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Nonlinear mixing of collective modes in harmonically trapped Bose-Einstein condensates
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We study nonlinear mixing effects among quadrupole modes and scissors modes in a harmonically trapped
Bose-Einstein condensate. Using a perturbative technique in conjunction with a variational approach with a
Gaussian trial wave function for the Gross-Pitaevskii equation, we find that mode mixing occurs selectively. Our
perturbative approach is useful in gaining a qualitative understanding of the recent experiment [M. Yamazaki
et al., J. Phys. Soc. Jpn. 84, 44001 (2015)], exhibiting a beating phenomenon of the scissors mode as well as
a modulation phenomenon of the low-lying quadrupole mode by the high-lying quadrupole mode frequency.
Within the second-order treatment of the nonlinear mode coupling terms, our approach predicts all the spectral
peaks obtained by the numerical simulation of the Gross-Pitaevskii equation.
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I. INTRODUCTION

Collective modes, such as dipole, quadrupole, and scissors
modes, in harmonically trapped ultracold atomic gases have
attracted much attention because they offer many-body physics
as well as macroscopic quantum phenomena of Bose-Einstein
condensates (BECs) [1-5]. In particular, the scissors mode
in a BEC manifests superfluidity because of its irrotational
nature [4-8]. Frequencies of the collective modes observed
in the experiment [1] can be successfully described by the
linearized Gross-Pitaevskii (GP) equation for the condensate
at T = 0 [9,10]. Nonzero temperature effects [7,8,11] as well
as the Beliaev process [12] are also important for explaining
experimental results [3-5,12], which are not explained by
linearized equations at 7 = 0 alone.

Even in the case at T = 0, however, we are faced with
an important problem that is not explained by the linear
analysis. Recently, various kinds of collective modes in a
BEC—low-lying and high-lying quadrupole modes, as well as
scissors modes—are simultaneously excited in a cigar-shaped
trap [13]. This experiment has shown that oscillations of a
scissors mode exhibits beating with a longer period oscillation,
whose frequency is that of the low-lying quadrupole mode. The
low-lying quadrupole mode is, on the other hand, modulated
by a shorter period oscillation with the high-lying quadrupole
mode frequency. Since these phenomena cannot be described
by the linearized GP equation, we are confronted with the
following questions: (i) Why does the scissors mode exhibit
beating with the low-lying quadrupole mode frequency? (ii)
Why is the low-lying quadrupole mode modulated by the
high-lying quadrupole mode frequency? and (iii) How is a
collective mode possibly modulated by the other collective
mode frequencies in a trapped Bose gas? These phenomena
may be seen widely, since a phenomenon similar to Ref. [13]
has also been reported in a condensate response using a
broadband probe with a wide range of frequencies [14], where
spectra at several sum and difference frequencies are slightly
visible.

Since these mode mixing effects are not included in the
linear analysis, the phenomena we are interested in are beyond
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linear analysis. In this paper, we study these nonlinear effects
of collective modes by using a perturbative approach in
conjunction with a variational calculation with a Gaussian
trial wave function [15]. We show that the perturbative study
successfully explains the modulation phenomena of collective
modes observed in the experiment in Ref. [13]. The mode
mixing effects shown in Ref. [13] are concluded to be due to
nonlinear effects. The nonlinear mixing weight G/, obtained
in this paper clearly shows that mode mixing occurs selectively,
and these weights answer all three questions raised above.
For the simultaneous excitation of quadrupole and scissors
modes, by using a second-order perturbative treatment in the
nonlinear-mode coupling terms, we successfully predict all
spectral peaks obtained from the numerical simulation of the
GP equation.

II. VARIATIONAL ANALYSIS

We derive nonlinear equations in order to understand
nonlinear mixing of scissors and quadrupole modes. An
earlier study [15] considered nonlinear coupling between
scissors modes with different symmetries. In this section,
we extend their variational analysis with a Gaussian trail
wave function [15] to include mixing effects between both
quadrupole and scissors modes in a trapped condensate.

As in Ref. [15], we start with the Lagrangian for the
condensate order parameter v (r,?), given by

ih 0 ov*
LY.y = %/dr(w*a—f —y ;”t ) — Ely.y"]. (1)

where the energy functional is given by

8
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m 2

Here, g = 471ah2/m is a coupling constant, a the s-wave
scattering length, and m the atomic mass. Its Euler-Lagrange
equation is the GP equation
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The external trap potential is given by

V(r) = (a)x + o)y’ 4 0l7%)

- Ewi (k%% + y* /K> + 2%2%), 4)
where w,, w,, and w; are the trap frequencies in the x, y, and
z directions, respectively. The parameters k, A, and w, are
given by w; = JOx Oy, K = oy [wy, and A = w;//Oxwy. In
this section, we describe equations in terms of w,, w,, and w,
to formulate general equations for arbitrary trap geometries.
In the next section, we use the parameters w, and X to study
the axially symmetric trap case (k = 1).

We introduce the following trial function for the condensate
order parameter [15]:

Y(r,t) = A(t) exp[—b.()x? — by (t)y* — b (1)z*
— oy (Dxy — €y, (D)yz — cpe(D)zx], (5)

where b, and c¢;, (¢,n = x,y,z) are complex variational
parameters. The parameter A is a normalization factor to
ensure the conservation of the total number of condensate
atoms N, which is given by

24 /N

At) = i

[Cx,v,rcyz,rczx,r +4by by 1b:

- (bz rcxyr+b)’ rczxr +bx fcyz r)]]/4’ (6)

where b; ; and c;p; (b;; and c;, ;) are real (imaginary) parts
of b, and ¢, respectively.

We derive equations of motions for variational parameters
for a BEC at T = 0 in three steps. First, by inserting the trial
function, (5), into the Lagrangian, (1), and carrying out the
spatial integration, we obtain

L[b,c] 1
N = E Z ot;b;,+ Z ﬁccngl

{=x,y,2 {¢,n.0leX

D @bl + legyl” + lcac )
{¢.n.0}eX

Z Z Be[2¢y6.p(byp + by p)

{¢,n,0}eX p=r.i

0

+ CCn pCoc.pl

V

where Q = 2713A4/N and y = Na/Ly,. Here, a; =
4b, bg r — n9r and B; = cg; Crnr — 2bg cCho,r, Where the
set {¢,n,0} indicates Cartesian coordinates in cyclic order:
{¢.n,0} € {{x,y,2}.{y,z,x},{z,x,y}}. An overdot represents a
time derivative. All parameters have been scaled by the trap
frequency @ = (w,w, w.)'/? and the harmonic oscillator length
Lo = (i/m®). The third term on the right-hand side of (7) was
missing in the earlier study [15].

Second, we look for static equilibrium values of the
variational parameters beclu " and cequ ", Since the phase of the
static order parameter 1/ is unlform we set by = Y = 0,
Because of the symmetry of the trap potentlal we can set
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UV — 0. The equilibrium values of parameters b2 can

be obtalned by minimizing the energy functional, (2), which

leads to
2/5
i 4
pe (g—y_) W€ =232 ®)

We then consider deviations of variational parameters 8b; () =
b (t) — equw and Scgy(t) = cpp(t) — cequlv It is useful to
express these variational parameters in Vector form:

= (be,rvaby.rssz,r78bx,i78by,i78bz,i’
acxy,rv(scyz,r’aczx,rvécxy,i7(Scyz,i7(sczx.i)- (9)

Finally, we expand the Lagrangian in terms of p and derive
the Euler-Lagrange equations to second order in p, which can
be written in the form

iM;ijv + Fp,vpv + Gp_vépvpé + H;Lvspupé =0. (10)

Here, p, is the vth component of the vector p, and we use
the Einstein summation convention, which implies taking the
sum over the repeated indices. The coefficients M, are pure
imaginary, while F,,,,, G ¢, and H,,,¢ arereal. The coefficients
M,,, F,, and G, are (a)symmetrized such that M,, =

-M,,, F,, =F,,, and G, = G,¢,. Note that H,,,; does
not have symmetry. Matrix M is given by

0 M1 0 0
-M1 0 0 0

1S
M=ir 0 o o —ml (11)
0 o M 0
where
M9 = diag(Zw 2a)z M 2wiwi) (12)
= diag(w?, 0}, }), (13)
and F is given by
FI 0 0 0
0 Fa 0 0
F=1, o r o | (14
0 0 0 Fsi
where
3a)‘y‘w‘z‘ wf a)%
FO& =23y25 2 Bwle?t 02 |, (15)
o} w? 3wiw]
;2P 2.2 22 22
F9 = deg(a) 0, 007, V7)), (16)
F =25y diag(e?, o?, a)i) (17)
) 72/
F? = 3155 2/Sdlag[ (o] + w)),
A et )]y

III. PERTURBATIVE APPROACH

Within the linear approximation ignoring nonlinear terms
that includes G and H in (10), we obtain the scissors
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and quadrupole mode frequencies, which are consistent with
those in the hydrodynamic (strongly interacting or large-N)
limit [10,15]. Such a linear approximation is useful when
we apply a single-frequency probe. However, if we excite
collective modes simultaneously, nonlinear mode mixing may
emerge and its effects are visible as in Refs. [13] and [14]. In
order to study these effects beyond a linear analysis, we use the
solution of a linear approximation as an unperturbed solution
and regard the nonlinear terms as perturbation. To make this
idea more concrete, we introduce a fictitious perturbation
parameter € such that

iM;wpv + F,u.vpv + G(Gp.vépvpé + leépvpé) =0. (19)

Following the usual perturbation technique, we set € equal to
unity at the end of the calculation. We look for an approximate
solution as a power series of €: p = p» + epV + €2p@ +
.... Substituting this power series into (19) and comparing
the coefficients of each power of €, we obtain a series of
simultaneous equations.

The unperturbed equation, the zeroth order of €, is given by

iMy,p + Fup? =0. (20)

One can diagonalize this equation by a matrix S such that
¢ =iQ,q, where p\¥ =S,,¢q” and Q is a diagonal
matrix given by Q = S~' M~ FS, whose elements are eigen-
values. The eigenvalues are real numbers, each two of them
having the same absolute value with opposite sign. The
solution ¢ can be given by ¢\ = ¢ exp (i2,1), where
¢ determines the weights of eigenmodes under the initial
condition.
In the following, we arrange eigenvalues such that

Q =diag(—Qq, Qq, — _,Q_, — Q4 ,Q4, — Q4y,Qxy,
- Qyz, yzs szanx)~ (21)
In an axially symmetric geometry (x = 1), the frequencies
Qq,+ correspond to the quadrupole mode frequencies, and

the frequencies €2, .. correspond to the scissors mode
frequencies, which are given by

2
2 602
Q4 =97, = YR
44322+ 16 — 162 + 94

2 _
Q= T , (22)
0 —? 1+ A2

x T~ Néyz — )\,ZT

The mode with €, is the high (low)-lying quadrupole-
monopole excitation. In an axially symmetric trap, the Qq
quadrupole mode and the xy scissors mode degenerate, as do
the yz scissors mode and the zx scissors mode. Figure 1 shows
the A dependence of these frequencies. These frequencies
are consistent with those for a trapped condensate in the
hydrodynamic limit [10].
Collecting terms of first order in €, we obtain

iM p" + Fup’ + £V =0, (23)
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FIG. 1. The A dependence of frequencies Qq, Q2+, 2., as well as
292, in an axially symmetric trap case (¢ = 1). The frequencies £2,,
and 2., are equal to 2, and Qq, respectively.

where £/ = G e p@ p{’ + Hyuwe p@ py’. Using the trans-

formation S, this equation reads as
(1) _ D4 so—las=1 £00
GV =iQ,q" +iS M, [0, (24)

where p{) = S,,¢(". The second term on the right-hand

side, i S;UI, M, :L flio’o)., represents nonlinear c.ouplingslbetvxfeen
collective modes, i.e., the eigenmodes in the linearized
equation (20). In order to clearly understand the nonlinear
mixing effects of eigenmodes, it is more convenient to express
. co—Lar—1 £(0,0) _ 0,0
th§ nonhneqr term as lSpu’Mv/uflg ) = G;)Mq.f, )q©. From
this expression, we find that the pth mode is modulated
by nonlinear mixing with the oth and rth modes through
the term

G OO expli(Qy + Q1] (25)

potto “tT

This shows that the pth mode is modulated by an oscillation
with frequency 2, + 2,, where we represent this effect
as p <0+ 1 or Q, < Q, + Q. Although the resultant
nonlinear mixing may depend on the initial condition CE)O)(,O =
1,2,...,12), the weight G;” is quite important in understand-
ing the nonlinear mixing between eigenmodes in (20), because
it determines the presence or absence of nonlinear mixing. It
is straightforward to find that the nonlinear mixing weight

G’ is given by
i

Gy =iS, M, [G,wgSstf +3

poT

Hqu(Svu Sér Q‘L’

+ SurSEaQa)i|v (26)

where G’ is symmetric such that G/, = G,

Figure 2 shows the absolute values of the nonlinear mixing
weight G;)(p = even) in matrix form (column and row indices
correspond to o and t, respectively) in a cigar-shaped trap case
(A = 0.14, which corresponds to the experiment in Ref. [13]).
We do not show cases where p is odd, because we have the

relation G, 4 .4 = (G),,,)" for (p,0,7) odd, where this
M

relation stems from the relation g, /| = (¢'")* for p odd. Some
specific elements in matrices G, are absent, regardless of
the value of the parameter A, which indicates the absence
of nonlinear mixing of collective modes, as well as the
selectiveness of the nonlinear mixing.

Nonlinear mixing for the quadrupole modes is clearly
distinct from that for the scissors modes. Matrices G, Gﬁl,
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FIG. 2. Absolute values of the nonlinear mixing weight G/, in the matrix form in a cigar-shaped trap case (A = 0.14). (a) Matrix G , . (S2q

mode), (b) matrix G} , . (2. mode), (c) matrix G

’
6,0,T

(2, mode), (d) matrix G

(L24y mode), (e) matrix G, , , (Q2y, mode), and (f) matrix

’
8,0,T

G, 4. (82,x mode). The row and column of the matrix represent the o and 7 indices, respectively. The (o,7) section of each matrix provides
the modulation term with the frequency €2, + 2, for the pth mode. For instance, the (o = 1,7 = 12) section of each matrix provides the
modulation term with Q; + Q, = —Qq + Q.. White elements are exactly O for arbitrary A, where the nonlinear mixing is absent. The absolute

value of G/, is equal to thatof G/, , ., ., When (p,0,7) are odd.

and Gy, for three quadrupole modes which have essen-
tially the same structure, have two characteristic features
[Figs. 2(a), 2(b), and 2(c)]. First, all the quadrupole modes
are coupled with each other, including themselves. This
indicates that Qg+ <« Qg+ + Qg +. Second, matrices G5,

1> and Gy involve a tridiagonal matrix, which leads to the
nonlinear mixing Qg+ < Qxy yz z2x + Qxy,yz,2¢. Others such
as QQ,:I: < QQ':‘: + Qxy,yz,zx and QQ':‘: <~ Qxy + sz do not
occur.

Matrices Gg, G, and G, for the scissors modes have two
distinct features [Figs. 2(d), 2(e), and 2(f)]. First, nonlinear
mixing of all quadrupole modes (2yy y; .« < 2q,+ = Q9 +)
is absent. Second, nonlinear mixing between a scissors mode

and itself (o0 < o + 1 for 0,7 = 7,8, ...,12) is also absent.
These two features are in contrast with those for G’z, Gg, and
G..

6

On the other hand, a common feature can be found with
respect to the beating phenomenon. From all the matrices,
G,, Gy, Gg, Gg, G, and G',, we find that the beating effect
is caused by the quadrupole modes. Indeed, for the oth mode,
we have a nonlinear mixing term with 0 <— o + 7 for Q,; =
Qg and €2, where an exception is for the scissors mode in
the x-y plane, coupling with the quadrupole mode (22; = 2q)
being absent.

The nonlinear mixing weight G’ is helpful in understanding
a recent experiment [13]. In this experiment, the zx scissors
mode with frequency 2., shows the beating phenomenon,
where its oscillation amplitude is modulated by the longer-

period oscillation with low-lying quadrupole mode frequency
2_. For the zx scissors mode, the matrix elements of G, , .
for the (€2, &= ©2_) sector are quite large compared with the
other matrix elements [Fig. 2(f)]. This indicates that nonlinear
mixing between the zx scissors mode (£2,,) and the low-lying
quadrupole mode (£€2_) is strong, and the beating emerges
from the term exp[i(€2,, &= €2_)¢]. This fact clearly explains
the experimental results [13].

Our perturbative approach also answers the question
why the oscillation of the low-lying quadrupole mode was
modulated by the short-period oscillation with a high-
lying quadrupole mode frequency (€2;). For the low-lying
quadrupole mode (£2_), we find relatively large matrix ele-
ments in G, . for the (Qy;(zx), 2yz(zx)) sections [Fig. 2(b)].
This indicates that the low-lying quadrupole mode is modu-
lated by the oscillation exp [i2€2,(.»)f]. Since the high-lying
quadrupole mode frequency satisfies 2 >~ 2Q,.,) in the
cigar-shaped trap case (A <« 1) (see Fig. 1), which is the case
in the experiment in [13], the modulation of the low-lying
quadrupole mode may be due to the nonlinear mixing between
the yz(zx) scissors modes, not due to the mixing between the
low-lying and high-lying quadrupole modes. If the modulation
were caused by the nonlinear mixing between these low-lying
and high-lying quadrupole modes, the beating phenomenon
could emerge as in the scissors mode case. However, this
was not the case in the experiment in [13], where beating
phenomena were not observed in the low-lying quadrupole
mode. This result is supported by the fact that the matrix
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FIG. 3. The A dependence of the mixing weight for (a) the Q2o mode, (b) the 2. mode, (c) the 2, mode, (d) the 2, mode, (e) the
2y, mode, and (f) the €, mode. Each line is the maximum absolute value among each four matrix elements in G’ for the (£2;, & ;)
sections as well as the (£8;, F ) sections. Elements with a value smaller than those presented here are not shown. For instance, in (a),
the line for Q_ x Qq is given by the maximum value among |G’ ;|, |G 41, |G)ysl, and |G),,|, which correspond to Qq < —Q_ — Qq,
Qo < —Q_ + Qq, Qo < +Q_ — Qq, and Qq <« +Q_ + Qq, respectively. In (a)-(c), lines for Q,, x ,,, which are not shown here, are
the same as those for €2,, x €., because of an axially symmetric geometry case (k = 1).

element in the (2_,€2) section is much smaller than that in
the (2y:(zx), Qyz(zx)) section [Fig. 2(b)].

Figure 3 shows the A dependence of the dominant nonlinear
mixing weight in G’. We plot the maximum absolute value
among four matrix elements in the (£€2,, & ;) sections
as well as in the (£,, F ;) sections. In the cigar-shaped
trap case (A < 1), the dominant nonlinear mixing for the
quadrupole mode $2q + is the mixing between the zx scis-
sors modes and themselves, leading to the frequency 2€2,,
[Figs. 3(a), 3(b), and 3(c)]. The dominant nonlinear mixing
for the yz(zx) scissors mode is the mixing between the yz(zx)
scissors mode and the low-lying quadrupole mode, leading
to the frequency €2,y £ Q_ [Figs. 3(e) and 3(f)]. This is
consistent with the experimental result [13]. On the other
hand, in the pancake-shaped trap case (A > 1), the dominant
nonlinear mixing for the g quadrupole mode is the mixing
between it and the low-lying quadrupole mode.

We can also discuss frequencies in the second-order
perturbation by using the nonlinear mixing terms G;m. In
the second order of €, we have

iMy,p? + Fup® + [0+ [0 =0. (27)

The inhomogeneous terms, iS;vl,Mv_,;fS’j) for (i,j) = (1,0)

and (0,1), have the same form as in the first-order case, (24).

In the case (i,j) = (1,0), the nonlinear mixing is given by

G’;ll;g) Dg® | where G’folc;(? is the same as G/, in (26). On

the other hand, in the ca(s)e1 )where @i,j)= (0, 1)(?) tlhe nonlinear
.. . . (, 1) -

mixing is given by G ;qV¢{V, where G',.) is defined

by replacing the frequencies €2, and 2, in (26) with the

frequencies g'1 and ¢V, respectively. Although the values of

G’Eﬁ;? itself may change from those given in (26), the position
of matrix elements that are O, where nonlinear mixing is absent,
does not change. This aspect is very useful in predicting the
modulation frequency in the second-order perturbation. For
instance, in Fig. 2(a) for matrix G/_,, the index of the Q¢ row
may be replaced with 2 + €2_, since we have the modulation
Qq < Qq + Q_ in the first-order perturbation. In the second-
order perturbation, the modulation of the oscillation for the Qg
quadrupole mode then has the frequency with 2Qq + €2_ and
Qq +2€2_, ie., the modulations Qg < (¢ + 2_) + Qq
and Qq < (¢ + 2-) + Q_ occur. On the other hand, in
the same-order perturbation for the Qg quadrupole mode,
the modulation with the frequency 2Q_ + Q,,, i.e., the
modulation Qg < (- + ©,,) + ©Q_, may be absent, since in
the first-order perturbation, the modulation Qq < Q2_ + Q_,
does not exist [Fig. 2(a)].

IV. COMPARISON WITH SPECTRAL ANALYSIS

We compare the analytical results in the previous section
with the numerical simulation of the GP equation. In this
simulation, we simultaneously excite the quadrupole modes
and the scissors mode using a perturbative external potential,
sV (r,t) = 0(—1)(0.2x> + 0.25y* + 0.1zx), in dimensionless
form, where 6(t) is the Heaviside step function. This type of
perturbative potential was used in the experiment in Ref. [13]
to excite three kinds of the quadrupole modes with Q¢ 4 and
the zx scissors mode with 2,.
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To extract the spectra of each collective mode, we
employ the following three steps. First, we calculate mo-
ments [6,7,16] from the condensate wave function W(r,?),
where the GP equation was numerically solved by applying
the method in Ref. [17]. These moments are defined as
(x) = [drx|¥(r,n)]*, where x = x2, 2, z%, xy, yz, and
zx. From these quantities, we evaluate deviations from the
time-averaged values. Second, we relate these moments to
vector p in (9) within the linear approximation. One finds that
the explicit relations are given by

2 2/5 . 4/5
(%) ~ — <;> ’;)—45bx,r, (28)
2
(xvy) :Wbe,h 29)
(xy) >~ — La (30)
Y = T 32 g O
x%y
1 1
(Xl)y + yvx) :<W + W)acxy,i' (31)
x Y

The analogous relations for the other moments are easily
obtained. These relations enable us to give vector p as
a function of the moment (x), instead of the variational
parameters 6b, and 8c,,. Finally, we apply the Fourier
transformation to the vector q({x)) = S~'p({x)).

Figure 4 shows the spectral intensities obtained from the
numerical simulation of the GP equation. All peaks are
excellently explained by our perturbative approach within the
second-order analysis (Fig. 4). One sees a relatively weak
peak at the high-lying quadrupole mode frequency €2 in the
Q¢ quadrupole mode [Fig. 4(a)]. This is because in order to
extract each collective mode, we apply linear approximations
such as (28) and (29) to (x), which include all the nonlinear
effects. This is the case in Figs. 4(b) and 4(c).

In the comparison of our perturbation approach with the
numerical simulation, we use renormalized frequencies €2;
that are determined from the principal spectral peaks in Fig. 4.
This is because the frequencies in (22) are rather consistent
with the hydrodynamic (strongly interacting or large-N) limit,
where the kinetic pressure energy is negligible [10], and it is
not the case in this numerical simulation. In the Appendix,
we show results where the frequencies given in (22) are
used. In the intermediate regime (not in the hydrodynamic
regime), it is difficult to apply analytic calculations, but the
collective mode frequencies obtained in the experiment [1] are
well described by the numerical calculation of the linearized
equation [9]. Since the eigenmodes numerically obtained from
the linearized equation in the intermediate regime [9] are
smoothly connected to those in the hydrodynamic limit [10],
our perturbative approach is applicable beyond the hydro-
dynamic limit if we take renormalized frequencies. This
is the reason that our perturbative approach well predicts
all the spectral peaks obtained in the numerical simulation
beyond the hydrodynamic limit. The merit of our present
approach using the nonlinear mixing weight is that it gives
a clear physical understanding of nonlinear mixing effects
between specific collective modes, such as quadrupole modes
as well as scissors modes.
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FIG. 4. Spectral intensities of (a) the Qg mode, (b) the Q_
mode, (c¢) the 2, mode, and (d) the Q,, mode, obtained from
numerical simulation of the GP equation in axially symmetric trap
cases (A = 0.5, 1.0, 1.5). Arrows with the largest labels in each panel
indicate the frequencies Qg + ., that are determined by the maximum
peak position. Filled-head (open-head) arrows together with a linear
combination of the €; labels represent frequencies predicted by
the first-order (second-order) perturbation approximation. (a—c) The
spectrum of the quadrupole mode involves another quadrupole-mode
peak, indicated by the arrow with the parenthetical label (£2;), because
each collective mode is extracted from the linear approximations such
as (28) and (29) by using moments {x2), (y?), and {z?) obtained from
the nonlinear numerical simulation.

V. CONCLUSION

To understand nonlinear mixing effects among collective
modes in harmonically trapped Bose-Einstein condensates,
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we studied quadrupole modes and scissors modes using
a variational calculation with a Gaussian trial wave func-
tion together with a perturbation approach. We derived
equations of motions for variational parameters to second
order in fluctuations and applied a perturbative approach
to reveal the structure of nonlinear couplings between
unperturbed collective modes. We estimated the nonlin-
ear mixing weight and found that mode mixing occurs
selectively.

Although it is not always guaranteed to apply perturbative
techniques to nonlinear equations, such as the Gross-Pitaevskii
equation, our approach clearly explains the recent exper-
iment [13] where the scissors mode exhibits the beating
phenomenon with a longer-period oscillation that corresponds
to the low-lying quadrupole mode frequency, and the oscil-
lation of the low-lying quadrupole mode is modulated by a
shorter-period oscillation with the high-lying quadrupole mode
frequency. All the spectral peaks numerically obtained from
the Gross-Pitaevskii equation are also excellently explained
with the application of a second-order perturbation analysis,
despite the case where the hydrodynamic limit approach is
not applied. The nonlinear mixing weights obtained in our
perturbation study will be helpful in understanding nonlinear
mixing effects between collective modes in trapped Bose-
Einstein condensates.
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APPENDIX

We show the results of a spectral analysis with the frequen-
cies in (22) (Fig. 5). The situation for the numerical simulation
is the same as that in Fig. 4. However, arrows are located
based on the frequencies, (22), instead of the renormalized
frequencies, €2;, determined from the frequencies giving
maximum intensity peaks. In contrast to the case in Fig. 4, the
arrows cannot well predict the peak positions of the spectra.
This is because the frequencies in (22) obtained using the
variational approach correspond to those in the hydrodynamic
(strongly interacting or large-N) limit [15], which is not the
case in the numerical simulation.
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FIG. 5. Spectral intensities of modes for (a) the 2o mode, (b)
the 2_ mode, (c) the 2, mode, and (d) the 22,, mode, together
with arrows pointing to the unperturbed frequencies, (22). The only
difference between Fig. 4 and Fig. 5 is the use of renormalized
frequencies vs unperturbed frequencies, (22), for arrows.
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