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Despite its success, the composite fermion (CF) construction possesses some mathematical features that have
not been fully understood until recently. In particular, this construction is known to produce wave functions that
are not necessarily orthogonal, or even linearly independent, after projection to the lowest Landau level. While
this is usually not a problem in practice in the quantum Hall regime, we have previously shown that it presents a
technical challenge for rotating Bose gases with low angular momenta. These are systems where the CF approach
yields surprisingly good approximations to the exact eigenstates of weak short-range interactions, and so solving
the problem of linearly dependent wave functions is of interest. It can also be useful for studying higher bands of
fermionic quantum Hall states. Here we present several ways of constructing a basis for the space of so-called
“simple” CF states for two-component rotating Bose gases in the lowest Landau level, and prove that they all give
sets of linearly independent wave functions that span the space. Using this basis, we study the structure of the
lowest-lying state using so-called restricted wave functions. We also examine the scaling of the overlap between
the exact and CF wave functions at the maximal possible angular momentum for simple states.
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I. INTRODUCTION

Almost 20 years ago, the connection was noticed between
the physics of charged particles moving in two dimensions in a
strong magnetic field and dilute cold atoms rotating rapidly in
a harmonic trap [1]. Since then, a large body of theoretical and
experimental work has accumulated that explores the various
aspects of rapidly rotating atomic gases and the associated
quantum phenomena; for reviews, see [2–4]. In particular, one
expects strongly correlated phases similar to those found in
the quantum Hall effect when the atoms experience strong
synthetic magnetic fields. The effect of a synthetic magnetic
field can be generated by simply rotating the cloud or by more
advanced techniques [5–9].

For electron systems, one prominent way of theoretically
studying the quantum Hall effect involves constructing (classes
of) explicit trial wave functions that approximate the true
low-energy eigenstates of the interacting system. At least
in the case of Coulomb interaction, the true many-body
eigenstates are extremely complicated. Still, many success-
ful trial wave functions exist, most famously the Laughlin
wave functions [10], the family of composite fermion (CF)
states [11], and trial wave functions addressing non-Abelian
quantum Hall states [12–14]. The success of these trial wave
functions in explaining various phenomena is linked to the
way they capture the important topological properties of the
phases they describe.

Many of the methods mentioned above have been mod-
ified to be applicable to weakly interacting cold atom
systems [15,16]. The hope is to be able to experimentally
study strongly correlated states in a cold atom setting,
where parameters like density, disorder, and scattering lengths
may be tuned much more finely than in the semiconductor
systems traditionally used in quantum Hall experiments [17].
More recently, an additional degree of freedom is often
taken into consideration in models and experiments, called
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pseudospin [18,19]. Typically this means multicomponent
mixtures where the different components are different internal
states of the atoms. Varying inter- and intraspecies interactions
independently allows novel behaviors [20]. This pseudospin
degree of freedom has been incorporated in the composite
fermion scheme used for cold atom systems, and has been used
in the quantum Hall regime of high angular momenta [21,22].
On the other hand, near the lower end of the angular momentum
scale, where the CF description is not a priori expected to
work, it has been shown that it actually works surprisingly
well, both in scalar and two-component cases [23,24].

A property of the CF method of constructing wave functions
is that one typically needs to do a projection into the lowest
Landau level (LLL) in order to either compare different CF
wave functions, or to compare a CF to an eigenstate found by
numerical diagonalization of the interacting Hamiltonian [25].
This projection leads to nonorthogonal, and often also linearly
dependent, CF wave functions. This has been known in the
context of electrons in the quantum Hall regime [26–28],
but the issue is much more prominent for bosons with low
angular momenta: we have previously observed [29] one or
two orders of magnitude difference between the number of
seemingly distinct CF candidates and the actual number of
linearly independent wave functions. In some extreme cases
the number of seemingly distinct CF candidates one can
write down is even larger than the dimension of the relevant
sector of Hilbert space, meaning they cannot possibly be
independent. Until very recently, little was understood about
the mechanisms responsible for these linear dependencies after
projection. In a previous paper [29], we discussed three types
of relations between certain types of low-lying CF candidates,
but were only able to give examples demonstrating how these
relations seem to explain all the linear dependencies.

In this paper, we present sets of CF candidates for two-
component systems that we rigorously prove are basis sets for
the subspace that minimizes the CF cyclotron energy for low
angular momenta. We use these states to study the real-space
distribution of particles and vortices of the lowest-lying wave
functions when we vary the angular momentum, and also give
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additional attention to certain special cases, comparing them
to known behavior from scalar gases.

II. TWO-COMPONENT ROTATING BOSE GASES

We first summarize the model for two-species Bose gases
in the lowest Landau level, including their description in terms
of composite fermions. A more detailed introduction can be
found in [24]. The two species of bosons experience a two-
dimensional harmonic trap potential of strength ω, and are
rotating about the minimum of the potential at frequency �.
The Hamiltonian is

H =
N+M∑
i=1

(
p2

i

2m
+ 1

2
mω2r2

i − �li

)

+
N+M∑
i=1

N+M∑
j=i+1

2πgi,j δ(ri − rj ). (1)

Here N denotes the number of particles of the minority
species, and M � N denotes the number of particles of
the majority species, all with the same mass m. li is the
angular momentum of particle i. The strength of the contact
interaction gi,j depends only on the species of particles i,j . In
the species-independent case gi,j = g = constant, the system
possesses a pseudospin-1/2 symmetry, which we will assume
here. For sufficiently dilute gases, i.e., in the weak interaction
limit, this reduces to the well-known lowest Landau level
problem [2,3] in the effective magnetic field 2mω,

H =
∑

i

(ω − �)li + 2πg
∑
i<j

δ(ηi − ηj ). (2)

In the ideal limit (ω − �) → 0 the Landau levels become flat,
meaning that the many-body eigenstates are solely determined
by the interaction. Here ηj = xj + iyj are the dimensionless
complex positions of the particles in units of the “magnetic”
length � = √

h̄/(2mω). We name the coordinates of the two
components zi = ηi , 1 � i � N and wi = ηN+i , 1 � i � M .
Working in symmetric gauge, the single-particle eigenstates
in the lowest Landau level with angular momentum l

are

ψ0,l(η) = Nlη
l exp (−ηη̄/4), l � 0. (3)

The Gaussian factors are ubiquitous, so we suppress them
for simplicity from now on. Since the Hamiltonian commutes
with the total angular momentum L = ∑

i li , we may work
with many-body wave functions that are eigenstates of L.
These are homogeneous polynomials of degree L, symmetric
in the coordinates of each species separately. As is com-
mon [2,24] we will focus on translationally invariant states,
i.e., polynomials invariant under a constant shift η′ of all
coordinates,

	({ηi + η′}) = 	({ηi}). (4)

As mentioned in the Introduction, one may adapt the CF
approach to produce wave functions for 2D bosons, both in the
scalar and multicomponent cases. A CF trial wave function for
the bosonic two-species system is of the form [25]

	CF = PLLL(
Z
WJ (z,w)q), (5)

where q is an odd number, q = 1,3,5, . . .. 
Z , 
W are Slater
determinants for each species of CFs, treated as noninteracting
to lowest order. They consist of the CF orbitals

ψn,m(η) = Nn,mηmLm
n

(
ηη̄

2

)
, m � −n, (6)

where Lm
n is the associated Laguerre polynomial, and Nn,m is a

normalization factor. The interpretation of these orbitals is that
they are composite fermions occupying Landau-like levels,
labeled by n (often called � levels) in a reduced effective
magnetic field. J is a Jastrow factor involving both species,

J (z,w) =
∏
i<j

(ηi − ηj )

=
∏
i<j

(zi − zj )
∏
k<l

(wk − wl)
∏
i,k

(zi − wk). (7)

J (z,w)q has q units of angular momentum per pair of
particles, in total LJ = q(N + M)(N + M − 1)/2. We will
be considering low total angular momenta, hence we will
choose the smallest possibility q = 1. PLLL denotes projection
to the lowest Landau level. We use the projection of Girvin
and Jach [30] (called Method I in [25]), which amounts to first
moving the conjugate variables ηi to the left of the ηi , and then
replacing ηi by ∂ηi

.
In this paper, we focus on low angular momenta, specifically

L � MN . We consider the set of translationally invariant
CF wave functions that minimize the total CF cyclotron
energy Ec ∝ ∑

i ni in this L range. The sum runs over
the CF orbitals occupied in a pair of Slater determinants.
Since L � MN < 1/2(N + M)(N + M − 1) = LJ , we see
that

∑
i mi must be negative. We have previously shown that

this set is spanned by CF candidates where only the orbitals
ψn,−n are occupied, and that linear combinations of candidates
in this set give good overlaps with the very lowest-lying states
in the exact yrast spectrum [24]. After projection to the LLL,
the orbitals ψn,−n(η) become ∂n

η . This simple form of the
Slater determinants has led these CF wave functions to be
called simple states. Since the differential operators commute,
we may perform the projection to the LLL on the Slater
determinants individually, as long as we keep them to the
left of the Jastrow factor. This is understood in the following
sections.

III. COMPOSITE FERMION BASIS

We now present some sets of states that we prove to be
bases for the space of simple states with N + M particles
and angular momentum L. First, we need some definitions.
The simple states are in the form of Eq. (5), where the Slater
determinants after projection are


Z(a) =
∑
ρ∈SN

N∏
i=1

(−1)|ρ|∂ai

zρi
(8)

and


W (b) =
∑
ρ∈SM

M∏
i=1

(−1)|ρ|∂bi

wρi
, (9)
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FIG. 1. Young diagrams corresponding to partitions of 6 into a
5 × 3 box.

with ai,bi < N + M − 1. In the following, we will focus
on 
Z , but we will never use that N � M , so replacing
W,w,M ↔ Z,z,N is always possible.

We define

PN,M,L =
{

p ∈ ZN | M � p1 � · · ·

� pN � 0,

N∑
i=1

pi = L

}
. (10)

This is the set of partitions of L into an M × N box. We
order the partitions lexicographically. The partitions can be
visualized using Young diagrams. Such a diagram is obtained
by coloring L cells of an M × N box compactly from the
lower left. The number of colored cells in the lowest row is p1,
the next row corresponds to p2, and so on. As an example, we
show all the Young diagrams corresponding to the set P3,5,6 in
Fig. 1.

There is a one-to-one correspondence between PN,M,� and
{
Z(a)| ∑N

i=1 ai + 1 − i = �} given by

p ↔ 
Z(a(p)), ai(p) = i − 1 + pN+1−i . (11)

We define the following differentiation operators:

�zn ≡
N∑

i=1

∂n
zi
, �wn ≡

M∑
i=1

∂n
wi

, (12)

and

�Z(p ∈ PN,M,�) ≡
∑
ρ∈SN

N∏
i=1

∂pi

zρi
. (13)

We have that

�Z(p)
Z(a) =
∑

σ,ρ∈SN

(−1)|ρ|
N∏

i=1

N∏
j=1

∂pi

zσi
∂

aj

zρj

=
∑

σ,ρ∈SN

(−1)|ρ|
N∏

i=1

N∏
j=1

∂
pσi
zρi

∂
aj

zρj

=
∑
σ∈SN


Z

(
a +

N∑
k=1

pσk
ek

)
, (14)

and

�zn
Z(a) =
N∑

k=1


Z(a + nek). (15)

The maximal L = MN state occurs when the Slater determi-
nants contain minimal differentiation operators, i.e.,

	(L=MN) = 
Z(α)
W (β)J, (16)

where αi,βi = i − 1. We will continue to use the vectors α

and β as they are useful not only for L = MN but also for
general L. We can now state our main theorem:

Theorem 1. The sets

BZ,L = {
Z(a(p))
W (β)J | p ∈ PN,M,MN−L},
DZ,L = {�Z(p)
Z(α)
W (β )J | p ∈ PN,M,MN−L}

(17)

are bases for the set of simple CF states with N + M particles
and angular momentum L. The sets BW,L and DW,L are also
bases.

In fact, BZ,L = BW,L for MN − L even. Otherwise, the
sets contain (−1) times the vectors of the other. This can be
seen as a consequence of reflection symmetry, as introduced
in [29].

Proof. We first show that DZ,L spans BZ,L; we already
know from Eq. (14) that BZ,L spans DZ,L. We then show that
BZ,L spans the set of simple CF states, and finally that BZ,L

is a linearly independent set. This must also hold for DZ,L

since |DZ,L| = |BZ,L|. We refer to lemmas that we prove in
the Appendix.

Lemma 1. States that DZ,L spans BZ,L:


Z(a) =
∑

p∈PN,M,�

cp�Z(p)
Z(α) (18)

for coefficients c ∈ Q|PN,M,�|, where � = MN − L. The
lemma also shows that we can write a general simple CF
state as

	 = φZ(a)φW (b)J =
∑

p∈PN,M,�

cp�Z(p)φZ(α)φW (b)J.

(19)

Lemma 2. States that we can write

�Z(p) =
∑

p̃∈PN,�,�

dpp̃

N∏
i=1

�zp̃i , (20)
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FIG. 2. Size of the simple CF basis as a function of L for a total
of N + M = 12 particles.

with coefficients dpp̃ ∈ Q. We can therefore write

	 =
∑

p∈PN,M,�

∑
p̃∈PN,�,�

cpdpp̃

N∏
i=1

�zp̃i φZ(α)φW (b)J. (21)

Next, we can apply generalized translation invariance
(Lemma 3),

(�zn + �wn)	 = 0, (22)

to replace the �zp̃i operators with −�wp̃i , giving

	 =
∑

p∈PN,M,�

∑
p̃∈PN,�,�

s(p̃)cpdpp̃

N∏
i=1

�wp̃i φZ(α)φW (b)J,

(23)
where s(p̃) is (−1) if there is an odd number of p̃i that are
nonzero, and 1 otherwise.

We can see from Eqs. (14) and (15) that this gives terms
that are all in the form 
Z(α)
Z(b′)J for varying b′. We have
now expressed a general simple state as a linear combination
of elements of BW,L, and the same can be done for BZ,L. All
that remains is to show that BZ,L is a linearly independent set,
and this result is Lemma 4. �

To summarize, we have shown that any of the sets
BZ,L,BW,L,DZ,L, and DW,L [Eq. (17)] are basis sets for the
simple CF wave functions at angular momentum L. In other
words, when constructing basis sets for simple states, we can
always fix 
W (
Z) to 
W (β) (
Z(α)) and then vary the
Z (W ) determinant. The number of ways to do that, i.e., the
size of the basis, is simply |PN,M,MN−L|. We plot this as a
function of L for N + M = 12 in Fig. 2. The symmetry of
each curve about its midpoint L = MN/2 that was originally
observed in [29] is now easily understood because the number
of ways to color L cells in a Young diagram leaves MN − L

cells uncolored, meaning that the L diagrams are 1-1 with the
MN − L diagrams. We have illustrated this in Fig. 3.

FIG. 3. Young diagrams illustrating 1-1 correspondences. The
left-right correspondence is between partitions of PN,M,L and
PN,M,NM−L, explaining the symmetry of the number of states dis-
played in Fig. 2. The top-bottom correspondence is between PN,M,L

and PM,N,L giving bijections BZ,L ↔ BW,L and DZ,L ↔ DW,L.

IV. STRUCTURE OF THE LOWEST-LYING WAVE
FUNCTIONS

Using the simple CF basis sets presented in the previous
section, we can now diagonalize the interaction Hamiltonian
in the simple CF subspace to produce approximations to the
lowest-lying wave functions of the two-component rotating
gas. Because the size of the simple CF basis is so much
smaller than the size of the Hilbert space, this is often a huge
computational simplification. We now take advantage of this
to study some aspects of these low-lying states.

To increase our physical understanding of the structure
of these states, one option is to study density and pair
correlation functions. Another approach that is particularly
suitable to visualizing vortex structure is to compute the
so-called restricted wave function (RWF) ψr (r)[31,32]. To
find the RWF of a given many-body wave function 	, one first
calculates a set of particle coordinates {r∗

i }N+M
i=1 that maximizes

|	|2. The restricted wave function is defined as

ψr (r) = 	(r,r∗
2,r

∗
3, . . .)

	(r∗
1,r

∗
2,r

∗
3, . . .)

. (24)

We see that this function varies as one of the particles is
allowed to move from its maximizing position. The amplitude
of ψr gives the relative amplitude of the many-body wave
function compared to the maximum, and the argument gives
the change in phase. The vortices can be identified from plots
of ψr where the nodes of the amplitude meet lines where the
phase jumps.

An example of an RWF plot is shown in Fig. 4. The
wave function 	 in this example is the exact ground state
for a single-species gas with eight particles at L = M = 8.
For a single component, the cases L = M are known as
single-vortex states [23,33]. The triangular plot markers show
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FIG. 4. Restricted wave function for the single-vortex state of
eight particles in the 2D plane. The unit of length in this and the
following RWF plots is the magnetic length � = √

h̄/(2mω). For
87Rb atoms in a trap with frequency ω = 2π × 2 kHz, the magnetic
length is approximately � ≈ 170 nm.

the optimal positions {r∗
i }. The number on each plot marker

specifies how many particles share that position. The plot
marker with black filling corresponds to the particle whose
position r is varied in the plot. The contour lines show lines of
constant amplitude of ψr and the color shows the phase change,
where black corresponds to −π and white to π . In this case,
the configuration of highest |	|2 is a ring of particles, with a
vortex clearly visible close to the center of the ring.

In our two-component case, we can define a RWF for
each species, ψrZ and ψrW for minority and majority species,
respectively. The difference is simply the species of the particle
whose position we vary. We will use triangles pointing down
as plot markers for the minority component particles, and
triangles pointing up for majority particles (like ∇ and �,
respectively).

In FIG. 5 we see that there is a substantial difference
between the RWF plots ψrZ and ψrW . In the top row we
see a vortex approaching the cloud from the side where the
lone minority particle is located, starting far outside the cloud
and coming closer and closer to the center as L increases.
On the other hand, the lone minority particle sees a vortex
coinciding with the lump of majority particles already at
L = 1, a so-called coreless vortex [20,34]. This is consistent
with findings using full diagonalization [35]. The multiplicity
of this vortex increases with L, and the vortex and majority
particles move together, away from the lone minority particle.
This displays an example of how the “perspectives” of the two
species can be very different for a given state 	. A similar
pattern is also observed for (N,M) = (2,6),(3,5) for L < M .

For L � M , a variety of configurations are realized as those
maximizing |	|2. The common features are that as L increases

and the particles spread out more, particles of the same species
still tend to stay close to or on top of some of the other
ones, rather than all of them spreading out. The vortices are
exclusively located near the particles of the opposite species:
no same-species nodes are observed for the L we consider.
Finally, the mean number of phase jump lines per particle of
the opposite species increases with L. A more or less typical
situation is shown in Fig. 6. The majority species has split
into three groups, but three of them are still close together.
The minority particles are all in the same position. In both
Figs. 6(b) and 6(c), there are two nodes close to the lump
of three minority particles. Since the only difference between
Figs. 6(b) and 6(c) is which majority particle coordinate we
choose to vary, this demonstrates that the vortex configuration
that is seen is not sensitive to that choice, which is what we
would expect of a physical vortex state.

Finally we discuss the maximally rotating simple states,
namely, the states in Eq. (16). For a given N,M this is the only
possible simple state at L = MN , i.e., no CF diagonalization
is necessary. The restricted wave functions of some L = MN

states are shown in Fig. 7. Again we see a very clear distinction
between minority and majority species particles. The majority
particles are positioned on the vertices of a regular M-gon,
with all the minority particles in the center. In Figs. 7(a)–7(c)
we see what looks like a single, double, and triple vortex
structure, respectively, but filled by the minority component.
The qualitative behavior of the amplitude contours is largely
the same in the three plots. In particular, Fig. 7(a) looks
remarkably similar to Fig. 4 except for the minority particle in
the middle. We will come back to this point in Sec. V.

It can be noted that, while the single vortex for a scalar
gas appears at L = N , the general multiply quantized vortex
of winding k appears at Lk/N < k; for 20 particles, the
double and triple vortices appear at L/N 1.8 and 2.85
respectively [33]. The results presented here seem to indicate
that the vortex of winding N appears at L = MN , but the
vortex is a coreless vortex in the majority component. On
the other hand, Figs. 7(d)–7(f) show how ψrZ evolves from a
more or less Gaussian distribution in Fig. 7(d) to a situation
where one node radially approaches each majority particle
from outside the cloud.

V. OVERLAPS

When working with trial wave functions like CF wave
functions, especially in a context for which CF was not
originally intended, like the slowly rotating Bose systems
we are discussing, one should carefully compare the results
obtained with ones obtained by other means. In the lowest
Landau level, we are fortunate because the Hilbert space of
each L sector is finite. Given enough computer resources,
one can therefore in principle compute the exact spectrum
(at least to machine precision) for a given L, and compare the
CF results to this. In practice, desktop computers can handle
two-component systems with up to a total of around 15–20
particles for the L considered in this paper. This method has
been used to verify the applicability of the CF construction to
scalar [15,23] and two-component systems both below and in
the quantum Hall regime [21,22,24].

033633-5



O. LIABØTRØ AND M. L. MEYER PHYSICAL REVIEW A 95, 033633 (2017)

FIG. 5. Restricted wave functions for very low angular momenta for one minority and seven majority particles. (a)–(c) show ψrW ; (d)–(f)
show ψrZ .

FIG. 6. Three visualizations of the RWF for (N,M,L) = (3,5,9). (a) shows ψrZ , while (b) and (c) show ψrW for two choices of the particle
whose position we vary.
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FIG. 7. Restricted wave functions for L = MN . (a)–(c) show ψrW ; (d)–(f) show ψrZ .

In particular, Refs. [23,36] showed that the overlap between
the exact and CF state for the scalar case N = L (the single
vortex) increases to unity in the N → ∞ limit. As mentioned
in the previous section, this is the state plotted in Fig. 4 for
M = 8. It strikingly resembles the restricted wave function
plot of the Lmax state with a single minority particle, Fig. 7.
This resemblance, and the fact that the Lmax state is unique for
given N,M , led us to compute the overlap between the exact
lowest-lying state and the CF Lmax state as a function of M for
given N = 1,2,3.

In Fig. 8, the squared overlaps |〈	CF | 	exact〉|2 between the
maximally rotating simple CF wave functions at L = MN and
the exact lowest-lying states are plotted as functions of M for
N = 1,2,3 in Figs. 8(a)–8(c). In Fig. 8(a), we see exactly the
same convergence to unity as was reported in [23,36] for one
component. The CF candidate in the one-component case is
not simple (simple states do not exist in the scalar case), but
it is unique and minimizes the CF cyclotron energy. The exact
ground state of the single vortex, on the other hand, is known,
and its polynomial part is simply proportional to

	s.v. = eM (z̃), (25)

where z̃i = zi − 1/M
∑

j zj are the particle coordinates rela-
tive to the center of mass, and ek is the elementary symmetric
polynomial of degree k. In fact, for N = 1, the exact lowest-
lying L = M state is known also in the two-component case:
it was given in [37] and its polynomial part is proportional to

	N=1,L=M = z̃eM−1(w̃) − MeM (w̃). (26)

Here η̃i = ηi − 1/(N + M)
∑

i ηi are the particle coordinates
relative to the center of mass for all particles.

In Figs. 8(b) and 8(c), however, we clearly see that the
squared overlap decreases with system size, as is usually the
case with most trial wave function approaches. It should be
stressed that the dimension of the relevant sector of Hilbert
space grows very rapidly with system size, so given that
	L=MN is a unique state in this space, it is still surprising
that the overlap with the true lowest-lying state is as large
as it is. We should also remember that we have restricted
ourselves to simple states in this analysis: the fact that the
overlap decreases with system size therefore tells us that higher
bands of CF cyclotron energy Ec contribute significantly for
larger systems.
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FIG. 8. Squared overlap |〈	CF | 	exact〉|2 between the numerically exact lowest-lying states and the CF states [Eq. (16)], at L = MN , for
(a) N = 1, (b) N = 2, and (c) N = 3, as functions of M .

VI. CONCLUSIONS AND OUTLOOK

The main results of this paper are the identification of basis
sets of simple CF states, and the proof that these sets are
in fact spanning the simple state subspace and are linearly
independent. We have used these basis sets to revisit the
spatial structure of particles and vortices for the rotating two-
component Bose gas in the LLL at low angular momenta, and
have paid special attention to the unique simple CF candidates
at angular momentum L = MN . We find that for N = 1
minority particle, the system mimics the CF candidate for
the single-vortex state of the scalar rotating gas. This includes
an overlap with the exact wave function that converges to 1 in
the N → ∞ limit. For N > 1, we observe a coreless vortex
of winding N in the majority species at exactly L = MN .
From the plots in Fig. 8, however, we see that the exact wave
function must have contributions from CF states in higher Ec

bands. To determine whether this makes any qualitative dif-
ferences from the results presented here would require further
investigation.

As presented in [29], there are still linear dependence
relations between CF candidates in higher Ec bands that are not
understood. However, now that we have a good understanding
of the relations for simple states, it might be possible to make
further progress for these so-called “compact states” [25]. They
are the relevant candidates for L > MN in the system studied
here, but they are also relevant for electrons in strong magnetic
fields, confined to quantum dots [38].

For other projection methods [39] and/or geometries [40],
we expect some linear dependence relations similar to the ones
in this paper. The reason is that, as we have seen, it is in fact
the Jastrow factor that is responsible for the equations that
relate different �-level configuration patterns. Certainly some
rules will need to be modified, but the principle of translation
invariance should still hold.
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APPENDIX: MATHEMATICAL RESULTS

Lemma 1. There exists c ∈ Q|PN,M,�| such that


Z(a) =
∑

p∈PN,M,�

cp�Z(p)
Z(α), (A1)

where αi = i − 1. � = ∑N
i=1 ai − αi .

Proof. We use the one-to-one correspondence between the
elements of PN,M,� and 
Z(a) given by

p ↔ 
Z(a(p)), ai(p) = i − 1 + pN+1−i (A2)

and induce an ordering on the Slater determinants such that

p < p′ ⇔ 
Z(a(p)) < 
Z(a(p′)). (A3)

We have that

�Z(p)
Z(α) =
∑
σ∈Sn


Z

(
α +

N∑
k=1

pσk
ek

)
. (A4)

The nonzero terms are all Slater determinants. The greatest
determinant with respect to the ordering occurs when σ orders
the partition nondecreasingly. This particular determinant is

Z(a(p)) and we may therefore write

�Z(p)
Z(α) =
∑
p′�p

npp′
Z(a(p′)) (A5)

for some integers npp′ . It is important that

npp �= 0. (A6)

It is in fact positive, since every permutation σ that gives
this determinant leaves the elements of α + ∑N

k=1 pσk
ek in

increasing order. It follows that for the smallest partition,
pmin = min(PN,M,�), we have


Z(a(pmin)) = 1

npminpmin

�Z(p)
Z(α), (A7)

and in general


Z(a(p)) = 1

npp

�Z(p)
Z(α) −
∑
p′<p

npp′

npp


Z(a(p′)). (A8)

Equation (A7) says that the lemma holds for 
Z(a) =

Z(a(pmin)) and Eq. (A8) says that it holds for
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Z(a) = 
Z(a(p)) if it holds for all p′ < p. It must therefore
hold for all p. �

Lemma 2. For all p ∈ PN,M,�, there exists dp ∈ Q|PN,�,�|

such that

�Z(p) =
∑

p̃∈PN,�,�

dpp̃

N∏
i=1

�zp̃i , (A9)

where we define �z0 = N .
Proof. Our proof is based on induction. We first define the

subset

PN,M,�|K = {p ∈ PN,M,� | pi = 0 ⇔ i > K} (A10)

and note that trivially, for all p ∈ PN,�,�|1 ⊃ PN,M,�|1, there
exists dp ∈ Q|PN,�,�| such that Eq. (A9) holds. There is only one
such p and �Z(p) = �z� . Now, we assume as the induction
hypothesis that Eq. (A9) holds for all p ∈ PN,�,�|k when
k � K .

Let p ∈ PN,�,�|K+1 and consider the differentiation poly-
nomial

N∏
i=1

�zpi . (A11)

It is a product of N factors. Each factor is a sum of N

differentiation operators with respect to N different variables.
The resulting terms with the highest number of nonzero
exponents are those that do not multiply differentiation
operators for the same variable from several different factors
�zpi , except for the last N − K − 1 �zpi as ∂0

zi
= ∂0

zj
and any of

the NN−K−1 combinations gives the same. This restricted part
of

∏N
i=1 �zpi can be described by permutations as

NN−K−1

(N − K − 1)!

∑
ρ∈SN

K+1∏
i=1

∂pi

ρi
= NN−K−1

(N − K − 1)!
�Z(p),

(A12)
and this means that

�Z(p) = (N − K − 1)!

NN−K−1

N∏
i=1

�zpi + D, (A13)

where D is a polynomial of differentiation operators where
each term has at most K nonzero exponents. By the induction
hypothesis, these can all be written on the form of Eq. (A9).
This implies that the hypothesis is also true for all k � K + 1
and completes the proof. �

As was introduced in [29], the simple CF states obey the
following lemma:

Lemma 3. Generalized translation invariance

(�zn + �wn)	 = 0 (A14)

for all integers n > 0.
Ordinary translation invariance is captured in the case

n = 1.
Proof. The operator (�zn + �wn ) commutes with the Slater

determinants, so it is enough to show that (�zn + �wn)J = 0.
This result is independent of the splitting of particles into Z

and W types. We can therefore use variables {ηi}N+M
i=1 . We

have that

�ηnJ =
N∑

i=1

∂n
ηi

∑
ρ∈SN+M

(−1)|ρ|
N+M∏
j=1

ηj−1
ρj

=
N∑

i=1

∑
ρ| ρi>n

(−1)|ρ| (ρi − 1)!

(ρi − n − 1)!

N+M∏
j=1

η
ρj −1−nδj,i

j .

(A15)
Now, for each pair (i,ρ), there is a unique pair (i ′,ρ ′) such that
ρi − n = ρi ′ and ρ ′

i ′ − n = ρ ′
i and ρj = ρ ′

j for all j �= i,i ′.
Since ρ and ρ ′ only differ by a permutation of two elements,
(−1)|ρ|+|ρ ′ | = −1 and the corresponding terms in Eq. (A15)
cancel out. Since this happens for all (i,ρ), it follows that
�ηnJ = 0. �

Lemma 4. Linear independence

BZ,L = {
Z(a(p))
W (β)J | p ∈ PN,M,MN−L} (A16)

is a linearly independent set.
Proof. If

	p = 
Z(a(p))
W (β)J ∈ BZ,L, (A17)

then we denote the projection onto wi = 0 ∀ wi by 	̄p, and
the set of projected states by B̄Z,L. We will show that this set
is linearly independent and therefore BZ,L is as well.

The w-independent terms of 	p arise when the ∂wi

operators act on the M lowest-order variables in the Jastrow
factor. We can therefore write

	̄p =
(

M∏
k=0

k!

) ∑
σ,τ∈SN

(−1)NM+|σ |+|τ |
N∏

i=1

∂ai (p)
zσi

N∏
j=1

zM−1+j
τj

=
(

M∏
k=0

k!

) ∑
σ,τ∈SN

(−1)NM+|σ |
N∏

i=1

∂
aσi

(p)
zτi

zM−1+i
τi

.

(A18)
We are interested in the particular symmetrized term that
occurs when σ is the identity operator. We name this term
tp, and it can be written as

tp = Kp

∑
τ∈SN

N∏
i=1

zM−pi

τi
, (A19)

where Kp is an integer that results from differentiation and
possibly a permutation sign. The term has the property that the
smallest exponent is as great as possible among terms in 	̄p.
Given that, the second smallest exponent is as great as possible
and so on. We use this to define an ordering on the tp terms,
saying that

tp < tp′ (A20)

if and only if the kth least exponent of tp is greater than the
kth least exponent of tp′ and their k − 1 least exponents are
pairwise equal. This is equivalent to p < p′, and if we pick
another nonzero term t ′p of 	̄p by choosing a σ that is not the
identity, then we have tp < t ′p. We index the partitions such
that

p1 < p2 < · · · < p|PN,M,NM−L|. (A21)

Now, if i < j , then tpi
< tpj

< t ′pj
. This means that 	̄i contains

a polynomial term that is not contained in any 	̄j for all j > i.
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This means that if there exists a linear dependence relation

c1	̄p1 + · · · + c|PN,M,NM−L|	̄p|PN,M,NM−L | = 0, (A22)

then the leftmost nonzero coefficient of this relation must be
0, and the relation must therefore be trivial. �
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