km(−η)G(η)dη, and the coefficients cn

are the mode occupancy coefficients in periodic-lattice and

033804-4



BEAM DYNAMICS IN DISORDERED PT - . . . PHYSICAL REVIEW A 95, 033804 (2017)

disordered-lattice representations, respectively, which can be
obtained by representation transformation of fkm through the
eigenvalue matrix of Eq. (4). Figures 5(c) and 5(d) depict
the occupancy |fkm| and |cn| (among bands), respectively,
corresponding to the same input used in Figs. 5(a) and 5(b),
respectively.

Keeping in mind that the beam components in the periodic
lattice will propagate along the gradient ∇k(β), one can
then distinguish from the inset in Fig. 5(c) which pathway
corresponds to which band in Fig. 5(a). The influence of
disorder on beam dynamics can be illustrated by comparing
to Figs. 5(b), 5(e), 5(f), and 5(a). Comparing the first-band
components, i.e., the beams of the middle paths in these figures,
the beam propagates in the periodic lattice at a tilt angle,
while the propagation is partially deviated in the lattice with
weak disorder shown in Fig. 5(e), and the beam propagates
vertically and the transverse transport disappears in the lattices
with relatively stronger disorder, as shown in Figs. 5(b)
and 5(f). That is because the scattering from disorder brings
the transverse transport of the first band to a partial or complete
halt. The left propagations are the second-band components.
The propagations of the second-band components in periodic
and weak-disorder lattices are very smooth [Figs. 5(a), 5(e),
and 5(f)], while when the disorder strength increases to W =
0.1, the evolution becomes weaker and weaker when traversing
across the lattice, which is displayed in Fig. 5(b). The wave
packets are partially obstructed by multiple reflections and
the residual can traverse across the disordered lattice; the
inset of Fig. 5(b) depicts the details. Different from the
first two bands, the third-band components, i.e., the beams
spreading toward the right, show almost no difference when
comparing Figs. 5(b), 5(e), and 5(f) to Fig. 5(a). Therefore
one can say that the lattice disorder has less impact on the
third-band component of the wide beam. Figures 5(c) and 5(d)
illustrate the eigenstate decompositions of the input beam in
the representations of the periodic lattice and the disordered
lattice in Fig. 5(b), respectively. The distribution of first-band
decomposition is completely skewed by disorder, while the
second and third bands partially retain their configurations, as
seen by comparing Fig. 5(d) to Fig. 5(c).

Comparing the tight-binding approximation in Sec. III with
the band theory here, they focus on different points. In Sec. III,
the point is the localization characteristics of eigenstates and
beam evolutions in a disordered lattice. The delocalization of
eigenstates only arises in weak disorder. With the disorder
strength increasing, the eigenstates near the band center are

localized rapidly. The tight-binding model is very effective to
the lattice in the weak-disorder region, the calculation process
is relatively simple, and the mobility edges can be deduced
in this theory. However, this model has considered only the
fundamental mode of a single-site waveguide; thus there are
only one-band eigenstates calculated [37]. In Sec. IV, the point
is eigenstate distribution and beams dynamics in different
bands. The band theory is a more generalized model as more
bands are calculated, and the amount of computation is much
larger than the tight-binding model.

V. CONCLUSIONS

In conclusion, we have demonstrated that disordered PT -
symmetry potentials can exhibit unique characteristics in
optics. In weak disorder cases, the coupling equation with
conjugated two coupling coefficients is obtained by using the
tight-binding approximation method. The localization charac-
ter is analyzed by studying the eigenstates, mobility edges,
and beam evolutions by using the tight-binding approximation
method. A conclusion is obtained that the increase of the
imaginary part of the potential can enhance the diffraction,
while the increasing disorder will block the diffraction and
lead to localization. In the general case, band theory is used
for band-structure analysis. We find that the disorder has
a smaller effect on the higher-order band, which is proved
by the beam evolutions. These results will be potentially
instructive for further researchers. For fundamental interest,
it reveals the nature of localization-delocalization transitions
and band-structure characteristics in disorderedPT -symmetry
optical lattices. For practical use, it may pave the way for
realizing beam path control by manipulating the strengths
of disorder and gain and/or loss. The results in this paper
are very possible to be raised in other quasiperiodic physical
systems, such as plasmonic waveguides, cavity polaritons, and
bulk metamaterials. Moreover, in future research, it would be
interesting to study the nonlinear phenomena in disordered
lattices, such as soliton behavior.
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