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Bogoliubov depletion of the fragmented condensate in the bosonic flux ladder
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We theoretically analyze the ground state of weakly interacting bosons in the flux ladder—the system that
has been recently realized by means of ultracold atoms in the specially designed optical lattice [M. Atala, M.
Aidelsburger, M. Lohse, J. T. Barreiro, B. Paredes, and I. Bloch, Nat. Phys. 10, 588 (2014)]. It is argued that,
for the system parameters corresponding to two degenerate minima in the Bloch dispersion relation, the ground
state is a fragmented condensate. We study the Bogoliubov depletion of this condensate and discuss the role of
boundary conditions.
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I. INTRODUCTION

The possibility to mimic the bosonic flux ladder by using
ultracold atoms in optical lattices, that was brought to reality
in a laboratory experiment [1], has renewed the theoretical
interest in this unordinary quantum system [2–7]. By defi-
nition, the ladder consists of two coupled one-dimensional
(1D) lattices where the quantum particle hops along the ladder
legs with the rate J/h̄ and along the ladder rungs with the
rate J⊥/h̄. The term “flux” means that the particle acquires
a nonzero phase 2πα when it encircles a plaquette of the
ladder. For a charged particle this phase is introduced by a
magnetic field perpendicular to the ladder plane. For a neutral
atom one makes the hopping matrix elements complex by
using nontrivial all-optical schemes—the approach known
nowadays as artificial or synthetic magnetic fields [8–10].

One of the main features of the flux ladder is that the particle
Bloch dispersion relation E = E(κ) shows a bifurcation from
that with two degenerate minima at κ = ±πα to that with
a single minimum at zero quasimomentum κ = 0 as the
ratio J⊥/J is increased. This bifurcation has a number of
consequences for observables. In particular, the time-of-flight
images of cold atoms in the flux ladder have different numbers
of peaks depending on inequality relation between J⊥ and
critical J ∗

⊥ = J ∗
⊥(α), as it was well observed in the cited

experiment [1].
The other, perhaps even more exciting, property of the

system is that every Bloch state is a current-carrying state, with
uniform currents flowing along the ladder legs in the opposite
directions. We mention that the current is uniform only in
the case of the periodic boundary condition. For other types
of boundary conditions, like harmonic confinement or open
boundaries, the current forms a vortex pattern with a single
vortex for J⊥ > J ∗

⊥ (one minimum in the Bloch dispersion
relation) or several vortices for J⊥ < J ∗

⊥ (two minima in
the dispersion relation). This change in the vortex pattern
has a remote analogy with the transition from Meissner’s to
Abrikosov’s phase in a type-II superconductor [11], which is
another reason explaining the large interest in the flux ladders.

Having observed a number of interesting effects already
in the single-particle approximation, it is natural to ask the
question about the role of atom-atom interactions which,
within the Bose-Hubbard formalism, are characterized by the
on-site interaction constant U . We recall that Bose particles

in a 1D lattice with integer filling show a quantum phase
transition in the parameter U/J from the superfluid phase
to the Mott-insulating phase. In the past decade a lot of
efforts were put towards obtaining the phase diagram of the
bosonic flux ladder, and the new exotic phases, like the chiral
Mott insulator, were theoretically predicted in the strongly
interacting regime [3]. In the present work we focus on
the opposite case of weakly interacting bosons. (The exact
meaning of the term “weakly interacting” is given later in
Sec. II C.) The particular problem we address is the structure
of the many-body ground state of the system for J⊥ < J ∗

⊥,
where the single-particle Bloch dispersion relation has two
degenerate minima at κ = ±q ≈ ±πα.

The addressed question is not trivial. In fact, let us denote
by b̂

†
−q and b̂

†
+q the bosonic creation operators which create the

particle in the Bloch states with κ = ∓q, respectively. Then
there are at least three candidates for the ground state of weakly
interacting bosons:

|�〉 ∝ 1√
2

[
eiθ/2 1√

N !
(b̂†+q)N + e−iθ/2 1√

N !
(b̂†−q)N

]
|vac〉,

(1)

which is a superposition of two Bose-Einstein condensates
with the relative phase θ ;

|�〉 ∝ 1√
N !

[
1√
2

(eiθ/2b̂
†
+q + e−iθ/2b̂

†
−q)

]N

|vac〉, (2)

which is a single condensate with broken translational sym-
metry; and

|�〉 ∝ 1

(N/2)!
(b̂†+q)N/2(b̂†−q)N/2|vac〉, (3)

which is a fragmented condensate where N/2 particles occupy
the Bloch state ψ−q while the remaining N/2 particles
occupy the Bloch state ψ+q . We mention that Eq. (2) with
proportionality sign substituted by the equality sign corre-
sponds to the common single-orbital mean-field ansatz, where
the exact value of the phase θ is then found by minimizing
the energy functional. Notice that this ansatz explicitly
breaks the translational symmetry of the system. On the
contrary the multiorbital ansatz (3), which corresponds to the
fragmented condensate, preserves the translational symmetry.
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Clearly, any mean-field ansatz requires a justification, which
implicitly assumes some microscopic analysis. This analysis
may or may not confirm one’s initial guess [12]. For ex-
ample, it is argued in Ref. [13], which discusses a relevant
problem of weakly interacting bosons in a square lattice
with the uniaxial staggered flux, that the results of numerical
diagonalization of the many-body Hamiltonian are consistent
with the single-orbital mean-field ansatz (i.e., bosons do
condense in a symmetry-broken state). Here we report a
counterexample. It is shown below that the ground state of
weakly interacting bosons in the flux ladder is of the form
(3), where the proportionality sign denotes the leading term,
which is followed by terms of smaller amplitude known as the
quantum corrections to the mean-field solution. Going ahead
we mention that these quantum corrections are responsible
for the so-called Bogoliubov depletion of the condensate.
We analyze the Bogoliubov depletion of the fragmented
condensate and provide an analytical estimate for the number
of depleted particles. In the work we also discuss the role of
boundary conditions (BCs), the effect of which is particularly
important for a moderate system size.

II. FLUX LADDER WITH PERIODIC
BOUNDARY CONDITIONS

A. The model and single-particle spectrum

We begin with the case of periodic BCs where the last rung
of the ladder is identified with the first rung. Labeling by (l,m)
the individual sites of the ladder, the system Hamiltonian reads

Ĥ =
L∑

l=1

2∑
m=1

[
−J

2
(â†

l+1,mâl,m + H.c.)

− J⊥
2

(ei2παl â
†
l,m+1âl,m + H.c.) + U

2
n̂l,m(n̂l,m − 1)

]
, (4)

where â
†
l,m and âl,m are the creation and annihilation bosonic

operators and n̂l,m = â
†
l,mâl,m is the number operator. Notice

that the Hamiltonian (4) conserves the total number of
particles, which we denote by N . The elementary cell of the
flux ladder (4) is determined by the Peierls phase α and for a
rational α = r/p comprises p plaquettes. Following Ref. [1],
we choose J⊥ to be our control parameter and we measure
this hopping matrix element and the interaction constant U in
units of the hopping matrix element J (i.e., we set J to unity).

The first step of the analysis is to find the single-particle
(N = 1) spectrum of the system. To obtain this spectrum it is
convenient to change the gauge as follows:

Ĥ =
L∑

l=1

2∑
m=1

[
−J

2
(ei(−1)mπαâ

†
l+1,mâl,m + H.c.)

− J⊥
2

(â†
l,m+1âl,m + H.c.)

]
. (5)

It is seen from Eq. (5) that for J⊥ = 0 the spectrum consists of
two intersecting cosine dispersion relations which are shifted
by ±πα relative to κ = 0. Nonzero J⊥ substitutes the band
crossings at κ = 0 and κ = ±π by avoided crossings, thus
resulting in the two-band spectrum E = E(±)(κ). An example
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FIG. 1. Energy spectrum (dispersion relation) of a quantum
particle in the flux ladder for α = 1/3 and J⊥ = 0.5. The right-hand
panel shows occupation of the ladder legs for a given Bloch state,
where the dashed and solid lines refer to the lower and upper legs,
respectively.

is given in Fig. 1(a) for α = 1/3 and J⊥ = 0.5, where locations
of the energy minima are very close to κ = ±π/3. As J⊥ is
increased, the minima move towards each other and eventually
merge into the single minimum at J⊥ = J ∗

⊥ ≈ 2. One finds
a similar bifurcation of the energy spectrum for other α,
excluding the case α = 1/2 where positions of the minima
are fixed at κ = ±π/2.

In addition to the dispersion relation we also need to know
the explicit form of the Bloch states. Notice that, unlike the
energy spectrum, the eigenstates do depend on the gauge. For
the Hamiltonian (5) the Bloch states are given by

ψ
(±)
l,m (κ) = 1√

L
eiκlu(±)

m (κ), (6)

where u
(±)
1 (κ) and u

(±)
2 (κ) are probability amplitudes to find

the particle in the lower and upper legs, respectively. For the
purpose of future reference the right-hand panel in Fig. 1 shows
squared amplitude um as the function of the quasimomentum κ

for the ground Bloch band [minus sign in Eq. (6)]. It seen that
for the quasimomentum κ around the energy minimum κ =
+q the quantum particle resides mainly in the upper leg, while
for κ = −q the situation is the inverse. This strong imbalance
in the occupation of the ladder legs appears to be crucial for
understanding the many-body spectrum of the system.

B. Many-body spectrum

We proceed with analysis of the many-body spectrum.
Solid lines in Fig. 2 show the low-energy spectrum of N =
4 interacting bosons obtained by straightforward numerical
diagonalization of Hamiltonian (1) for α = 1/3, L = 12, with
the periodic BC. Our prime interest in this figure is the
lowest bunch of levels originating at E/N = Emin, where
Emin ≈ −1.04 is the single-particle energy of the ground. To
analyze the depicted spectrum we use the approximation where
one ignores the upper Bloch band. In other words, the field
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FIG. 2. Blue curves are the exact low-energy spectrum of N =
4 weakly interacting bosons in the flux ladder of length L = 12.
The other parameters are the same as in Fig. 1. The dimension of
the Hilbert space is N = 17 550. Dashed lines are the spectrum in
the single-band approximation, where the dimension of the Hilbert
space is reduced to N = 1365. The straight magenta lines are the
diagonal approximation (10), which ignores population of the other
quasimomentum states besides κ = ±q.

operator is given by �̂l,m = ∑
κ ψ

(−)
l,m (κ)b̂κ , where ψ

(−)
l,m (κ) are

the Bloch waves (6). Then the low-energy spectrum of the
system (1) is determined by the Hamiltonian

H̃ =
∑

κ

E(κ)b̂†κ b̂κ + U

2L

∑
κ1,κ2,κ3,κ4

K(κ1,κ2,κ3,κ4)

× b̂†κ1
b̂†κ2

b̂κ3 b̂κ4δ(κ1 + κ2 − κ3 − κ4), (7)

where E(κ) ≡ E(−)(κ) is the dispersion relation for the lower
band and the kernel

K(κ1,κ2,κ3,κ4) =
2∑

m=1

u(−)
m (κ1)u(−)

m (κ2)u(−)
m (κ3)u(−)

m (κ4). (8)

The Hilbert space of Hamiltonian (7) is spanned by the
quasimomentum Fock states | . . . ,n−1,n0,n+1, . . .〉, where
n−1 is the number of particles in the Bloch state with the
quasimomentum κ = −2π/L, n0 is the number of particles in
the zero-quasimomentum Bloch state, etc., and we place n0 in
the center of the Fock ket vector. The spectrum calculated by
using Hamiltonian (7) is depicted in Fig. 2 by the dashed lines.
A reasonable agreement is noticed. We mention, however, that
the agreement becomes worse for larger U and the single-band
Hamiltonian (7) is not suited, for example, to studying the
quantum phase transition to the Mott-insulator state.

Next we employ the perturbation theory. Let us denote by
|�M〉 the degenerate ground states of system (7) for U = 0,

|�M〉 = | . . . ,0,N/2 − M,0, . . . ,0,N/2 + M,0 . . .〉,
|M| � N/2. (9)

The states (9) obviously correspond to 2N + 1 possible distri-
butions of N bosons between two energy minima. Infinitesi-
mally small U removes the degeneracy where, according to the

first-order perturbation theory, EM (U ) = 〈�M |H̃ |�M〉. After
some algebra this gives

EM (U ) = EminN + U

2L
[K1(N2/2 + 2M2 − N )

+K2(N2 − 4M2)], (10)

where K1 = K(q,q,q,q) and K2 = K(q,−q,q,−q). The first
term in the square brackets in Eq. (10) is the self-energy of
state (9) due to virtual annihilation and creation of the particles
in the same quasimomentum state [i.e., κ1 = κ2 = κ3 = κ4 in
Eq. (7)]. The second term in the square brackets is a correction
to the self-energy due to virtual annihilation and creation of
the particles in the different quasimomentum states κ = −q

and κ = +q. Since the single-particle wave function ψl,m(κ =
±q) is essentially localized in one of two legs [see the right-
hand panel in Fig. 1], we have K2 � K1. For example, for the
considered ratio J⊥/J = 0.5 the parameters K1 = 0.95 and
K2 = 0.05.

The presented elementary analysis brings us to the first
important conclusion. It follows from Eq. (10) that the lowest
level in Fig. 2 has quantum number M = 0 and, hence,
the state |�0〉, which is a fragmented condensate with N/2
particles occupying the quasimomentum state κ = −q and
the remaining N/2 particles occupying the state κ = +q,
provides a zero-order approximation to the exact ground state.
To find the latter analytically one should take into account
the Bogoliubov depletion of the fragmented condensate |�0〉,
i.e., nonzero occupations of the other quasimomentum states
besides κ = ±q. The Bogoliubov depletion is known to lower
the system energy as compared to the diagonal approximation,
and even a small depletion can cause considerable deviation
from the linear law (10). In the next section we discuss the
Bogoliubov depletion of the fragmented condensate in more
detail.

C. Bogoliubov depletion of the fragmented condensate

There are two different approaches to the Bogoliubov
depletion of Bose-Einstein condensates. The first approach
(due to Bogoliubov) uses the substitution �̂ = � + δ̂� for
the field operator �̂, where � is the mean-field solution.
This approach results in the celebrated Bogoliubov–de Gennes
equations, from which one finds both the quantum correction to
the mean-field ground state and elementary excitations above
the energy of the ground. Extension of the Bogoliubov–de
Gennes theory to the case of fragmented condensates can
be found in Ref. [14]. The second approach does not involve
the mean-field solution and finds the ground state and the spec-
trum of elementary excitations directly from the microscopic
Hamiltonian [15,16]. We follow the second approach, which
was used earlier in Refs. [16,17] to study Bogoliubov depletion
of ordinary condensates in the one-dimensional Bose-Hubbard
system.

To find occupation probabilities of the other, besides κ =
±q quasimomentum states we use the ansatz

|�〉 =
∑
n,k

cn,k| . . . ,n,N/2 − 2n,n, . . . ,k,N/2 − 2k,k, . . .〉.
(11)
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FIG. 3. Pictorial presentation of the Bogoliubov depletion. Two
panels in the figure show two different kinds of the depletion processes
which conserve the total quasimomentum of N particles. The example
is given for L = 12 where discretization of the quasimomentum is
	κ = π/6.

Physically, the ansatz (11) corresponds to the process where
one “takes” two particles from either of the condensates and
puts them symmetrically (to satisfy the conservation law for the
total quasimomentum) in the nearest quasimomentum states;
see the left-hand panel in Fig. 3. Substituting Eq. (11) into
the stationary Schrödinger equation with Hamiltonian (7) we
obtain the following equation on the coefficients cn,k:

E0cn,k + δ(n + k)cn,k + (
V

(−q)
n,k cn+1,k + H.c.

)
+ (

V
(+q)
n,k cn,k+1 + H.c.

) = Ecn,k, (12)

where E0 = EminN + (U/2L)K1(N2/2 − N ) is the energy of
the not-depleted fragmented condensate and δ,

2δ = E(±q − 	κ) + E(±q + 	κ) − 2Emin, (13)

is an increase in the kinetic energy due to population of the
nearest quasimomentum states κ = −q ± 	κ and κ = +q ±
	κ , 	κ = 2π/L.

Next we assume the semiclassical limit N → ∞ and U =
gL/N → 0, where

g = NU/L (14)

is the macroscopic interaction constant. In this limit the off-
diagonal matrix elements V

(±q)
n,k take a particular simple form,

namely, V
(±q)
n,k = K1g/2. Furthermore, in the semiclassical

limit Eq. (12) separates into two independent eigenvalue
problems, so that cn,k = cnck . The corresponding equations
for the coefficients cn and ck are identical and read

2(δ + g̃)ncn + g̃(ncn+1 + H.c.) = (E − E0)cn,

E0 ≈ EminN + g̃N/4, g̃ = K1g/2. (15)

Equation (15) can be solved analytically, resulting in the
equidistant spectrum [16],

Ej = E0 − (δ + g̃) + 
(j + 1/2), 
= 2
√

2g̃δ + δ2. (16)
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FIG. 4. Low-energy spectrum of system (7) as the function of
the macroscopic interaction constant g. The other parameters are
N = 512, α = 1/2, and L = 8. The energy is measured with respect
to mean-field energy E0. Asterisks are the spectrum calculated by
using ansatz (11).

For the purpose of future comparison, asterisks in Fig. 4 show
the energy spectrum of system (7) calculated on the basis
of Eq. (16) for the system parameters N = 512, L = 8, and
α = 1/2.

The approximation (16) for the low-energy spectrum can
be improved further by taking into account the “correlated”
depletion process, which corresponds to the following ansatz:

|�〉 =
∑
n,k

cn,k| . . . ,n,N/2 − n − k,k, . . . ,

k,N/2 − n − k,n, . . .〉. (17)

In other words, we take one particle from each condensate and
distribute them symmetrically between the nearest quasimo-
mentum states; see the right-hand panel in Fig. 3. We found
that the depletion process (17) corrects Eq. (16) only slightly.
Yet it removes degeneracy of the excited states Ej , where the
level splitting is proportional to the parameter K2; see solid
lines in Fig. 4. Notice that, unlike in Fig. 2, in Fig. 4 we
depict only the energy levels which correspond to zero total
quasimomentum.

The presented results prove that, providing the condition
K1 � K2, the Bogoliubov depletion of the fragmented con-
densate is similar to that of not-fragmented condensate. This
allows us to obtain an analytical estimate for the number
of depleted particles. Namely, knowing the eigenstates of
Eq. (15), we calculate the depletion of each condensate as
Nd = ∑

2n|cn|2. For the ground state of the original system
this gives

Nd ≈ 2
√

g̃/δ, g̃ = K1g/2, g = NU/L. (18)

It follows from Eq. (18) that Nd diverges in the thermodynamic
limit N,L → ∞, where the parameter δ tends to zero as δ ∼
1/L2. This is in agreement with the well-known result that
there could be no genuine condensate in an infinite 1D system.
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FIG. 5. Eigenvalues of the one-particle density matrix (19) (a)
as the function of the hopping matrix element J⊥ and (b) as the
function of the interaction constant U . The other parameters are
N = 4, L = 12, α = 1/3, and (a) U = 1 and (b) J⊥ = 0.5. Notice that
altogether we have 24 eigenvalues where the two degenerate largest
eigenvalues, which are associated with the fragmented condensate,
are depicted by the thick red lines.

Fortunately, in laboratory experiments with cold atoms one
always deals with finite systems and, thus, Nd remains finite.
Equation (18) also gives us the exact meaning of the term
weakly interacting, namely, interactions are assumed to be
weak if Nd/N � 1.

D. One-particle density matrix

The above-discussed depletion of the fragmented conden-
sate can be easily detected by analyzing the one-particle
density matrix,

ρ
l′,m′
l,m = 1

N
〈�|â†

l′,m′ âl,m|�〉, (19)

where |�〉 is the ground state of system (4). Figure 5(b) shows
eigenvalues λi of the matrix (19),

ρ
l′,m′
l,m =

2L∑
i=1

λiφ
∗(i)
l′,m′φ

(i)
l,m, (20)

as the function of the interaction constant U . It is seen that
the density matrix has two degenerate eigenvalues close to
1/2, which correspond to macroscopic occupations of the
Bloch states with κ = ±q. A decrease of these two largest
eigenvalues as the interaction strength is increased indicates
depletion of the fragmented condensate.

It is interesting to note that a system of rather small
size can qualitatively reproduce the quantum phase transition
associated with the bifurcation of the single-particle energy
spectrum at J⊥ = J ∗

⊥. Figure 5(a) shows eigenvalues of the
density matrix as the function of J⊥. It is seen in Fig. 5(a) that
the fragmented condensate rapidly depletes as J⊥ approaches
the critical value J ∗

⊥, and an ordinary condensate, where bosons

condense in the Bloch state with zero quasimomentum, is
formed for J⊥ > J ∗

⊥.
To conclude this section we briefly comment on the

time-of-flight (TOF) images of the fragmented condensate. In
principle, the knowledge of the one-particle density matrix (20)
suffices to predict TOF images of the expanding fragmented
condensate. However, these predictions are valid only in the
statistical sense. In the other words, the TOF images should
be averaged over many runs of the same experiment. At a
single run the TOF image is expected to be similar to that
for not-fragmented condensate in the form (2), where one
randomly peaks up the phase θ . This conclusion formally
follows from the fact that the translationally invariant state
(3) can be obtained from the symmetry-broken state (2) by
averaging the latter over the phase θ [18]. With respect to
some other systems the problem of how one can identify (and
quantify) BEC fragmentation in a laboratory experiment is
discussed in Refs. [21–23].

III. DIRICHLET BOUNDARY CONDITION

A. Single-particle ground states

As mentioned in the introduction, the Dirichlet BC (open
boundaries) drastically changes the single-particle wave func-
tions and, instead of uniform currents in the ladder legs, we
get a vortex pattern for the persistent current. If J⊥ > J ∗

⊥
there is only one vortex extending over the system size, while
for J⊥ < J ∗

⊥ there are several vortices with the characteristic
size π/|q|. As before, we focus on the latter case, where the
Bloch dispersion relation for the periodic BC would have two
degenerate minima.

For the Dirichlet BC the new ground states of the system
can be approximately expressed through the Bloch states (6)
as

ψ̃
(±)
l,m = Y (l)

1√
2

[ψl,m(+q) ± ψl,m(−q)], (21)

where Y (l) ≈ L−1/2 sin(πl/L) is a smooth envelope function.
Examples of the symmetric (plus sign) and antisymmetric
(minus sign) ground states are given by the dashed lines in
Figs. 6(b) and 6(c) for L = 12 and in Fig. 8 for L = 120. Notice
that, unlike the Bloch states for the periodic BC, the states (21)
have equal population of the ladder legs, i.e., |ψ̃l,1|2 = |ψ̃l,2|2.
Furthermore, the states (21) obey the reflection symmetry,

ψ̃
(±)
l,1 = ±ψ̃

(±)
L−l+1,2, (22)

which we utilize later on. We mention, in passing, that
one finds a similar symmetry also in the case of harmonic
confinement, which is a more relevant BC from the viewpoint
of a laboratory experiment with cold atoms. In this sense
the BC considered in this section captures the physics of the
realistic boundary conditions; however, it is simpler from the
numerical viewpoint.

The other important result of the single-particle analysis
is that the new ground states (21), which are locally given
by symmetric and antisymmetric superpositions of the Bloch
waves with the quasimomentum κ = ±q, have slightly dif-
ferent energies. The energy difference 	E = |E(−) − E(+)|
between the symmetric and antisymmetric states can be very
small, yet it remains finite. This is illustrated in Fig. 6(a), where
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FIG. 6. (a) The energy difference |	E| between the two lowest
eigenstates for g = 0 (asterisk) and g = 1 (open circles). The dashed
line is the energy difference between the lowest duplet and the next
eigenstate. The considered system size is 3 � L � 300 with step
	L = 3. (b) Symmetric and (c) antisymmetric ground states for N =
4, L = 12, and U = 0 (dashed lines) and U = 1 (solid lines). Shown
are the squared amplitudes |ψ̃l,m|2 and |φl,m|2, which are the same for
m = 1 and m = 2.

we depict by asterisks the energy difference 	E as a function
of the system size L.

B. Many-body ground state

It follows from the previous section that for vanishing
interparticle interactions the many-body ground state is an
ordinary condensate, where bosons occupy the symmetric
single-particle state. However, since the energy difference
	E between the symmetric and antisymmetric states is rather
small, one may expect that interactions force bosons to occupy
both single-particle states. This conclusion is supported by
the numerical analysis of the problem; see Fig. 7(a), which
shows eigenvalues of the density matrix (19) as the functions
of the interaction constant U . As U is increased, a considerable
fraction of particles is seen to populate the antisymmetric
state ψ̃

(−)
l,m , which has a slightly larger energy E(−) = E(+) +

0.0011. Additionally, the solid lines in Figs. 6(b) and 6(c)
show the eigenvectors φl,m of the density matrix for the
two largest eigenvalues, which should be compared with the
single-particle states ψ̃

(±)
l,m depicted by the dashed lines.

To obtain further information about the many-body ground
state we project it onto the states |�M〉,

|�M〉= 1√
(N/2+M)!(N/2−M)!

(b̃†+)N/2+M (b̃†−)N/2−M |vac〉,

(23)

where the operators b̃
†
± create the particle in the symmetric and

antisymmetric single-particle states, respectively. The result is
shown in Fig. 7(b), where we plot the squared modulus of the
overlap coefficients,

CM = 〈�|�M〉. (24)
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FIG. 7. (a) Eigenvalues of the one-particle density matrix (19) for
the Dirichlet boundary condition. The two largest eigenvalues, which
are associated with the symmetric and antisymmetric natural orbitals,
are depicted by the thick red lines. (b) The overlap coefficients (24) as
a function of the interaction constant U . The system parameters are
the same as in Fig. 5(b) except for the different (Dirichlet) boundary
condition.

It is seen in Fig. 7(b) that the exact ground state |�〉 is a sum
of three condensates, one fragmented [M = 0 in Eq. (23)] and
two not fragmented (M = ±N/2). Notice that strictly zero
overlap coefficients C±1 prove that this state cannot be viewed
as a single condensate, where bosons are condensed in some
superposition of the symmetric and antisymmetric states.

The above-presented results suggest the following physical
picture. For a large system size, where the energy difference
	E between the symmetric and antisymmetric single-particle
states is negligible, the ground state is the balanced fragmented
condensate, similar to the case of periodic BC. As the system
size is decreased, the energy difference 	E increases and we
have an admixture of not-fragmented condensates. We mention
that one meets a similar effect in the problem of a single-mode
spinor condensate subject to a magnetic field [12]. In both
problems we have the energy difference between the single-
particle states as an additional parameter. It is an open problem
to find the overlap coefficients (24) as a function of the energy
splitting 	E or, which is essentially the same, as the function
of the system size L.

C. Mean-field macroscopic wave functions

Finally, we analyze the macroscopic wave functions φ
(±)
l,m

given by the first two eigenstates of the one-particle density
matrix. We assume the large system size, so that the ground
state of the system is a balanced fragmented condensate, and
the weak interparticle interactions, so that the Bogoliubov
depletion of this condensate is small. In this case we can find
the functions φ

(±)
l,m by using the mean-field approach:

−J

2
(φl+1,me−iπα + φl−1,meiπα) − J⊥

2
(φl,m+1δm,1

+φl,m−1δm,2) + g|φl,m|2φl,m = Eφl,m, (25)
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FIG. 8. Occupations |φl,m|2 of the ladder sites for L = 120 and
g = 0 (dashed lines) and g = 1 (solid lines) for the (a) symmetric
and (b) antisymmetric macroscopic wave functions.

where the macroscopic interaction constant g is defined in
Eq. (14). Equation (25) is obtained by identifying the bosonic
operators in Hamiltonian (5) with the classical canonical
variables as âl,m/

√
N → φl,m and â

†
l,m/

√
N → φ∗

l,m [17].
The stationary nonlinear Schrödinger equation (25) can be
simplified by noting that the ground single-particle states (21)
possess the symmetry (22) and so do the eigenstates φ

(±)
l,m of

the one-particle density matrix. Using this symmetry, Eq. (25)
reduces to two one-dimensional problems,

−J

2
(φl+1e

−iπα + φl−1e
iπα) ± J⊥

2
φL−l+1 + 2g|φl|2φl = Eφl,

g = UN/L, (26)

where the plus and minus signs refer to the symmetric and
antisymmetric macroscopic wave functions, respectively. For
L = 120 and g = 1 the minimal energy solutions of Eq. (26)
are depicted in Fig. 8 by the solid lines. It is seen that
repulsive interactions make the envelope function Y (l) flatter,
which is consistent with the role of interactions in the case
of not-uniform wave functions. Yet, there are unremovable
modulations of the particle density with the period π/|q| ≈ 3,
which are correlated with the vortex pattern for the persistent
current. For the sake of completeness we also depict in Fig. 6(a)
the difference 	E between the mean-field energies of the
symmetric and antisymmetric states.

It is interesting to note that, if we sum |φ(+)
l,m |2 and |φ(−)

l,m |2
with equal weights, the density becomes locally uniform.
Keeping in mind that the uniform density minimizes the
mean-field interaction energy, this result supports the above
conclusion that in the limit of large L the ground state of the
system is the balanced fragmented condensate.

IV. CONCLUSION

In the first part of the work we discussed the ground state of
weakly interacting bosons in the flux ladder with periodic BCs,
focusing on the case where the single-particle Bloch spectrum
has two degenerate minima at κ = ±q. It was shown that the
many-body ground state is the fragmented condensate, where
N/2 particles occupy the Bloch state with quasimomentum
κ = −q and the remaining N/2 particles occupy the Bloch
state with quasimomentum κ = +q. We analyzed the Bogoli-
ubov depletion of this fragmented condensate and obtained an
analytical estimate for the number of depleted particles as the
function of the interaction constant and the system size.

In the second part of the paper we addressed the case of
Dirichlet BCs instead of the periodic BCs. The Dirichlet BCs
explicitly break the translational symmetry of the system, so
that the new nearly degenerate single-particle states show the
vortex pattern for the persistent current. It was argued that, in
the limit of large system size, the ground state of the system is
again the fragmented condensate where the particles occupy
the “symmetric” and “antisymmetric” macroscopic states. We
calculated these macroscopic states by using a specific mean-
field approach. This approach explicitly takes into account
the fact that the ground state is a fragmented condensate and,
in this sense, cardinally differs from the standard mean-field
approach where the ground state is assumed to be an ordinary
(not-fragmented) condensate.

Finally, we discuss the present work in the context of other
works on fragmentation. Nowadays, fragmentation of Bose-
Einstein condensates is a vast area of research [14,24–32],
where Bose particles in the harmonic trap and in the double-
well potential are the most popular systems. In this work we
analyzed quite a different system, which can be viewed as
an extension of the one-dimensional Bose-Hubbard model.
Taking into account the importance of this model in cold-atom
physics, the reported results contribute an interesting example
of fragmentation in an extended system. We also emphasize
that in the work our main approach was microscopic analysis
of the many-body wave function, which does not appeal
to a mean-field solution. It would be interesting to analyze
the bosonic flux ladder by using the multiconfigurational
mean-field theory [14,26]. This theory can give an accurate
approximation to the exact many-body wave function by
self-consistently finding the natural orbitals and their weights.
Thus, in principle, it is capable of giving an answer to the
above-posed question on the dependence of the expansion
coefficients (24) on the system size L. We reserve this problem
for future studies.
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