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Probing two-particle exchange processes in two-mode Bose-Einstein condensates
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We study the fidelity decay and its freeze for an initial coherent state of two-mode Bose-Einstein condensates
in the Fock regime considering a Bose-Hubbard model that includes two-particle tunneling terms. By using
linear-response theory we find scaling properties of the fidelity as a function of the particle number that prove
the existence of two-particle mode exchange when a nondegeneracy condition is fulfilled. Tuning the energy
difference of the two modes serves to distinguish the presence of two-particle mode-exchange terms through the
appearance of certain singularities. We present numerical calculations that illustrate our findings, and propose
exploiting a Feshbach resonance to verify experimentally our predictions.
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I. INTRODUCTION

The Bose-Hubbard model became a workhorse to describe
interactions of ultracold bosonic gases trapped by neighboring
potentials after its striking success with the Mott-insulator–
superfluid transition [1,2]. Its most simple physical realiza-
tion, when only two bosonic states can be occupied [3],
is experimentally obtained by trapping the condensate in a
double-well potential [4]. This system is interesting because it
is the simplest scheme for atom interferometry. In addition
to interference phenomena [5,6], it also exhibits quantum
tunneling and self-trapping effects [7,8] such as Josephson
oscillations [9]. It has even been used to produce and study
many-particle entanglement [10] and dynamically generate
spin-squeezed states [11]. Alternative methods to optical lat-
tices have been demonstrated by splitting a single-component
Bose-Einstein condensate (BEC) on atom chips either with
pure dc magnetic fields [12] or by dressing static fields with
RF potentials [13–15] as proposed in [16]. Understanding the
effects originated on interatomic collisions has already been
exploited to overpass the classical limit in atom interferometers
[6], for example. Here we employ an extended Bose-Hubbard
Hamiltonian to increase the possibilities in this direction.

Several interchange terms arise in the Bose-Hubbard model
in a double-well potential where only the lowest level in each
well is populated and the corresponding wave functions have
a small overlap [4,17]. In particular, two terms accounting for
two-particle mode-exchange processes appear in the derivation
of the Hamiltonian. These terms are often neglected assuming
that two-particle processes are rare for diluted ultracold gases.
Yet, Ref. [17] points out that there is a better agreement with
the experimental results when these processes are included. In
this paper we probe the relevance of these terms by studying
dynamical properties linked with two-particle tunneling pro-
cesses. We consider the dynamical stability of the quantum
evolution under small system perturbations for the two-mode
Bose-Hubbard model using the fidelity or Loschmidt echo
[18–20], whose decay has been studied for different parameter
ranges and types of perturbations in the Bose-Hubbard model
[21–23].
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Prosen and Žnidarič noticed that fidelity stops decaying,
staying essentially constant (modulo some oscillations) for
relatively long times whenever the time-averaged expectation
value of the perturbation vanishes [24]. This phenomenon is
called fidelity freeze. It was later shown that symmetries can
also induce this behavior if the diagonal matrix elements of the
perturbation vanish, e.g., when the perturbation is not invariant
under the time-reversal symmetry [25]. Note that the freeze of
fidelity was actually observed in simulations for bosonic and
fermionic many-body systems [22,26], but it was attributed to
the nonlinearities introduced by the interactions between the
particles. Our purpose is to draw attention to this phenomenon
and exploit it, within the context of the Bose-Hubbard model.

The paper is organized as follows. In Sec. II, from a
generalized two-mode Bose-Hubbard Hamiltonian we derive
a the fidelity freeze FFr associated with an initial macroscopic
trial state [27]. In Sec. III we show analytically and numerically
that the scaling properties of the fidelity freeze display a
transition in terms of the number of particles if the interaction
includes two-particle mode-exchange terms. In addition, when
a certain degeneracy condition is fulfilled by tuning the energy
difference of the two levels, the fidelity freeze tends abruptly to
zero. This yields insight into many-body tunneling processes
and provides a method to calibrate the system to enhance the
fidelity freeze. In Sec. IV we summarize our results and address
the possibility of accessing the parameter range of interest in
this paper considering 87Rb and 85Rb.

II. FIDELITY FREEZE FOR THE TWO-MODE
BOSE-HUBBARD MODEL

The fidelity amplitude is the overlap of the time evolution
of an initial state under a reference interaction Ĥ0 with the
evolution of the same initial state under a slightly different
Hamiltonian Ĥ = Ĥ0 + λV̂ [20]:

f (t) = 〈�0|Û0(−t)Ûλ(t)|�0〉. (1)

Here, |�0〉 is the initial state under consideration, Û0(t) =
T̂ exp[−i Ĥ0t/h̄] is the (time-ordered) unitary time evolution
associated with the reference Hamiltonian, Ûλ(t) is the
corresponding time evolution of the perturbed Hamiltonian,
and the perturbation strength is denoted formally by λ. The
modulus squared of the fidelity amplitude, F (t) = |f (t)|2,
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is the fidelity or Loschmidt echo [18,19]. Clearly, F (t) is
a measure of the sensitivity of the time evolution of |�0〉
to system perturbations. Another interpretation is that of an
echo: |�0〉 evolves under Ĥ0 up to time t , when the system
is suddenly reversed with respect to time, and then evolves
under the action of Ĥ ; the Loschmidt echo compares the
whole evolution with the initial state, thus quantifying the
degree of irreversibility of the system. The operator M̂λ(t) =
Ûλ(−t)Û0(t) is referred to as the echo operator.

We consider the generalized Bose-Hubbard model ĤBH =
Ĥ0 + V̂ defined by

Ĥ0 = ε1n̂1 + ε2n̂2 + U

2
[n̂1(n̂1 − 1) + n̂2(n̂2 − 1)], (2)

V̂ = −J1(b̂†1b̂2 + b̂
†
2b̂1) − J2

2

[
(b̂†1)2 b̂2

2 + (b̂†2)2 b̂2
1

]
. (3)

As usual, n̂i = b̂
†
i b̂i (i = 1,2) is the particle number operator of

the ith mode, with b̂
†
i and b̂i the corresponding bosonic creation

and annihilation operators, respectively. The single-particle
energies of each mode are denoted by εi , U is the two-particle
on-site interaction, J1 is the energy of the usual (one-particle)
Josephson tunneling or mode-exchange term, and J2 is the
energy associated with two-particle tunneling processes that
we probe here. The total number of particles n = n1 + n2 is
a conserved quantity; fixing n, the Hilbert-space dimension
is simply n + 1. The Hamiltonian ĤBH defined through
Eqs. (2) and (3) is a generalization of the usual two-mode
approximation used to describe the bosonic Josephson junction
[3,4]. Below we use J1 and J2 as perturbation parameters,
replacing λ in Eq. (1).

We are interested in the so-called Fock regime (U �
J1 > J2) because the fidelity freeze can be observed there.
We choose the Fock (occupation-number) basis defined
by |μ1,μ2〉 = (μ1! μ2!)−1/2(b̂†1)μ1 (b̂†2)μ2 |0〉, where |0〉 is the
vacuum state; since n = μ1 + μ2 is conserved, we use the
short-hand notation |μ1〉 ≡ |μ1,μ2〉. By definition, Ĥ0 is
diagonal in the Fock basis and V̂ has vanishing diagonal matrix
elements. Then, considering Ĥ0 as the reference interaction
and V̂ as the perturbation or residual interaction, the conditions
to observe the fidelity freeze are fulfilled [25]. The unperturbed
spectrum is given by Eμ = E0 + μ(ε1 − ε2 − Un) + μ2U

with E0 = ε2n + Un(n − 1)/2, where μ = 0, . . . n + 1 labels
the Fock states by mode occupation; notice the parabolic
shape of Eμ in terms of μ for nonvanishing U . As it is often
done we use the Heisenberg time tH = 2πh̄/d as the unit of
time, where d is the average level spacing of the unperturbed
Hamiltonian Ĥ0.

We compute the fidelity decay by noting that M̂λ(t) is the
time-evolution propagator associated with the time-dependent
Hamiltonian V̂I(t) = Û0(−t)V̂ Û0(t) in the interaction picture
[28]. We use Dyson’s series on the perturbation parameters Jr

(r = 1,2) truncated to the second order [28,29]. This approach
is called linear response theory.

We write the fidelity amplitude as f (t) = 1 + f1 + f2 +
O(J 3

i ), where the first- and second-order corrections (in both
J1 and J2) read

f1 =
∑

r

∑
μ,ν

A∗
μAνV

(r)
μ,ν I1[t ; �μ,ν], (4)

f2 =
∑
r,s

∑
μ,ν,ρ

A∗
μAνV

(r)
μ,ρV

(s)
ρ,ν I2[t ; �μ,ρ,�ρ,ν]. (5)

Here, the matrix elements of the perturbation in the interaction
picture are 〈μ|V̂I(t)|ν〉 = ∑

r V (r)
μ,ν exp[i�μ,νt] with h̄�μ,ν =

Eμ − Eν , and Aμ are the expansion coefficients of the initial
state in the Fock basis. In Eqs. (4) and (5), Greek letters
represent the basis states and r,s = 1,2 stand for the one- or
two-particle tunneling terms of ĤBH. These matrix elements
read

V (r)
μ,ν = Jr〈μ|V (r)|ν〉 = Jr

(
g

(r)
μ,n−νδμ−r,ν + g

(r)
n−μ,νδμ,ν−r

)
,

(6)

where g(r)
μ,ν = [(μr )(νr)]

1/2. To second order in the perturbations,
the fidelity is

F (t) = 1 + 2 Re(f1) + 2 Re(f2) + |f1|2. (7)

The time dependence of Eqs. (4) and (5) appears in the
(time-ordered) integrals Ip[t ; �1, . . . ,�p], where p stands
for the order in the Dyson’s series. These integrals can be
expressed recursively as

Ip+1[t ; �1, . . . ,�p+1]

= − i

h̄

∫ t

0
dt1 exp[i�1t1] Ip[t1; �2, . . . ,�p+1], (8)

whereI0[t] = 1 defines the initial value of the recursion. These
integrals produce terms that oscillate in time as long as the
frequencies �μ,ν appearing in the exponentials do not vanish,
i.e., when the unperturbed spectrum is nondegenerate. Yet,
certain frequency combinations may vanish and yield secular
terms which grow at least linearly in time. We assume that
the unperturbed spectrum is nondegenerate, which can be
assured by choosing properly the energy difference of the two
modes 
ε = ε2 − ε1. Then, without the secular contributions,
to second order the fidelity displays quasiperiodic oscillations
in time; this is the freeze of the fidelity. The freeze of the fidelity
lasts as long as the second-order approximation is valid;
eventually, higher-order contributions dominate the evolution
and secular terms appear that destroy the freeze of the fidelity.

Equation (7) is valid for any initial state. We consider as the
initial state a normalized macroscopic trial state of the form
[27],

|�0〉 = (αb̂
†
1 + βeiφb̂

†
2)n|0〉

=
∑

μ

(
n

μ

)1/2

αμβn−μei(n−μ)φ|μ〉. (9)

This initial state is coherent [27]; with α = (n1/n)1/2 and
β = (n2/n)1/2, it corresponds to the mean-field state having
n1 particles in the first mode and n2 = n − n1 in the second
one.

Inserting Eqs. (6) and (9) in (4) and (5), we obtain

f1 =
∑

r

Jr

∑
μ,ν

A∗
μAν I1[t ; �μ,ν]

×[
g

(r)
μ,n−νδν,μ−r + g

(r)
n−μ,νδν,μ+r

]
, (10)
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f2 =
∑
r,s

JrJs

∑
μ,ν,ρ

A∗
μAν I2[t ; �μ,ρ,�ρ,ν]

×[
g

(r)
μ,n−ρδρ,μ−r

(
g

(s)
ρ,n−νδν,ρ−s + g

(s)
n−ρ,νδν,ρ−s

)
+g

(r)
n−μ,ρδρ,μ+r

(
g

(s)
ρ,n−νδν,ρ−s + g

(s)
n−ρ,νδν,ρ+s

)]
. (11)

The time dependence can be further described by not-
ing that I1[t ; �] = (1 − exp(i�t))/h̄�, and I2[t ; �1,�2] =
(I1[t ; �1] − I1[t ; �1 + �2])/h̄�2, for �1 and �2 nonzero.
These conditions are fulfilled by the assumption of a non-
degenerate spectrum. Yet, for �1 + �2 = 0 a secular term is
obtained for f2 which has the form −it/h̄. This term does
not affect the fidelity according to Eq. (7), since it is purely
imaginary. Then, to second order in the tunneling rates, the
time dependence of the fidelity is at most quasiperiodic, hence,
fidelity exhibits a freeze. The time during which the fidelity
freeze lasts scales as the inverse of the perturbation and the
inverse of n; see [29].

In order to obtain the fidelity freeze we extract the time-
independent contributions of the integrals (8) in the expression

for Re(f1), Re(f2), and |f1|2. Including the dependency of Aμ

on the phase φ, cf. Eq. (9), we obtain

Re[eipφ I1[t ; �]] � cos(pφ)

h̄�
, (12)

Re[eipφ I2[t ; �1,�2]] � cos(pφ)

h̄2�2

(
1

�1
− 1 − δ1,−2

�1 + �2

)
,

(13)

Re[eipφI∗
1 [t ; �1] I1[t ; �2]] � cos(pφ)

h̄2�1�2
(1 + δ1,2). (14)

Here, the right-hand side of these expressions are the time-
independent contributions, where p is an integer related to
the indexes of the Fock states involved, and we have used the
Kronecker delta δ1,−2 to indicate that the frequencies satisfy
�1 = −�2 (indexes are reversed), and δ1,2 to denote that �1 =
�2 (indexes are the identical). Note that in Eq. (13) the secular
term related to �1 + �2 = 0 is not included due to the δ1,−2.

Inserting Eqs. (10) and (11) into (7), and using the time-
independent contributions, Eqs. (12)–(14), we obtain

FFr = 1 + 2
∑
r,μ

Jr

|A∗
μAμ±r |G(±r)

μ cos(rφ)

h̄�μ,μ±r

+ 2
∑
r,s,μ

JrJs

|A∗
μAμ±r |G(±r)

μ G(±s)
μ±r cos((∓r ∓ s)φ)

h̄2�μ±r,μ±r±s

( 1

�μ,μ±r

− 1 − δ±r,∓s

�μ,μ±r±s

)

+
∑

r,s,μ,ν

JrJs

|A∗
μAμ±r | |A∗

νAν±s |G(±r)
μ G(±s)

ν±r cos((∓r ± s)φ)

h̄2�μ,μ±r�ν,ν±s

(1 + δ±r,±s). (15)

The coefficients G(−r)
μ = g

(r)
μ,n−μ+r and G(+r)

μ = g
(r)
n−μ,μ+r are

introduced to have a more compact expression. The signs
of r and s are independent and correspond to the distinct
possibilities imposed by the Kronecker deltas that appear in
Eqs. (10) and (11). Equation (15) is a central result of this
paper.

In Fig. 1 we show an example of the decay of fidelity for
a coherent state with n1 = n2 = n/2 and φ = π/4 obtained
numerically. The figure illustrates the oscillations during the
freeze of the fidelity, the eventual decay, and the value obtained
from Eq. (15) for the freeze of the fidelity (horizontal green
line). Time is measured in Heisenberg time units tH . The
parameters of the model are U = 1, J1 = 10−6, J2 = 10−8,
ε1 = 0.76, ε2 = 0.93, and n = 128; the values of εi assure the
nondegeneracy of the spectrum of Ĥ0 (see below). These pa-
rameters have been chosen to simplify the numerics; other val-
ues display qualitative similar behavior as long as we are in the
Fock regime. In the inset we display the result considering the
second-order expansion (7); the value of FFr is an average over
the quasiperiodic oscillations that take place during the freeze.

III. SCALING PROPERTIES OF THE FIDELITY FREEZE

We address now the scaling of FFr in terms of the number
of particles. An estimate of the scaling properties is obtained
considering the maximum contribution of the n-dependent
terms in Eq. (15). This follows from a Fock state that we write
as μ = λn, and then use Stirling’s formula for large n. It can
be shown that |A∗

μAμ±r | ∼ n1/2 and G(±s)
μ±r ∼ ns for λ = α2.

The scaling laws of the time-independent contributions thus
read Re(f1) ∼ Jrn

r−1/2, Re(f2) ∼ J 2
r n2r−1/2, and Re(|f1|2) ∼

J 2
r n2r−1. Hence, the asymptotic dominating contribution for

FIG. 1. Time dependence (in Heisenberg time units) of the fidelity
obtained numerically for the extended Bose-Hubbard model in log-
log scale, using an initial coherent state Eq. (9) with n1 = n2 = n/2 =
64 and φ = π/4. The parameters for the Hamiltonian are U = 1,
J1 = 10−6, J2 = 10−8, ε1 = 0.76, and ε2 = 0.93. The horizontal line
corresponds to the value of the fidelity freeze FFr obtained from Eq.
(15). In the inset we present the result of the second-order linear-
response theory.
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FIG. 2. Log-log plot of 1 − FFr as a function of the number
of particles, for an initial symmetric coherent state n1 = n2 = n/2.
Triangles (green, dotted line) correspond to the parameters J1 = 10−6

and J2 = 0, squares (blue, dashed line) to J1 = 0 and J2 = 10−8,
and circles (red, continuous line) to J1 = 10−6 and J2 = 10−8; the
remaining parameters are those of Fig. 1.

the fidelity freeze scales as

1 − FFr ∼ J 2
r n2r−1/2. (16)

This result predicts a different scaling for each of the tunneling
terms J1 and J2. Thus, FFr exhibits a transition from a behavior
dominated by J1 to a regime where J2 dominates, around n ∼
J1/J2. Figure 2 is the numerical confirmation of this statement.
The data points were obtained numerically from the time series
(cf. Fig. 1), using the maxima of the quasiperiodic oscillations
of 1 − F (t) during the freeze; these values underestimate the
theoretical expectation for FFr. Fitting the data to straight lines
when either J2 or J1 are absent yields the slopes 1.52 and
3.54, respectively. These values are in excellent agreement
with the 3/2 and 7/2 predicted by Eq. (16), thus showing
that the scaling properties of the fidelity freeze in terms of
n probe the presence of two-particle tunneling processes.
Equation (16) remains valid for small departures from the
symmetric initial coherent states, i.e., λ ∼ α2.

An important assumption that we made in the derivation of
Eqs. (15) and (16) is that the spectrum of Ĥ0 is nondegenerate,
which can be fulfilled by tuning 
ε, the energy difference of
the two modes. As we approach a degeneracy, the appearance
of secular terms makes Eq. (15) no longer valid. This can
be exploited to probe the relevance of two-mode exchange
processes.

To clarify this idea we consider the Fock state μ0 = 	(n +

ε/U )/2
 whose energy is the minimum of the spectrum
of Ĥ0, where 	x
 is the round-to-nearest integer function;
note that this minimum corresponds to the parabolic shape of
Eμ induced by a nonvanishing U . Assuming that n is even
for concreteness, it can be shown that 
ε/U = 0 implies
that Eμ0−1 = Eμ0+1, meaning that the Fock states μ0 − 1
and μ0 + 1 are degenerate; these states are coupled by a
two-mode tunneling term. The same holds for 
ε/U = 2,
though the actual value of μ0 has changed. For 
ε/U = 1

FIG. 3. Behavior of log10(1 − FFr ) as a function of the energy
difference between modes 
ε scaled by the two-particle interaction
coefficient U of the Bose-Hubbard model, Eq. (2). The 3D plot
depicts the appearance of a peak around 
ε/U = 0,2 which becomes
noticeable as the particle number n increases.

we have Eμ0 = Eμ0+1, i.e., the ground state is degenerate,
which also holds for 
ε/U = 3; in this case, the states are
coupled by a one-particle tunneling term. Then, by tuning the
single-particle energies, as we approach 
ε/U = ±1 or ±3, a
peak in log10(1 − FFr) develops indicating that the perturbation
does contain a one-particle tunneling term; likewise, a peak
at 
ε/U = 0 and ±2 appears if there are two-particle
tunneling processes. This is illustrated in Fig. 3, which depicts
log10(1 − FFr) in terms of 
ε/U for various even values of
n. Note that the narrow peaks at 
ε/U = 0,±2, the signature
of the two-particle tunneling, grow for increasing values of n.
For odd values of n the same argument applies, exchanging
only the location of the peaks. Thus, by increasing n, the peaks
associated with the two-particle tunneling processes become
comparable to those associated with the one-particle tunneling
processes; for big enough n the distance between prominent
neighboring peaks is halved. This result means that the fidelity
freeze FFr can also be maximized by tuning 
ε/U .

IV. SUMMARY AND OUTLOOK

Summarizing, we have found that the fidelity freeze from
an initial symmetric coherent state is a sensitive quantity to
two-particle mode-exchange processes in the Bose-Hubbard
model. This sensitivity can be controlled with two experi-
mental parameters: the total atom number n and the energy
difference between modes 
ε/U . In terms of n, the fidelity
freeze displays a transition from a regime dominated by the
one-particle exchange term, for small particle numbers, to the
dominance of two-particle tunneling processes when n is large
enough (n ∼ J1/J2). There, the fidelity freeze can also be
maximized by tuning 
ε/U .

Our findings hold in the Fock regime of a double-well
potential, i.e., for Jr/U � 1. Their test would face two
technological challenges: measuring fidelity and producing a
BEC with an adequate atom number and confining geometry.
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FIG. 4. Computed tunneling parameters of the two-mode BEC
model as a function of the potential-barrier height, where the trap
considered corresponds to that of Ref. [8]. The red curves correspond
to 87Rb, and the blue, green, and purple to 85Rb with s-wave scattering
lengths of 20a, 50a, and 100a, respectively, where a = 5.32 nm is
the s-wave scattering length of 87Rb. The upper curves correspond to
J1/U and the lower to J2/U .

Measuring fidelity is not a simple task though it has been
achieved in NMR polarization echo-spin experiments [30,31]
and in periodically kicked cold atoms [32]. Echo spectroscopy
experiments in cold atoms by Andersen et al. [33] demon-
strated measurements of a quantum fidelity defined differently;
theoretical aspects of that definition are discussed in Ref. [34].
Fidelity has not yet been measured in two-mode Bose-Einstein
condensates, though it has been proposed in the context of cold
optical lattices Ref. [35].

Regarding what is an adequate BEC species to probe our
results, special care is required for having a long enough
confinement with J2 big enough, so the effects addressed here
can be observed experimentally. As an example, consider 87Rb
using the same trap frequencies and separation of the wells as
in Ref. [8], and vary the potential height in order to reach the
Fock regime. In this case, the Heisenberg time is ∼5–7 ms for
1500 bosons. The duration of the fidelity freeze is tH × 104

(Fig. 1), which is well inside normal experimental times for
Bose-Einstein condensates under ultrahigh vacuum.

In Fig. 4, we present the parameters J1/U (upper curves)
and J2/U (lower curve) using the formulas of Ref. [17],
as a function of the barrier height V0 for n = 1500 bosons.
These results were obtained by integrating the nonpolynomial
nonlinear Schrödinger equation [36] using the standard split-
slit Fourier method [37,38]. The results show that for 87Rb (red
curves), the two-particle tunneling parameter J2/U is perhaps
too small to yield any measurable signal. For instance, for
V0 � 1500 Hz, where J1/U ∼ 10−4–10−3, we obtain J2/U ∼
10−11. Increasing further the potential height makes J2/U

decrease even further.
A more promising possibility is to consider other mecha-

nisms that increase J2/U , e.g., approaching a Feshbach reso-
nance; an obvious candidate is 85Rb [39]. Considering the same
parameters for the trap used above, the blue, green, and purple
curves in Fig. 4 correspond to s-wave scattering length values
of 20a, 50a, and 100a, respectively. Here we use a = 5.32
nm, the s-save scattering length of 87Rb, as a unit to ease the
comparisons. The results show that larger values of J2/U are
obtained and, in that sense, may be accessible to experimental
observation. Yet, we note that increasing the s-wave scattering
length by such amounts leads to three-body collisions which
have not been taken into account in our calculations.

Double-well potentials are now a common scenario for
atom interferometry with matter waves. Our findings could
be useful to study coherence and decoherence effects in
this context. For instance, they could help to minimize
decoherence on interferometers using dense atomic clouds,
where nonlinearities due to collisions can be exploited to
improve their accuracy [6], or give rise to optimal methods for
analyzing the interference fringes imprinted by small energy
differences between matter waves [15].
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