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Spatial-contrast analysis in a cold-atom Sagnac interferometer with a single large Raman beam
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We have developed a cold atom Sagnac interferometer with a single large Raman beam. In combination with
a time-of-flight measurement performed by thin probe beams, the variation in spatial contrast of the atomic
Mach-Zehnder interference was analyzed by considering the spatial intensity profile of the single large Raman
beam and the spatial density profile of the atomic cloud. Based on our analysis, we determined that contrast
enhancement is attainable using the spatial selection of the atomic cloud but it reduces angular velocity sensitivity.
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I. INTRODUCTION

Light-pulse atom interferometers provide a precise way of
measuring physical constants [1–3], gravity [4–6], and rotation
[7–11]. Certain types of light-pulse atom interferometers,
where stimulated Raman transitions serve as an atomic wave
packet splitter, have been widely developed, especially for
measuring gravitational acceleration and rotation. In order to
measure the acceleration of gravity, only a single Raman beam
propagating along the vertical direction is required. For rota-
tion sensing, however, three spatially separated Raman beams
are usually required to achieve the long interrogation time
[7,9]. Those three individual Raman beam optics, however,
have alignment and maintenance issues [7]. On the other hand,
a single Raman beam configuration is easy to align, is free
from the unwanted phase shifts caused by alignment of the
three Raman beams, and can have a good long-term stability.
For rotation sensing, large single Raman beam optics can be
used in cases where high sensitivity is not required, because
the beam size limits the interrogation time, which is critical to
sensitivity. Recently, three narrow slits in a large single Raman
beam were applied to a low-velocity intense source (LVIS)
based light-pulse atom interferometer [12]. A single large
Raman beam type cold-atom Sagnac interferometer based on
moving molasses was also studied [11,13]. It is well known
that the contrast in an interference fringe is limited by the
inhomogeneous Rabi frequencies originating from the Raman
laser intensity profile. But a detailed analysis of the spatial
variation in spatial contrast has not yet been studied. The in-
homogeneous Rabi frequencies arising from the Raman beam
intensity profile are remarkable in such cold-atom Sagnac
interferometers because the atomic cloud is crossing the
Raman beam along the radial direction, while in gravimeter-
type interferometers the atomic cloud is moving along the axial
direction.

In this paper we observed and analyzed the atomic Mach-
Zehnder interference induced by a single large Raman beam
with the help of a time-of-flight measurement, based on thin
probe beams, whose widths are 3.8 times smaller than the
size of the atomic cloud. The variation in spatial contrast
in the atomic cloud was analyzed by considering the spatial
intensity profile of the single large Raman beam and the atomic
density profile. Based on our analysis, we found that the
spatial selection increases contrast, but it degrades the angular
velocity sensitivity.

II. EXPERIMENTAL SETUP

Figure 1(a) shows the schematic diagram of the exper-
imental setup. Rubidium 87 atoms are trapped and cooled
by a typical magneto-optical trap for 698 ms of the loading
time in the MOT chamber. Atomic clouds are launched at
an angle of 12 deg with respect to the horizontal plane
during a moving molasses stage of 2 ms. The following 2 ms
polarization gradient cooling stage reduces the temperature
of the atomic clouds to 3.67(0.9) μK, which is measured
by Raman velocimetry [14]. The mean speed of the atomic
clouds is 3.34 m/s along the y axis (longitudinal direction).
The manipulation and detection of the atomic wave packet is
performed in a glass chamber (40 mm × 40 mm × 140 mm).
Two slightly angled bias coils outside the glass chamber
generate a bias magnetic field of 0.96 G to define the quantum
axis.

In a state-preparation stage, both the Zeeman optical
pumping laser, which is resonant on the F = 2 → F ′ = 2
transition, and the repumping laser simultaneously illuminate
the atomic cloud to prepare atoms in the F = 2,mF = 0
state. The polarization of the Zeeman optical pumping beam
is parallel to the bias magnetic field, π -pol. During the
preparation stage, the atomic cloud is heated to a temperature
of 5.46(0.7) μK [9].

After a preparation stage, three pulses in a large single
Raman beam of 25 mm 1/e2 radius separate, reflect, and
recombine the cold atomic wave packets, as shown in Fig. 1(b).
The attainable interrogation time in our Raman beam optics
is about 3.75–4 ms. The direction of the Raman beam
propagation is perpendicular to gravity, as shown in Fig. 1(a).
Each of the Raman pulses has a pulse duration of 5 μs,
which is achieved by using an optical switch consisting of
an 80 MHz acousto-optic modulator (3080-1, Crystal tech.),
an RF switch (ZSDR-203+, Mini-Circuits), and a digital pulse
generator (DG535, SRS). The shorter Raman pulse enhances
the Raman transition efficiency because the velocity linewidth
of the Raman transition covers more of the atomic velocity
distribution [13]. The optical common detuning � of the
Raman beams is −1 GHz detuned with respect to the cooling
transition. The Raman beam intensity ratio of Raman stokes
to Raman pump is adjusted to 0.5 which minimizes the ac
stark shift. The Raman detuning δ, which is the frequency
difference between the Raman stokes and the Raman pump
beam, is adjusted by using an arbitrary function generator
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FIG. 1. (a) Schematic diagram of the experimental setup. (b)
Raman beam intensity profile (blue solid line) and density profile
of atomic clouds (filled area) at the first π/2 (red), the second π

(gray), and the third π/2 (blue) pulse positions. The 1/e2 radius of
the Raman beam is 25 mm and the 1/e radius of the atomic cloud is
5.6 mm.

(AFG3101C, Tektronix). The details of our Raman system
are given in Ref. [15]. To achieve sufficient optical power,
the phase-locked Raman stokes and Raman pump beam are
simultaneously injected into a tapered amplifier (BoosTA pro,
Toptica). The maximum power of the two mode Raman beam
is 700 mW after a fiber coupling.

In the interferometry stage, the phase of the third π/2 pulse
is changed by an isosceles triangular frequency sweep that is
composed of a tc = 1 ms sweep time and a tc = 1 ms return
time. The resulting Raman laser induced phase difference is
given by �φlaser = βt2

c , where β is the frequency sweeping
rate.

We measured the atomic population as a function of the
phase of the third π/2 Raman pulse. A lin ⊥ lin Raman beam
polarization configuration, where the incident Raman beam
has a horizontal polarization and the retroreflected Raman
beam passing through a quarter-wave plate has a vertical
polarization, induces a constructive interference between the
two stimulated Raman passages, σ+ − σ+ and σ− − σ−. This
allows a nonzero keff which generates acceleration and a
rotation-induced phase. In order to select a splitted atoms’s
path by utilizing the Doppler shift, the Raman beam line is
angled 84 deg to the atom’s mean velocity.

After an atomic Mach-Zehnder pulse sequence, the re-
sulting atomic populations in the F = 2 and the F = 1
state are detected by two time-of-flight measurements, for
normalization of the atomic population. Two thin probe beams
(1.45 mm × 20 mm), which are resonant on the F = 2 →
F ′ = 3 transition, induce fluorescence from the atoms in the
F = 2 state. The width of the thin probe beams is 3.86 times

smaller than the size of the atomic cloud, σ = 5.6 mm, in the
detection region, so that it induces fluorescence from a slice of
the atomic cloud which is comparable to the probe beam size,
not the entire atomic cloud.

As a result, using this thin probe beam based time-of-flight
measurement, we can extract spatial information along the
longitudinal direction (y axis). The first probe is partially
retroreflected in order to detect and blow out the F = 2
atoms. Between the two probes, the elongated repumping
beam illuminates the atomic clouds to optically pump the
F = 1 atoms to the F = 2 state. Therefore, fluorescence
induced by the second retroreflected probe beam indicates
the number of atoms in the F = 1 state. This normalization
technique suppresses the effect of atomic number fluctuations
in the atomic clouds on the signal-to-noise ratio. We can
also determine the mean velocity of the atomic clouds by
using the two time-of-flight signals. Each of the fluorescences
is collected by a f = 25 mm lens pair and is sensed by
a large area photodiode (Hamamatsu S1337-BR) with a
transimpedance circuit.

III. RESULTS AND DISCUSSION

Figure 2(a) shows the measured velocity sensitive Raman
spectrum. The large peaks shown at ±0.92 MHz come from
the velocity sensitive Raman spectrum, and the small peak
at zero detuning is the residual velocity insensitive Raman
spectrum. The detuning of the large peak is determined by
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FIG. 2. (a) Velocity sensitive Raman spectrum as a function of
Raman detuning δ. The blue arrow indicates the Raman detuning
used in the experiment. (b) Velocity sensitive Rabi oscillation as a
function of pulse duration τ at the fixed Raman power of 700 mW.
(c) Fraction as a function of Raman pulse flashing timing. The red
filled circles and the red solid line indicate the experimental data and
fitting by Eq. (5), respectively.
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δcounter = |�keff||�v| cos θ , where θ is the angle between the mean
atomic velocity and the effective wave vector. In the case of
Raman detuning of −0.92 MHz, the calculated θ is 86 deg.
The FWHM of the velocity sensitive Raman spectrum is about
222 kHz, which covers the atomic velocity distribution at a
temperature of 5.46 μK. The Raman detuning δ was fixed at
−0.92 MHz.

Figure 2(b) shows the measured Rabi oscillation as a
function of Raman pulse duration, which is used to find the
pulse duration for the π pulse condition. The maximum excited
fraction is shown at 5 μs, which is the π pulse condition at the
total Raman beam power of 700 mW. As shown in Fig. 1(b),
the π/2 pulse conditions are achieved by adjusting the Raman
pulse incident timing with a fixed pulse duration. In other
words, a pulsed Raman laser beam which is flashing when
the atomic cloud is positioned at the half maximum intensity
of the Raman beam realizes the π/2 condition. Figure 2(c)
shows the excited fraction as a function of the time of the
applied Raman pulse. The red solid line in Fig. 2(c) represents
the fitted curve which describes the total excited fraction in
the atomic cloud.

The total excited fraction results from the integration of the
excited probabilities of individual atoms in the atomic cloud.
It can be written as

S(δ,τ ) =
∫

�v

∫
�r
P (I (�r),δ − �keff · �v,τ )ρ(�r,�v)d3rd3v, (1)

where �keff is the effective wave vector of a counterpropagating
Raman laser pair, �v is the velocity of an atom, and δ

is the Raman detuning, which is the frequency difference
between two Raman laser modes. The atomic density function
is given by ρ(�r,�v) = ρ0(2πmkBT )−3/2(πσ 2)−3/2 exp[−(�r −
�rc)2/σ 2] exp[−m(�v − �vc)2/2kBT ], where �rc is the position of
the center of mass of the atomic cloud, σ is its 1/e radius, �vc

is the velocity of the center of mass, and ρ0 is the peak atomic
density at the center of the atomic cloud.

Here we assume that the correlation between velocity and
position in the atomic density function can be negligible
because the spatial separation of atoms with differing mo-
mentum is comparable to the initial atomic cloud size, i.e.,
|v − vc|tf � σ0, where tf is the atom’s total flight time to reach
the detection region and σ0 is the initial atomic cloud size. In
this regime atoms with differing momentum are not obviously
resolved spatially, which means a weak position-velocity
correlation. P (I,δ,τ ) is the excited probability of an atom,
which is derived from the two level model:

P (I,δeff,τ ) = �2
eff

�2
eff + δ2

eff

sin2

⎛
⎝

√
�2

eff + δ2
eff

2
τ

⎞
⎠, (2)

where δeff is an effective Raman detuning which contains a
pure Raman detuning and a Doppler shift, and �eff is the
effective two-photon Rabi frequency which is proportional
to the Raman beam intensity. The spatial intensity of the
Raman beam I is given by I (�r) = Ipeak exp (−2r2/r2

d ), where
Ipeak is the peak intensity of the Raman beam and rd is the
1/e2 diameter of the Raman beam, given by 25 mm in our
experiment. In the experiment, the Raman detuning is set
to compensate the Doppler shift δeff = �keff · (�vc − �v). In the

short Raman pulse duration regime, where the transit time
broadening covers the Doppler broadening due to an atomic
velocity distribution, we can expand Eq. (2) by the perturbation
ε = |�keff · (�v − �vc)|/�eff:

P ≈ sin2 �eff(I )τ

2
+ O(ε cos θk), (3)

where θk is the angle between �keff and �v − �vc. When only
the zero order term is taken, the velocity averaged atomic
population can be written as∫

v

P d3v � sin2 �eff(I )τ

2
+ O(ξ 2), (4)

where ξ =
√

2kBT
m

( keff
�eff

). The first order term of O(ξ ) disappears
after the velocity integration. In our experiment, ξ � 0.83 at
the temperature of 5.46 μK. In spite of the large perturbation
parameter ξ where the higher order terms need to be consid-
ered, the experimental result is well fitted by just taking the
zero order term.

Finally, position averaging is performed. In the large Raman
beam regime where rd � σ , given by ζ = σ/rd = 0.22 in our
experiment, the resulting total excited fraction is approximated
by

S � sin2

[
�effτ

2
exp

(
−2

r2
c

r2
d

)]
+ O(ζ 2). (5)

As shown in Fig. 2(c), the experimental data are well fitted
by Eq. (5). We can extract the beam radius rd = 25 mm from
the fitting. The distance between two π/2 pulses is given
by rπ/2−π/2 = rd

√
2 ln 2 by Eq. (5). The total interrogation

time 2TR is easily obtained from the distance divided by the
velocity of an atomic cloud, given by 2TR = rd

√
2 ln 2/v. The

deduced total interrogation time is trivial because a two-photon
Raman Rabi frequency is proportional to the intensity of
the Raman beam and the Raman beam intensity profile is
described by a Gaussian function. In Fig. 2, the interrogation
time is determined by 2TR = 8 ms, which is the time between
the first π/2 pulse and the third π/2 pulse. A three Raman
pulse sequence, π/2-π -π/2, realizes an atomic Mach-Zehnder
interferometer which has an enclosed area. From the mean
velocity of the atomic clouds (3.34 m/s) and the interrogation
time of 2TR = 8 ms, the area of our interferometer can be
calculated to be 0.62 mm2.

The probability of an atom in the F = 1 state
or in the F = 2 state can be written as PF=1,F=2 =
1
2 [1 ∓ cos(�φlaser + �φgrav + �φrot)], where �φgrav = �keff ·
�gT 2

R , which is the phase shift caused by gravitational accel-
eration, and �φrot = −2�keff · ( �� × �v)T 2

R , which is a Sagnac
phase term [16]. Here �v0 is the initial mean velocity of the
atomic cloud. The total fraction in the atomic cloud results
from the space and velocity integration. Figure 3(a) shows the
time-of-flight signals of the F = 1 atoms and the F = 2 atoms.
It shows the π phase difference between the F = 1 fraction
and the F = 2 fraction. Due to the existence of the weak
position-velocity correlation, there is a position dependent
Sagnac phase which causes the spatial interference [17]. But
the spatial interference patterns are not observed because the
Sagnac phase term originating from earth rotation, which is
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FIG. 3. (a) Time-of-flight signal as a function of the time and
phase of the third Raman pulse. (b) F = 1 fraction as a function of
the phase of the third Raman pulse. The time-of-flight signal is fully
integrated. The blue filled circles indicate the experimental data and
the black solid line depicts the sinusoidal fitting.

the only rotation source in our case, is too small. After full
integration of the time-of-flight signals, we can obtain the
interference fringe shown in Fig. 3(b). The black solid line in
Fig. 3(b) is a fitting curve, y = 1/2(1 − C cos �φ).

The time-of-flight measurement performed by the thin
probe beams provides the spatial information of the inter-
ference fringe. As shown in Fig. 1(b), the Raman beam has
a spatial intensity profile, so that part of the atoms do not
see the beam intensity of the π/2 or π pulse condition. This
inhomogeneous pulse area induces a contrast drop. In order to
model the contrast drop, we assume that the pulse area of the
first (or third) Raman pulse is �R1τ (or �R3τ ) and the pulse
area of the second Raman pulse is π since the atoms at the posi-
tion of the π/2 pulse conditions experience a steeper intensity
change than those at the position of the π pulse condition. The
intensity gradients are given by 0 at the center of the Raman
beam and (−√

2 ln 2/rd )r̂ at the half maximum of the Raman
beam intensity profile. After a �R1τ -π -�R3τ pulse sequence,
the probability of an atom in the F = 1 state can be written as

PF=1 = 1
2

[
1 + cos

(
�R1τ

)
cos

(
�R3τ

)
− sin

(
�R1τ

)
sin

(
�R3τ

)
cos(�φ)] + O(ε cos θk),

(6)

where �φ = �φlaser + �φacc + �φrot. Here we take the zero
order term. From Eq. (6) and its velocity averaging, the
contrast can be written as

C = sin
(
�R1τ

)
sin

(
�R3τ

) + O(ξ 2), (7)

where �R1 and �R3 are the Rabi frequencies of the first π/2
pulse and of the third π/2 pulse. τ is the pulse duration.
Because a large Raman beam has a symmetric Gaussian
intensity profile, the pulse area around the first (or the second)
π/2 pulse condition is approximated by π

2 (1 ∓ �r
rd

2
√

2 ln 2)
where �r is the distance of an atomic cloud slice from the
center of the atomic cloud. The Pulse area can be rewritten
as �R1τ = π

2 + η and �R3τ = π
2 − η. Here η is a pulse area

FIG. 4. (a) Contrast as a function of position of an atomic cloud
slice. The red circles and red solid line depict the experimental result
and fitting, respectively. (b) Contrast as a function of the time gate
width of an atomic cloud slice. (c) Atom number as a function of
the time gate width of an atomic cloud slice. (d) Calculated and
measured short-term sensitivities. We note that the calculated short-
term sensitivity is magnified by 20.

perturbation given by η = −π�r
rd

√
2 ln 2. The approximated

contrast is calculated by

C = cos2

(
π�r

rd

√
2 ln 2

)
+ O(ξ 2). (8)

Figure 4(a) shows the contrast as a function of 0.1 ms
time gate positions. The red solid line indicates the fitted
curve y = A cos2(B�t), where A = 0.32937(±0.00134) and
B = 449.4(±9.56). The A parameter represents the maximum
contrast of our system. It is limited by the Raman transition ef-
ficiency which is mainly affected by the atomic cloud velocity
distribution and the thermal expansion of the atomic cloud. The
Raman transition efficiency can be obtained by measuring the
Rabi oscillation. As shown in Fig. 2(b), the Raman transition
efficiency of the entire atomic cloud is 60%. Therefore, the
averaged contrast Ctotal of the entire atomic cloud is roughly
estimated as 0.63 = 0.22. The relation between the averaged
contrast of the entire atomic cloud and the maximum contrast
A is written as Ctotal = A

2 [1 + exp(− 2 ln 2π2σ 2

r2
d

)], obtained from

Eq. (9) in the limit tw → ∞. We can easily calculate the
maximum contrast A as 0.3 by using the known parameters;
the averaged contrast Ctotal, the size of the atomic cloud σ ,
and the size of the Raman beam rd . It is very close to the fitted
value 0.32937. The B parameter indicates the degree of the
variation of the spatial contrast which relates to the gradient
of the Raman beam intensity. From Eq. (8) and �r = vc�t ,
the expected B is given by B = πvc

rd

√
2 ln 2. The Raman beam

size (rd = 25 mm) and the mean speed of the atomic clouds
(vc = 3.34 m/s) determine the B parameter as 494.2. The
calculated B is close to the fitted value 449.4. The calculation
including higher order O(ξ 2) terms will give a more correct
result.
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We can obtain the maximum contrast by selecting the center
of the atomic cloud. Additionally, the contrast is observed as
a function of the temporal width of an atomic cloud slice.
When the interference phase �φ is independent of the atom’s
position, the averaged contrast in an atomic cloud slice can be
written as

C(tw) = ρ0√
πσ

∫ tw/2
−tw/2 vcA cos2

(
πvct

√
2 ln 2

rd

)
exp

(− v2
c t

2

σ 2

)
dt

N (tw)
,

(9)

where tw is the time gate width of an atomic cloud slice and
N (tw) is the atom number in an atomic cloud slice, given
by N (tw) = ρ0(πσ 2)−1/2

∫ tw/2
−tw/2 vc exp(−v2

c t
2/σ 2)dt . This is

depicted as the black solid line in Fig. 4(b). The narrow width
guarantees higher contrast. One can expect that the narrow se-
lection of an atomic cloud is useful for atomic interferometers
because it demonstrates higher contrast. However, it decreases
the number of detected atoms, as shown in Fig. 4(c). The black
solid line in Fig. 4(c) indicates the calculated atom number.
The reduction in the atom number degrades the short-term
sensitivity. The short-term sensitivity, where only the shot
noise for detecting the atom number is considered, is given
by [18]

�� = 1

C(tw)
√

2N (tw)

1

vckeffT
2
R

. (10)

Figure 4(d) shows the calculated short-term sensitivity (gray
solid line) with N = 1 × 106. The sensitivity of the fully
integrated case is higher than that of the narrow selection case,
based on our calculation. The enhancement in the contrast
achieved by the narrow spatial selection is insufficient to
overcome the reduction in the atom number.

In the experiment, we repeatedly recorded the atomic
fraction change and the corresponding phase for 1000 s. The
measured phases were converted to the angular velocities and
the Allan deviation was calculated. The sensitivity as a function
of the time gate width of an atomic cloud slice is plotted
with circles, as shown in Fig. 4(d). We did not observe a
significant difference between the narrow selection case and
the full integration case.

Also the measured sensitivity [7.7 × 10−5 (rad/s)/
√

Hz]
is not as good as the value calculated from Eq. (10) [2.0 ×
10−6 (rad/s)/

√
Hz]. If the phase fluctuation sources that causes

extra noise, such as Raman laser phase fluctuation, vibration,
temperature changes, and atom trajectory variations were
sufficiently suppressed, the effect of the sensitivity response
on the time gate width of an atomic cloud slice would be
observable. Among the phase fluctuation sources, vibrations
can be estimated by comparing the measured sensitivities in the
velocity sensitive and in the velocity insensitive Raman con-
figuration. The measured sensitivity in the velocity insensitive
configuration, which is the absence of the effect of vibrations,
was 3.3 × 10−5 (rad/s)/

√
Hz. Therefore, the contribution of

vibrations is expected to reach 7.0 × 10−5 (rad/s)/
√

Hz in our
experiment. Based on the above estimation, we conclude that
vibrations mainly limit the sensitivity in our experiment.

The large size of the Raman beam and the small size of the
atomic cloud enhance the short-term sensitivity. The large size
of the Raman beam guarantees the small intensity gradient
so that the gradient of the Rabi frequency is reduced (i.e.,
B → 0). The small size of the atomic cloud promises the
small variation of the Rabi frequency because the variation
of the Rabi frequency in the atomic cloud results from
multiplication of the gradient of the Rabi frequency and the
size of the atomic cloud. As a result, the combination of the
large size of the Raman beam and the small size of the atomic
cloud reduces the inhomogeneity of the Rabi frequency. That
causes an increment of the Raman transition efficiency which
implies contrast enhancement. In Eq. (9), the contrast C(tw) is
maximized in the limit that σ/rd � 1. The maximum contrast
leads to the enhanced short-term sensitivity, as described in
Eq. (10). If the power of the Raman beam is enough, the large
size of the Raman beam can be easily realized by using a beam
expander. The small size of the atomic cloud can be achieved
by an optical lattice trap where the beam waist is usually an
order of subhundred μm or a magnetic trap. Optical lattice
launching can be a solution for launching a small cold atomic
cloud trapped by an optical lattice or a magnetic trap [19].

As mentioned before, we assumed in our analysis that the
velocity and position are not coupled, so that spatial selection
does not act as velocity selection. On the other hand, there is
the position-velocity correlation limit, in that the size of the
atomic cloud at detection is much larger than the initial size
of the atomic cloud, i.e., |v − vc|tf � σ0 [20]. In this limit,
the spatial selection narrows the velocity distribution. It will
increase the contrast in the system rotating at moderate angular
speed by limiting �φrot(�v).

IV. CONCLUSION

We have developed a light-pulse atom interferometer with
a single large Raman beam which propagates along the
horizontal direction. By adjusting the Raman pulse timing, a
π/2-π -π/2 Raman pulse sequence was implemented and the
atomic Mach-Zehnder interference fringes were obtained. We
spatially analyzed the interference with the help of thin probe
beam-based time-of-flight measurements. After adopting the
Raman beam intensity profile and the atomic cloud density
profile, the variation in spatial contrast was analytically
described. From the experiment and the calculation, we
concluded that the spatial selection enhances the contrast of the
interference at the expense of reduced short-term sensitivity.
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