
PHYSICAL REVIEW A 95, 033801 (2017)

Synthetic gauge potential and effective magnetic field in a Raman medium undergoing
molecular modulation

Luqi Yuan,1 Da-wei Wang,2 and Shanhui Fan1

1Department of Electrical Engineering and Ginzton Laboratory, Stanford University, Stanford, California 94305, USA
2Department of Physics and Astronomy and Institute for Quantum Science and Engineering, Texas A&M University, College Station,

Texas 77843, USA
(Received 13 November 2016; published 1 March 2017)

We theoretically demonstrate nontrivial topological effects for a probe field in a Raman medium undergoing
molecular modulation processes. The medium is driven by two noncollinear pump beams. We show that the angle
between the pumps is related to an effective gauge potential and an effective magnetic field for the probe field in
the synthetic space consisting of a synthetic frequency dimension and a spatial dimension. As a result of such an
effective magnetic field, the probe field can exhibit a topologically protected one-way edge state in the synthetic
space, as well as Landau levels which manifest as suppression of both diffraction and sideband generation. Our
work identifies a previously unexplored route towards creating topological photonics effects and highlights an
important connection between topological photonics and nonlinear optics.
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I. INTRODUCTION

The process of molecular modulation [Fig. 1(a)] has
attracted significant interest in the last two decades [1–9].
In this process, molecules are driven by two pump fields,
which generate coherence between a few low-lying vibrational
and/or rotational levels through a Raman transition. A probe
field couples with the molecular coherence, which results in the
generation of Raman sidebands. This process is highly efficient
and has found applications in attosecond pulse generation [10],
coherent broadband light generation [11,12], and optical
orbital angular momentum transfer [13,14].

Most previous experiments on molecular modulation as-
sume a collinear propagation between the pump and the probe
[Fig. 1(b)]. In this paper, we consider a pump configuration
as shown in Fig. 1(c), where two pump beams are assumed
to be noncollinear, with both their directions near the z axis,
subtending an angle α � 1 rad. We show that when a probe
beam propagating along the z axis is introduced into this
medium, such a molecular coherence results in a synthetic
gauge field that couples to the probe field. As a result, the
probe field exhibits a nontrivial topological photonic effect
including a topologically protected one-way edge state along
the frequency axis, as well as Landau levels which manifest as
suppression of both diffraction and sideband generation.

Explorations of synthetic gauge potential [15–22] and
topological effects [23–33] for light have generated significant
recent interest since these effects open a new dimension in the
control of the flow of light. Most previous works on synthetic
gauge field and topological photonics rely upon complex
material geometries. In contrast, here we show that topological
photonic effects naturally arise in a standard nonlinear optics
geometry. Our work points to a fruitful direction at the interface
between nonlinear optics and topological photonics. Related
to this work, a noncollinear beam configuration was previously
used to generate a synthetic gauge field in real space for neutral
atoms [34–36]. Also, the use of a classical electromagnetic
field to generate a gauge potential was explored in the context
of phonon-photon coupling [37]. Our work differs in that we
focus on a synthetic space rather than a real space. The

predicted effects also represent a mechanism for controlling
Raman sidebands in a system exhibiting molecular coherence.

II. THEORETICAL ANALYSIS

We start our analysis by considering a molecular Raman-
active medium. The molecules have a ground state [labeled
a in Fig. 1(a)], a low-lying excited state (labeled b), and
intermediate states (labeled i) at higher energies. The medium
is driven by two pump laser pulses, centered at frequencies ωA

and ωB , respectively. The pumps are nonresonant with respect
to any molecular transitions but are two-photon near resonant
with the a-b transition with a small detuning �ω ≡ (ωb −
ωa) − (ωA − ωB). The pumps create a coherence ρab between
levels a and b. Here, we focus on the interaction of a probe
field with such coherence. Therefore, we adopt the analytic
model that was used in [2,4,38], where both the pumps and
the probe are treated as continuous wave at a single frequency,
and we discuss the experimental setup, including the choice of
the appropriate pulse parameters, towards the end of the paper.

The propagation equation for a laser beam at frequency ω

is [4,38]

∂

∂z
Eω − i

c

2ω

∂2

∂x2
Eω = icμ0 h̄ωPω. (1)

Here, we assume the beam propagates near the z axis and
use the paraxial wave approximation. μ0 is the vacuum
permeability, and Eω and Pω are the slowly varying envelopes
for the spectral components of the electric field and the
polarization, respectively, at the frequency ω.

For the pumps EA(B), we use the solution of Pω in
Refs. [2,4,38] and write Eq. (1) as

∂

∂z
EA(B) − i

c

2ωA(B)

∂2

∂x2
EA(B) = icμ0 h̄ωA(B)N

[
aωA(B)ρaa

+ dωA(B)ρbb

]
EA(B), (2)
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FIG. 1. (a) Energy levels of a molecule used in the molecular
modulation process. Levels a and b are ground states, and i are
the excited states. Pump fields EA and EB are far from resonance
between the ground states and the excited states but are near resonance
with the two-photon transition a-b. Sidebands En are generated via
the interaction of molecular coherence ρab as generated from the
pump with the probe field E0. (b) and (c) Pump fields and the probe
field are injected into the Raman-active medium (inside a cell in the
green square with a length L) along the z direction. Two pump fields
(blue regions) propagate collinearly at an angle α = 0 in (b) and
noncollinearly at α = 0.5◦ in (c). The probe field (red arrow) has a
focal area at z = 0 which is much smaller than the beam waist of the
pump fields. The simulation region has a width D and is shown in
orange.

where N is the number density of the molecule. In Eq. (2),

aω = 1

2h̄2

∑
i

[ |μai |2
(ωi − ωa) − ω

+ |μai |2
(ωi − ωa) + ω

]
, (3)

dω = 1

2h̄2

∑
i

[ |μbi |2
(ωi − ωb) − ω

+ |μbi |2
(ωi − ωb) + ω

]
, (4)

where μa(b)i is the dipole moment between levels a and b and
intermediate state i. In Eq. (2) we keep only the first-order
perturbation to the pumps because we are interested in the
sideband generation from the probe. Because the pumps are
nonresonant with respect to any molecular transition, we have
aωA(B)

∼= dωA(B)
∼= a0. By using ρaa + ρbb = 1, Eq. (2) becomes

i
∂

∂z
EA(B) = −κA(B)

∂2

∂x2
EA(B) − βA(B)EA(B), (5)

where κA(B) = c/2ωA(B) and

βA(B) = cμ0 h̄ωA(B)Na0. (6)

Therefore, the pump fields in general can be described as a
Gaussian or Hermite-Gaussian beam with the wave vector
kA(B) + βA(B).

The pumps create coherence ρab between levels a and
b, which oscillates at the frequency ωm = ωA − ωB [see
Fig. 1(a)] with an amplitude of [2,4,38]

ρab = 1

2

bωA
EAE∗

B√|bωA
EAE∗

B |2 + �ω2
, (7)

where

bω = 1

2h̄2

∑
i

[
μaiμ

∗
bi

(ωi − ωa) − ω
+ μaiμ

∗
bi

(ωi − ωb) + ω

]
. (8)

To study the propagation of the probe, based on the
experimental scenarios described above, we assume that the
coherence does not decay as the weak probe field propagates
through the medium. The probe has the carrier frequency ω0.
When the probe interacts with the coherence in the medium,
sidebands at frequencies ωn = ω0 + nωm are generated, where
n is an integer. From Eq. (1), the propagation equation for the
electric field in the nth sideband En is [2,4,38]

∂

∂z
En − i

c

2ωn

∂2

∂x2
En = icμ0 h̄ωnN

{[
aωn

ρaa + dωn
ρbb

]
En

+ b∗
ωn

ρabEn−1 + bωn+1ρ
∗
abEn+1

}
,

(9)

where aω and dω are defined in Eqs. (3) and (4) and bω is
defined in Eq. (8). Since all the sidebands are sufficiently far
from any resonance, again, we have

aωn
∼= dωn

∼= a0, bωn
∼= b0. (10)

Therefore, Eq. (9) simplifies to

i
∂

∂z
En = βnEn − κn

∂2

∂x2
En − gn(2ρabEn−1 + 2ρ∗

abEn+1),

(11)

where κn = c/2ωn, βn = cμ0 h̄ωnNa0, and gn =
cμ0 h̄ωnNb0/2.

From Eq. (7), with the pump configuration as described in
Fig. 1(c), we have

ρab(x,z) = 1

2

∣∣bωA
EA(x)E∗

B(x)
∣∣√∣∣bωA

EA(x)E∗
B(x)

∣∣2 + �ω2
eiθ(x)e−i(βA−βB )z,

(12)

where

θ (x) = qx, (13)

with q ≈ α(kA + kB)/2. On the other hand, from Eq. (6),
one can show that βn − βn−1 = βm = βA − βB . Therefore,
we perform the transformation En = Ẽn exp(iβnz) and ρab =
ρ̃ab exp(iβmz) to obtain

i
∂

∂z
Ẽn = −κ

∂2

∂x2
Ẽn − g(x)(eiqxẼn−1 + e−iqxẼn+1). (14)

In arriving at Eq. (14), we note that in the limit of ω0 �
ωm, κn

∼= κ and 2gn|ρab| ∼= g [39].

III. EFFECTIVE GAUGE POTENTIAL FOR THE PROBE IN
THE SYNTHETIC SPACE

To understand the physics in Eq. (14), we apply a gauge
transformation Ẽn = εne

inqx , define a continuous function
ε(ω,x) such that ε(ωn,x) = εn, and approximate the term in the
parentheses by a continuous derivative. Equation (14) becomes

i
∂

∂z
ε(ω,x) ≈ κ

(
− i

∂

∂x
+ ω − ω0

ωm

q

)2

ε(ω,x)

+ gω2
m

(
− i

∂

∂ω

)2

ε(ω,x) − 2gε(ω,x). (15)
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FIG. 2. (a) The projected band structure within the first Brillouin zone kx ∈ [−q/2,q/2] in an infinite system described by Eq. (14). We
choose κ = g(π/2q)2. (b) The projected band structure in a 2D strip that is infinite along the x axis but with a finite number of sidebands
(sideband number n = −10, . . . ,10) along the frequency dimension. In the lowest band gap, there exists two one-way edge modes (shown in
red). (c) Field amplitudes of the two edge modes shown by purple and blue dots in (b).

Equation (15) has the form of a Schrödinger equation in 2 + 1
dimensions, except with the usual time axis being replaced by
the z axis and with the remaining two dimensions describing
a synthetic space with one spatial dimension along the x

direction and one synthetic frequency dimension [40,41]. In
this synthetic space, Eq. (15) describes an effective gauge
potential Aω = (ω − ω0)q/ωm along the x axis, which gives
a uniform effective magnetic field orthogonal to the two-
dimensional (2D) space:

B = ∂A

∂ω
= q

ωm

= α
(kA + kB)

2ωm

. (16)

To examine the topological effect created by such an
effective magnetic field, we calculate the band structure of
an infinite 2D system described by Eq. (14) with a uniform
g(x) = g along the x direction. Equation (14) has a spatial
periodicity of 2π/q along the x axis as well as a symmetry
with respect to the translational operation n to n + 1 along
the frequency axis. Therefore, it can be described in terms of
a band structure E(kx,kω), which relates the wave-vector shift
for the probe E along the z direction to the quantum numbers
kx and kω, corresponding to the translational symmetries as
described above. We take κ = g(π/2q)2 and plot the projected
band structure within the first Brillouin zone kx ∈ [−q/2,q/2]
in Fig. 2(a). Due to the effective magnetic field, for each kx the
bands are almost completely flat along the kω axis. Therefore,
the projected bands appear as lines in the E-kx plane. The
bulk bands here correspond to the Landau level of a particle
under a constant magnetic field. In the continuum limit [such
as described by Eq. (15)] the bands would be completely flat
along both the kx and kω axes. Here the nonzero slope along
the kx axis arises from the discrete translational symmetry.

The bands in Fig. 2(a) are topologically nontrivial as
characterized by nonzero Chern numbers [42]. Therefore,
in a strip geometry there should be topologically protected
one-way edge states within the gap. As a demonstration, we
consider a strip that is infinite along the x axis but with finite
numbers of n (n = −10, . . . ,10) along the frequency axis.
We plot its band structure E(kx) in Fig. 2(b). In the lowest
band gap, there exists two one-way edge modes. The field
amplitudes corresponding to the two edge modes at E = 0
[labeled by purple and blue dots in Fig. 2(b)] are shown in
Fig. 2(c). The band-structure analysis here indeed shows the
nontrivial topology when the pumps are noncollinear.

IV. NUMERICAL DEMONSTRATIONS OF ONE-WAY
EDGE STATE AS WELL AS LANDAU LEVELS

While topological effects have been observed in a wide
variety of photonic systems, the process of molecular modu-
lation provides a unique aspect of probing topological effects.
To illustrate these effects, in what follows we will solve
Eq. (14) numerically for several different pump and probe
configurations. The parameters used in our simulations are
based on recent experiments on either the gas medium [3,4,6]
or the Raman-active crystal [11,12]. The molecular density
is chosen to be N ∼ 1018–1019 cm−3. The frequencies of the
pump and probe lasers are of the order of 1 μm. Given these
conditions, we have g ∼ 102–103 m−1, κ ∼ 10−7 m. At z = 0,
the probe field has a spatial profile of

f (x) = e−(x/�x)2
, (17)

with a focal width �x = 38.8 μm. We will study the propaga-
tion of this probe field along the z axis.

In Fig. 3 we present the simulation results for the system
with a noncollinear pump geometry with α = 0.5◦, which
gives q = 5 × 104 m−1. We choose κ ∼ 10−7 m and g =
102 m−1. These parameters are the same as those used for
generating the band structure in Fig. 2(b). The beam waists
of the pump fields are chosen to be w0 = 1 mm, which
corresponds to the Rayleigh length zR ∼ 3 m. The length of the
medium is L = 5 cm. We perform the simulation in a D × L

region as represented by the orange rectangle in Fig. 1(c),
with D = 0.433 mm, because the probe field does not diffract
out of this region in the entire simulation. Since D < w0 and
L � zR , we assume that the amplitudes of the pump fields
are uniform in the simulation region, so the coherence is also
uniform along the x direction in Eq. (14). In order to create
an edge along the frequency axis, we add two-level atoms
to the system that provides additional frequency dispersion.
We choose two-level atoms to have a resonant frequency
ω99 − 0.025ωm, a density of 2.5 × 1015 cm−3, and a dephasing
rate 1/T2 = 1010/2π s−1. Here, ωn is the frequency of the
nth sideband frequency satisfying ωn = (n + 0.8)ωm. The
wave vector β as a function of frequency near the resonant
frequency of the two-level atoms is shown in Fig. 3(a). Such
two-level atoms strongly influence the wave vectors at the
99th sideband without influencing the wave vector of 100th
sideband. With such a choice we expect that the 100th sideband
cannot down-convert, which creates a boundary along the
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FIG. 3. (a) The wave vector mismatching for the probe along the
z direction β(ωn) with an additional two-level atom added into the
medium at a resonant frequency ω99 − 0.025ωm. � = 103 m−1. (b)
The normalized intensity as a function of position and sidebands for
the input probe field. The input field has a frequency of 100.8ωm.
(c) and (d) The output field intensity at z = L, corresponding to the
noncollinear pump geometry in Fig. 1(c) and the collinear pump
geometry in Fig. 1(b). The blue arrow in (c) indicates the propagation
direction of the edge state.

frequency axis. In the simulation, we input at z = 0 a beam
at ω100, and we consider 16 sidebands from ω97 to ω112

[Fig. 3(b)]. After propagation, the beam shifted towards the
+x direction and showed very little frequency conversion,
consistent with the existence of a one-way edge state localized
at the lowest frequency boundary [Fig. 3(c)]. As a comparison,
we study the evolution of the probe with a collinear pump
geometry, i.e., α = 0, while keeping all the other parameters
the same as in Fig. 3(c) [see Fig. 1(b)]. In the case where
the input probe frequency is 100.8ωm [Fig. 3(b)], we observe
significant diffraction and frequency conversion [Fig. 3(d)]. In
the collinear pump geometry there is no effective magnetic
field, and hence, there is no one-way edge state.

For electrons in two dimensions, an important consequence
of a perpendicular magnetic field is the existence of Landau
level, a bulk band with its energy completely independent
of the in-plane wave vectors. For photons, the Landau level
has been observed in [19], which relies upon a sophisticated
dielectric geometry. In contrast, here, we show that our system
can directly generate the Landau level for photons (Fig. 4).
As an illustration, here, we choose a larger g = 103 m−1 and
keep all other system parameters as in Fig. 3, except without
the additional two-level atoms. In general, the underlying band
structure of the system, in the absence of the effective magnetic
field, is a tight-binding band along the frequency axis. The
use of a larger g ensures that such a tight-binding band can
be approximated by a parabolic band over a large range of
E , which facilitates the creation of the Landau level in the
presence of the effective magnetic field. Figure 4(a) shows
the projected bulk band-structure calculation for the system

FIG. 4. (a) The projected band structure showing the formation
of Landau levels. κ = 0.1g(π/2q)2. (b) The normalized intensity as
a function of position and sidebands for the input probe field. The
input field has a frequency of 100.8ωm. (c) and (d) The output field
intensity at z = L, corresponding to the noncollinear pump geometry
in Fig. 1(c) and the collinear pump geometry in Fig. 1(b).

shown in Fig. 1(c), which supports an effective magnetic
field. We indeed observe that the lowest five bands are almost
completely flat in the kx and kω planes, signifying the creation
of the Landau level. As a demonstration of the effect of the
Landau level, we input the same probe beam as in Fig. 3, but
with a frequency centered at 100.8ωm, as shown in Fig. 4(b).
We see that the probe field does not diffract in the spatial
dimension and also shows no frequency conversion [Fig. 4(c)].
This is direct evidence of Landau levels; the flattened bands
prevent diffraction as well as frequency conversion. Our
system here provides a mechanism to guide light with light.
Unlike conventional waveguides, in which light is guided in a
well-defined core region, here, guiding occurs for every spatial
and spectral position inside the “bulk.” We compare our results
with the evolution of the probe with a collinear pump geometry,
i.e., α = 0 [Fig. 1(b)]. In this case, we choose the same input
probe beam as shown in Fig. 4(b). Significant diffraction and
frequency conversion occurs, as seen in Fig. 4(d).

V. DISCUSSION AND CONCLUSION

In the simulations above, we treat the probe field in Eq. (14)
as a monochromatic field. Our results are also valid if the
pumps and the probe are pulses, as long as the temporal
duration of the pulses are long such that the slowly varying
envelope approximation is valid. Using a long pump pulse,
the coherence can be prepared via the “adiabatic following”
scheme [43]. We give an example of typical time scales of
pulses in a possible experiment. For the pump one can use an
∼500-fs pulse, which has a spectral width of δωFWHM/ωpump ∼
10−3. For such a pump one can assume that q is a constant
in Eq. (13). To study the interaction of a probe pulse with
the coherence, one can send in the probe pulse at a time
delay. For the probe, one can use an ∼500-fs pulse at a
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time delay of ∼1 ps with respect to the pump. At such a
time delay the coherence has not decayed [44]. Alternatively,
one can also use long pump pulses of ∼1 ns and send the
probe into the medium while the pumps are on. In this case,
one can choose the frequencies of the pump and the probe
to be sufficiently different and study the propagation of the
probe.

In summary, we studied the process of the coherent Raman
sideband generation using molecular modulation with a non-
collinear pump geometry. We showed that such a geometry
can provide a synthetic gauge potential and achieve nontrivial

topological effects. Our work identifies a previously unex-
plored route towards creating topological photonics effects
and highlights an important connection between topological
photonics and nonlinear optics.
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