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Ultracold atom interferometry with pulses of variable duration
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We offer interferometry models for thermal ensembles with one-body losses and the phenomenological
inclusion of perturbations covering most of the thermal atom experiments. A possible extension to the many-body
case is briefly discussed. The Ramsey pulses are assumed to have variable durations and the detuning during
the pulses is distinguished from the detuning during evolution. Consequently, the pulses are not restricted to
resonant operation and give more flexibility to optimize the interferometer to particular experimental conditions.
On this basis another model is devised in which the contrast loss due to the unequal one-body population decays
is canceled by the application of a nonstandard splitting pulse. For the importance of its practical implications,
an analogous spin-echo model is also provided. The developed models are suitable for the analysis of atomic
clocks and a broad range of sensing applications; they are particularly useful for trapped-atom interferometers.
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I. INTRODUCTION

Most accurate experimental methods have been based
on interferometers, first invented for the measurement of
the velocity of light and gradually extended to frequency
standards and metrology [1–9]. In recent years the interest
in precision interferometry has been growing in the context of
ultracold atomic systems [10–12], where atom chips that allow
unparalleled control over atomic ensembles have become
particularly promising [13,14].

In metrology it becomes a burden to interpret how inad-
vertently detuned pulses quantitatively influence results. Our
analytical models address most common cases. Imperfections
are often compensated with sophisticated techniques [15–18]
that may become an absolute necessity: The medium may
distort the pulses in an uncontrolled way or the pulse sources
may suffer from imperfections and lead to measurement
inaccuracies. In the high-precision applications one employs
the longest possible times, limited by the saddle point of the
Allan variance graph [19] showing that longer integration
times will gain no greater accuracy. As a consequence,
the analysis should include particle losses and cold atomic
collisions since they cause ensemble dephasings. In dense
thermal clouds two-body processes may become a limiting
factor; thus, they should also be included [20].

In this contribution we offer a set of analytical models of
various Ramsey-type interferometers [21,22] with one-body
losses and proper accounting for off-resonant coupling and
ensemble dephasing. The models cover most of the experi-
ments with thermal atoms and are extendable via the inclusion
of perturbations. The extension to the case of two-body losses
can be readily implemented [20]. A peculiar feature of the
presented models is that the coupling field detuning from the
atomic resonance is distinguished from the energy level shifts
during free evolution, and, since the effect of the off-resonant
interrogation is often significant, the detuning is assumed
nonzero. The models are linked to the Bloch vector formalism
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to introduce the measurables and explain the underlying
processes. Second, a more generic Ramsey model is developed
where both pulses have variable durations. Then a method to
maximize the visibility by applying a non-π/2 splitter pulse
is devised. It is based on the fact that the initialization of the
two states having unequal population decays may, by the end
of the evolution, result in the population equalization highly
desirable for result interpretation. Ramsey spectra with Rabi
pedestals are given analytically for the one-body models. In
Appendix we extend the Ramsey formalism to the off-resonant
spin echo with one-body losses.

II. INTERFEROMETRY MODELS

A. Definitions

The ensemble of two-level atoms is initially prepared in
the state |1〉. A short π/2 Rabi pulse [Fig. 1(a)] equates
the populations placing the ensemble (pseudo)spin to the
equatorial plane of the Bloch sphere where it can only evolve
in phase (Fig. 2). We assume the pulses are instantaneous
and neglect losses by satisfying � � � and 1/γm � d with
m ∈ {1,2} for the resonant Rabi frequency �, detuning from
the atomic resonance � = ωatom − ωlight, population loss rates
γm of the states |m〉, and the pulse duration d. The pulse
areas equal π/2 at any � and have duration π/(2�R), with
the generalized Rabi frequency �R = √

�2 + �2, to preserve
the π/2 behavior away from resonance. It is distinct from
the usual duration π/(2�) yielding a non-π/2 pulse at � �= 0.
The spectra of such systems differ as shown in the forthcoming
discussion.

After the first π/2 pulse, the system evolves for a time T .
The phase difference between the two states starts growing.
Before the second π/2 pulse arrives, the phase is diffused due
to the ensemble-related dephasing, trap-induced dephasing,
and the driving frequency instability. The second π/2 pulse
rotates the Bloch vector to accomplish projective detection.
It brings the imprinted phase to the axis of the normalized
population difference Pz. Locally dephased parts of the
ensemble result in a blurred distribution of Pz, the width of
which expresses the detection limit.

2469-9926/2017/95(3)/033621(7) 033621-1 ©2017 American Physical Society

https://doi.org/10.1103/PhysRevA.95.033621


VALENTIN IVANNIKOV PHYSICAL REVIEW A 95, 033621 (2017)

(a)
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FIG. 1. Ramsey interferometry with variable-duration pulses.
(a) Pulses are generally non-π/2 with durations Tp1 and Tp2.
(b) Spin-echo sequence with variable-duration pulses.

The measurables are expressed in terms of the atom
numbers Nn and density matrix elements ρnn with the state
index n ∈ {1,2}, N = N1 + N2; Pz = P1 − P2:

P1 = N1

N
= ρ11

ρ11 + ρ22
, P2 = N2

N
= ρ22

ρ11 + ρ22
. (1)

The Bloch vector B is employed in Fig. 2 to articu-
late the processes in the effective two-level system. The
Liouville–von Neumann equation for the resonant loss-
less case reads ∂B/∂t = � × B, where B = (Bx,By,Bz)� =
(ρ21 + ρ12, Im{ρ21 − ρ12},ρ11 − ρ22)� is the pseudospin vec-
tor and � = (−�,0,�)� acts on B as an effective torque. Dur-
ing free evolution, ϕ accumulates detuning and miscellaneous
perturbations, e.g., collisional level shifts, radiation shifts, etc,
in general taking the form of a sum ϕ = � + �collisions +
�radiation + · · · . Separation of pulse � and level shifts during
evolution ϕ enables the model to sense perturbations. We shall
refer to ϕ as the Ramsey dephasing rate measured in rad/s. The
presented models are parametrized by the Ramsey evolution
time T , the cumulative Ramsey dephasing rate ϕ during free
evolution, and the phenomenological dephasing rate γd .

B. Master equation with one-body losses

Particle loss that causes dephasing, and the pure dephasing
that only occurs between the states and is not associated with
population loss, can be included in the Liouville–von Neumann
equation. It is then written for a two-level system as

∂ρ

∂t
= 1

ih̄
[H,ρ] − 1

2
{
,ρ} − 1

2
� ◦ρ, (2)

where 
 is the loss operator that sets up γ1, the population loss
rate of state |1〉, and γ2, the population loss rate of state |2〉.
ρ is the density operator, [•,•] and {•,•} are commutator and
anticommutator brackets, respectively, and H is the effective
Hamiltonian of a spin- 1

2 system; here we shall consider H in
the rotating wave approximation and interaction picture. The
loss operator is defined as a matrix:


 =
[
γ1 0

0 γ2

]
, � =

[
0 γ12

γ21 0

]
. (3)

The Hadamard product allows us to conveniently introduce the
off-diagonal phase relaxation rates γd in the pure dephasing
operator � as a separate summand � ◦ρ of Eq. (2) where
� takes the form of a matrix with equal pure dephasing
rates: γ12 = γ21 = γd . Eq. (2) can be written explicitly as the

following differential equations:1

∂ρ11

∂t
= −γ1ρ11 − i

2
�(ρ21 − ρ12),

∂ρ22

∂t
= −γ2ρ22 + i

2
�(ρ21 − ρ12),

∂ρ12

∂t
= −γ3ρ12 + i

2
�(ρ11 − ρ22) + iξρ12,

∂ρ21

∂t
= −γ3ρ21 − i

2
�(ρ11 − ρ22) − iξρ21,

(4)

where ξ is included in H and the pure dephasing rate
γd in relaxation constant γ3 = 1

2 (γ1 + γ2 + γd ). We shall
distinguish two regimes: during coupling pulses (ξ = �) and
during free evolution (ξ = ϕ).

The Liouville–von Neumann equation [Eq. (2)] is solved
with nonzero loss terms included with the assumption of
lossless interrogation pulses. The solution of Eq. (2) for
the off-resonant Ramsey sequence with non-negligible losses
during evolution are

ρ11 = 1

4�4
R

[
�4e−γ2T + (

�2 + �2
R

)2
e−γ1T − k1

]
, (5a)

ρ22 = 1

4�4
R

[
�2

(
�2 + �2

R

)(
e−γ1T + e−γ2T

) + k1
]
, (5b)

Pz = �2(k2 − k3) − k1e
(γ1+γ2)T

�2
R(k2 + k3)

, (5c)

with the following auxiliary definitions:

k1 = 2�2e−γ3T [�2 cos(ϕT ) − 2��R sin(ϕT )],

k2 = (
�2 + �2

R

)
eγ2T ,

k3 = �2eγ1T .

(6)

It is often the case that the interrogation is resonant with
the atomic transition. Then Eqs. (5) simplify as

ρ11 = 1

4

[
e−γ1T + e−γ2T − 2e−γ3T cos(ϕT )

]
, (7a)

ρ22 = 1

4

[
e−γ1T + e−γ2T + 2e−γ3T cos(ϕT )

]
, (7b)

Pz = −e− 1
2 γdT sech

(
γ1 − γ2

2
T

)
cos(ϕT ). (7c)

C. Interferometry with variable-duration pulses

As a useful extension to the Ramsey technique we present
solutions for the interferometry with variable durations of the
splitting and detecting pulses.

The Liouville–von Neumann Eq. (2) is solved with the
following assumptions: the detuning of the interrogating field
� is arbitrary, no losses during the interrogating pulses, no
coupling during free evolution (i.e., � = 0). Then ρ11 and ρ22

1ξ from these equations is erroneously typed as � in Ref. [23].

033621-2



ULTRACOLD ATOM INTERFEROMETRY WITH PULSES OF . . . PHYSICAL REVIEW A 95, 033621 (2017)

FIG. 2. Ramsey interferometry in the Bloch vector representation. The fans of vectors illustrate phase diffusion. The black circular arrows
show the rotation by the effective torque acted on the vector. A fringe in Pz is produced by varying T . In the phase-Ramsey method the fringe
is produced at a fixed T by varying the phase of the second π/2 pulse. (a) Initially the atoms are in state |1〉, state |2〉 is unpopulated. (b) After
the first π/2 pulse the effective torque brings the vector to the phase plane (Pz = 0). (c) Without interrogation the system relaxes, undergoing
population loss and phase destruction, resulting in phase diffusion. (d) The second π/2 pulse applies an effective torque, projecting the vectors
onto the axis of population difference.

at the interferometer output are

ρ114�4
Re(γ1+γ2)T = 4�4eγ1T sin2

[
�R

2
Tp1

]
sin2

[
�R

2
Tp2

]
+ k3k4e

−γ1T − 2�2e
1
2 (γ1+γ2−γd )T (k1 − k2),

ρ224
�4

R

�2
e(γ1+γ2)T = −k4 cos(�RTp1) − k3 cos(�RTp2) + k3 + k4 + 2e

1
2 (γ1+γ2−γd )T (k1 − k2), (8)

with auxiliary definitions for the sake of compactness:

k1 = cos(ϕT )

[
�2

R sin(�RTp1) sin(�RTp2) − 4�2 sin2

(
�R

2
Tp1

)
sin2

(
�R

2
Tp2

)]
,

k2 = sin (ϕT )�R�[sin(�RTp1) + sin(�RTp2) − sin(�RTp1 + �RTp2)], k3 = eγ2T
[
�2 + �2

R + �2 cos(�RTp1)
]
,

k4 = eγ1T
[
�2 + �2

R + �2 cos(�RTp2)
]
, k5 = eγ1T �2[1 − cos(�RTp1)]. (9)

The normalized population difference is then

Pz = �−2
R

k3 + k5

{
(k3 − k5)[�2 + �2 cos(�RTp2)]

− 2�2(k1 − k2)e(γ1+γ2−γd ) T
2
}
. (10)

If an equal splitting is desired at an arbitrary detuning, the
splitter pulse duration Tp1 can be obtained from the lossless
model [23] by solving the equation Pz(t) = 0:

ρ11 = 1

2�2
R

[
�2 + �2

R + �2 cos (�Rt)
]
,

ρ22 = �2

2�2
R

[1 − cos (�Rt)].

(11)

The first pulse duration is then

tπ/2 = Tp1 = arccos

(
−�2

�2

)/
�2

R, (12)

where the sequence can be closed by a π/2 pulse defining
the duration Tp2 = π/(2�R). The Tp1 is limited by the
detuning that is required to be not larger than the resonant
Rabi frequency: � � �. If this condition is not satisfied,

the equation Pz(t) = 0 gives an unphysical imaginary result.
The maximal possible off-resonant π/2-pulse duration that
provides equal population splitting is then found to be tπ/2 =
π/(�

√
2).

A direct application of the Tp2 variation is to model the
experimental imperfections, associated with the second pulse.
The Tp1 variation is of a more subtle character: The splitter
allows us to initiate free evolution with unequal populations
that may evolve into equal populations. For this to happen, the
state with the higher loss rate needs to be loaded more at the
beginning of the evolution. The point where the unequally split
populations equalize gives the maximal normalized population
value. By chasing the optimal value of T by accordingly
correcting the splitter duration Tp1 one can attain a perpetually
maximal contrast of Pz(T ). This is of benefit for data fitting
since the envelope function becomes constant. Of course, this
method does not affect the signal-to-noise ratio defined by the
fundamental limit, the Heisenberg uncertainty.

D. One-body loss asymmetry cancellation

The visibility in long Ramsey experiments decreases due to
loss asymmetry as one of the dominant factors [23]. A look at
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FIG. 3. Equalizing the state |1〉 and |2〉 instantaneous population decays by a variable splitter pulse to enhance Pz. The model is evaluated
for the following parameters: � = 0 rad s−1, Tp2 = π/(2�R), γ1 = 1.5 s−1, γ2 = 0.5 s−1, γd = 0 s−1, ϕ = 2π × 2 rad, and � = 2π × 1
rad s−1. ρ11 (blue) and ρ22 (red) are from Eqs. (13), Pz (dashed) from Eq. (10). (a) Tp1 = π/2: equally split populations ρnn at the end of
free evolution, at T ; (b) Tp1 = π/3: unequal splitting to produce a crossing of the population decays before the arrival of the second pulse;
(c) Tp1 = π/2: after the complete sequence, Pz has a monotonic sech[(γ1 − γ2)T/2] envelope at γ1 �= γ2 according to Eq. (7c); (d) Tp1 = π/3:
after the complete sequence the peak of visibility is observed at T = Toptimal ≈ 1.1 s as expected from Eq. (14).

the population decays in Figs. 3(a) and 3(b) suggests that if the
populations start from unequal values N2(T = 0) > N1(T =
0), then N1(T ) and N2(T ) cross. Pz has a maximum at this
point; i.e., the loss asymmetry is canceled. One can tailor a
sequence with variable splitter π/2-pulse duration to obtain a
Ramsey fringe that gives unitary visibility at a desired location.
To derive the expression for the optimal first-pulse duration,
the density operator ρ(t) is propagated until the end of free
evolution, before the second π/2 pulse, where the populations
are

ρ11(t) = 1

2�2
R

e−γ1t
[
�2 + �2

R + �2 cos(�RTp1)
]
,

ρ22(t) = 1

2�2
R

e−γ2t�2[1 − cos(�RTp1)]. (13)

Then the crossing of the populations is found by solving
equation ρ11(t) = ρ22(t) with respect to time t and discard-
ing irrelevant solutions. The solution gives time where the
maximum visibility of Pz occurs as a function of Tp1; we label
this time Toptimal further on:

Toptimal = 1

γ1 − γ2
ln

[
�2

R

�2
csc2

(
�RTp1

2

)
− 1

]
. (14)

In Fig. 3 the effect of loss compensation is shown with a set
of test parameters. Figure 3(a) shows the dynamics of the freely
evolving populations following the application of the standard
π/2 splitting pulse. The populations are plotted before the
arrival of the detecting π/2 pulse. In contrast, Fig. 3(b) shows
how the splitter can affect the populations and lead to their
balance at an arbitrary time T . Figures 3(c) and 3(d) show the
populations and measurable Pz after the full interferometric
sequence with a nonzero ϕ producing a fringe. In accordance
with the expectations, Fig. 3(d) indicates an extremum in the
visibility at T = Toptimal defined by Eq. (14).

III. RABI PEDESTALS AND RAMSEY SPECTRA

As in the case of the Rabi model of Eqs. (11), the
Ramsey spectrum (Fig. 4, lossless, ϕ = �) has a comb of
resonances at around � = 0 that narrow down with increasing
evolution time T . At resonance the visibility is highest and
the slope is steepest, which is ultimately converted to the best
interferometer accuracy.

For the measurables P1, P2, and Pz the corresponding Rabi
pedestal [22] functions I1, I2, and Iz with always resonant π/2
pulses given by Tp1 = Tp2 = π/2/�R , forming the baseline
for the Ramsey oscillations, are { 1

2 + g

2 , 1
2 − g

2 ,g}, where g =
�4/�4

R . It is remarkable that the pedestals and, consequently,
the oscillation envelopes are more flat at around � = 0 than
the Lorentzians of the Rabi spectra [23]. More general pedestal
functions are obtained by averaging the measurables from the
variable-pulse model:

2I1�
4
R = (2 + a + b)�2�2 + (1 + ab)�4 + 2�4,

2I2�
4
R = [�2 + �2(2 − b) − a(�2 + b�2)]�2,

Iz�
4
R = (a�2 + �2)(b�2 + �2), (15)

with a = cos (�RTp1) and b = cos (�RTp2). The averages
of the standard Ramsey pulses can be modeled by setting
Tp1 = Tp2 = π/2/� to Eqs. (15). These baseline functions
only depend on the pulse parameters �, �, Tp1, and Tp2.
Hence, they isolate Ramsey-interference and Rabi-pulse-
related contributions. Differences {P1 − I1,P2 − I2,Pz − Iz}
contain only Ramsey-related interference patterns [Figs. 4(b)
and 4(d)].

In the model of Eqs. (5) the π/2 pulses split the pop-
ulations of the two states 50:50, even off resonance with
� �= �R . This is different from the standard π/2 pulse whose
duration is adjusted while at resonance and kept constant
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FIG. 4. Ramsey spectra. The following values are used: � = 2π × (510 Hz), T = 5 ms. The measurable Pz(�,T ) with the Ramsey
condition ϕ = � [the one-body model of Eqs. (5)] is plotted in panel (a). Losses are neglected. The Rabi pedestal in panel (a) has a narrow
line shape at T = 0 and has a single-peak coming from Eq. (10), where the pulses are assumed to be π/2 for all �. Whereas in panel (c),
corresponding to the model of Eqs. (5), the pulses are π/2 only at resonance; at � �= 0 they become non-π/2 pulses distorting the spectrum.
Panels (b) and (d) are differences Pz − Iz of panels (a) and (c), correspondingly.

when the detuning � is changed. Such pulses with the
�-dependent duration produce a Rabi pedestal with a single
broad peak as shown in Fig. 4(a). In the Ramsey approach the
π/2-pulse durations are kept constant, i.e., Tp1 = Tp2 =
π/2/� in Eq. (10). In this case the pulses split the populations
into halves at resonance but provide an unequal splitting away
from resonance. The corresponding Ramsey spectrum has
an infinite sequence of maxima in the envelope function in
Fig. 4(c). Losses in Fig. 4 are neglected for they are system
specific; however, in a more realistic model the effects of the
Maxwell-Boltzmann velocity distribution, atomic motion and
miscellaneous inhomogenieties [24] may suppress or distort
the Ramsey features away from � = 0, resulting in a spectrally
more localized envelope [25,26].

These two models (Fig. 4) have different assumptions about
how the π/2-pulse duration is defined in experiment. Typically
in applications, near resonant operation is desirable to benefit
from high visibility; hence in the present discussion we neglect
the contrast loss away from � = 0 and the envelope shift away
from � = 0 and we limit ourselves to the dominant effect
of �R solely forming the broad spectral envelope in Fig. 4.
Individual features of the spectral comb are also affected by
the collisional shift [27] and the effects of the trap [24]; e.g.,
phase difference acquired during the evolution, if any, shifts
the interference pattern. In clocks this effect is undesirable, but
it is routinely used in sensing applications.

IV. CONCLUSIONS

In this work we presented a set of Ramsey-type models
in which Ramsey interference and Rabi-pulse-related pedestal
were separated, and one-body models were generalized into
a variable-duration pulse model with the detunings separately
defined for the periods of pulse coupling and free evolution.

The presented models are of general interest; they can be
employed when many-body physics is negligible. A many-
body model would be described by a system of nonlinear
differential equations difficult to solve in an exact analytical

form [20]. The one-body model is parametrized with the
detuning and with variable pulse durations to model realistic
systems where pulses may be generated with imperfections or
be distorted by the medium. Such a flexible model allows to
find an optimal splitter-pulse duration that cancels the effect
of unequal one-body losses on the Pz visibility [23]. It turns
out that the expression for the optimal splitter pulse duration
has a simple analytical form. The cancellation strategy can be
extended to the many-body case; however, a greater number
of decay channels would ensue a more complex analysis.

Equation (14) is valid for one-body-decay limited systems.
The many-body counterpart of Eqs. (4) can also be obtained
[20]; in practice this implies numerical integration to search the
corresponding Toptimal. The attained effect of constant Pz(φ,T )
visibility can facilitate, e.g., atom-clock stability analysis. It
should be noted that this technique does not improve the signal-
to-noise ratio. The approach is equally valid for time- and
phase-domain Ramsey experiments [23].
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APPENDIX: OFF-RESONANT SPIN-ECHO
INTERFEROMETRY WITH ONE-BODY LOSSES

In spin-echo interferometry [Fig. 1(b)] B also undergoes
rotations by � (Fig. 5). In the middle of the sequence a
phase-reversal π pulse flips the dephasing direction, and the
pseudospins start rephasing and refocusing by the second π/2
pulse. The solution of Eq. (2) for an off-resonant spin-echo
sequence with losses during free evolution is parametrized
by the total sequence duration T , and the cumulative Ramsey
dephasing rates in the two arms of the interferometer ϕ1 and ϕ2

that allow one to include miscellaneous physical mechanisms
displacing the energy levels.
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FIG. 5. Spin-echo interferometry in the Bloch vector representation. φ is the phase of the second π/2 pulse. As in Ramsey interferometry
(Fig. 2), φ modulation can be used at a fixed T to record a Pz fringe. Insets (a), (b), and (c) show dynamics identical to that of Figs. 2(a), 2(b),
and 2(c). In panel (d) the spin-echo pulse implements phase reversal, and the ensemble starts rephasing. (e) After the second π/2 pulse the
Bloch vectors are refocused. (f) The ensemble spin spread is nullified.

It is convenient to isolate interference from decay terms

a0 = e−γ3T , a1 =e−γ1T , a2 =e− γ1+γ3
2 T , a3 = e−γ2T , a4 = e− γ2+γ3

2 T , a5 =e− γ1+γ2
2 T ,

a6 = cos
(ϕ1

2
T

)
, a7 = cos

(ϕ2

2
T

)
, a8 = sin

(ϕ1

2
T

)
, a9 = sin

(ϕ2

2
T

)
,

b0 = e(γ1+ γ3
2 )T , b1 = e

1
2 (γ1+γ2+γ3)T , b2 =e(γ1+ γ2

2 )T , b3 = e(γ2+ γ3
2 )T , b4 = e( γ1

2 +γ2)T , b5 = e(γ1+γ2− γ3
2 )T ,

k0 = �2�2b0�
3
R + �4b3�

3
R − 2�2�2b2a6�

3
R + 2�2b1�

5
R+2�2�2b4a6�

3
R − 2��2b2a8�

4
R + 2��2b4a8�

4
R + �2b3�

5
R,

(A1)

from ρ11, ρ22, and Pz:

ρ11 · 4�7
R = �6a1�R − 2�3�4a4a8 − 2��6a4a8 − 4�5�2a0a7a8 − 4�3�4a0a7a8 + �2�4a3�R

+2�2�4a5�R + 2�4�2a2a6�R − 2�2�4a4a6�R + 2�4�2a2a7�R − 2�2�4a4a7�R + �2a1�
5
R

+2�6a0a6a7�R + 2�3�2a2a8�
2
R + 2�3�2a2a9�

2
R − 2��4a4a9�

2
R − 4�3�2a0a6a9�

2
R + 2�4a1�

3
R

+2�4a5�
3
R + 2�2�2a2a6�

3
R + 2�2�2a2a7�

3
R + 2�4a0a8a9�

3
R + 2��2a2a8�

4
R

+2��2a2a9�
4
R + 6�2�4a0a6a7�R, (A2a)

ρ22 · 4�7
R = �4�2a1�R + �4�2a3�R − 4�5�2a4a8 − 6�3�4a4a8 − 2��6a4a8 + 4�3�4a0a7a8

+4�5�2a0a7a8 + 4�4�2a5�R + 4�2�4a5�R − 2��2a2a9�
4
R + 2�6a5�R + 2�2�4a2a6�R

−4�4�2a4a6�R − 2�2�4a4a6�R − 2�4�2a2a7�R + 2�2�4a4a7�R − 6�2�4a0a6a7�R − 2�6a0a6a7�R

+2��4a2a8�
2
R − 2�3�2a2a9�

2
R + 2��4a4a9�

2
R + 4�3�2a0a6a9�

2
R + �2�2a1�

3
R + �2�2a3�

3
R

−2�2�2a2a7�
3
R − 2�4a0a8a9�

3
R, (A2b)

Pz · k0 = 2�5�2b2a8 − 4�3�2b5a6a9�
2
R + 2��2b4a9�

4
R + 2�3�4b4a8 − 4�5�2b5a7a8 − 4�3�4b5a7a8

−�4�2b0�R − 2�4�2b1�R + 2�6b3�R + �4�2b3�R + 2�4�2b2a6�R + 2�4�2b4a6�R − 2�2�4b2a7�R

+4�4�2b4a7�R + 2�2�4b4a7�R + 6�2�4b5a6a7�R + 2�6b5a6a7�R − 2��4b2a9�
2
R + 2�3�2b4a9�

2
R

+2�3�4b2a8 + 2�4b5a8a9�
3
R + 2�5�2b4a8. (A2c)

Provided the detuning is zero, which is physically justified in the case of � 
 �, Eqs. (A2) become

ρ11 = 1

2
e−γ3T

[
e

γd
2 T + cos

(
ϕ1 − ϕ2

2
T

)]
, (A3a)

ρ22 = 1

2
e−γ3T

[
e

γd
2 T − cos

(
ϕ1 − ϕ2

2
T

)]
, (A3b)

Pz = e− 1
2 γdT cos

(
ϕ1 − ϕ2

2
T

)
. (A3c)
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It follows from Eqs. (A3) that the phase acquired in the first arm of the spin-echo interferometer ϕ1T/2 is completely eliminated

by the same value of the phase in the second arm ϕ2T/2, which is the expected behavior.
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