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SU(N) Fermi liquid at finite temperature
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We consider the thermodynamic potential � of an N component Fermi gas with a short-range interaction
obeying SU(N ) symmetry. We analyze especially the nonanalytic part of � in the temperature T at low T .
We examine the temperature range where one can observe this T 4 ln T contribution and discuss how it can be
extracted experimentally.
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I. INTRODUCTION

For a noninteracting Fermi gas, textbooks [1,2] teach us
that the specific heat at low temperature T is a power series
involving only odd powers of T , as can easily be shown
by the Sommerfeld expansion. Correspondingly, the grand
thermodynamic potential � as a function of the temperature T ,
is thus a power series in T with only even powers. Interestingly,
this result is qualitatively modified for an interacting Fermi
system, even with short-range interactions in two or three
dimensions. Though the first term in the expansion for the
specific heat in T indeed starts with T , (for �, a constant
and a T 2 term), the next term is now widely believed (see
references below) to be of the form T 3 ln T (correspond-
ingly for �, T 4 ln T ) for three dimensions, thus not even
analytic in T . Thoroughly understanding these non-analytic
terms is crucial in order to distinguish them from those
arising in non-Fermi liquid phases or near quantum critical
points [3].

Historically, the study of this T 3 ln T term was motivated
by the experimental observation in normal liquid 3He that the
specific heat cannot be fitted by the Sommerfeld expression
[4]. On the theory side, this nonanalytic term can be understood
to be due to the presence of bosonic excitations (interacting
particle-hole pairs) in the system, even though these excitations
are not necessarily propagating but can be overdamped (see,
e.g., Refs. [5,6]). More interestingly, for the T 3 ln T term
at least, the result can be obtained via a proper extension
of the original Landau Fermi liquid theory [7–11], and the
coefficient of this T 3 ln T term can be entirely expressed in
terms of scattering amplitudes between Landau quasiparticles
on the Fermi surface [12,13]. The nonanalytic behavior in
specific heat or thermodynamic potential is a consequence
of the nonanalytic behavior of the density and spin sus-
ceptibilities of the system at finite frequencies and wave
vectors [14].

The theories of Refs. [12–14] yield results for this term
that are in reasonable agreement with experiments [4] in
3He. However, precise statements are difficult to make due to
some uncertainties in the interacting parameters in this system
[12–14]. This T 3 ln T term has also been studied in heavy
fermion materials such as UPt3 and UAl2 [15,16]. However,
there the interaction parameters are even less known than those
in 3He. Therefore it is highly desirable to have another system
where these theories can be tested.

In this paper, we analyze the thermodynamic potential of
interacting SU(N ) Fermi gases such as 173Yb and 87Sr which
are available now in cold atom experiments [17–23] (see also
the review [24]). These Nc components (we use Nc rather
than N here to avoid possible confusion with the number of
particles) represent the different choices of hyperfine spin
sublevels mf available to the atoms. mf = −5/2, . . . ,5/2
for 173Yb and mf = −9/2, . . . ,9/2 for 87Sr. We would like
to in particular examine whether these systems can serve
as candidates to test these theories. Both the number of
components Nc, (Nc can vary from 1 to 6 in 173Yb and
1 to 10 in 87Sr) and the density (hence the dimensionless
coupling constant defined below) can be varied in experiments.
(The former is possible due to the SU(N ) symmetry of the
interparticle interaction [22,23].) For a sufficiently large cloud
of the gas where the local density approximation can be taken,
the pressure P of the gas (which is equal to −� per unit
volume) can be deduced from the axial density [25]. Since the
effective chemical potential varies across the trap, analysis of
this data can then produce the grand thermodynamic potential
� as a function of the chemical potential μ. If the temperature
can also be measured, then the function �(μ,T ) can be
obtained and compared with theory. These types of studies
have already been carried out extensively for many systems,
including two-component resonant Fermi gases [26–30], one-
component interacting Bose gas [31], and we expect that the
same can be done for the 173Yb and 87Sr systems eventually.
Previously we have investigated theoretically the Fermi liquid
properties of this SU(N ) Fermi gas at zero temperature [32],
and we here extend our study to finite temperatures, limiting
ourselves to three dimensions in this paper. While the theories
in Refs. [12–14] pointed out the existence of a T 3 ln T term
in the specific heat and thus a T 4 ln T term in �(μ,T ), these
calculations have not been verified numerically to the best of
our knowledge. More importantly, they also offer us no hint
on the temperature range where one can find such nonanalytic
behavior. We here evaluate the contributions to �(μ,T ) term
by term numerically at arbitrary temperatures which then allow
us to answer this question.

In principle the nonanalytic terms in the thermodynamic
potential can also be investigated for the resonant two-
component system or multicomponent Fermi system without
SU(N ) symmetry, but we shall discuss how the variable Nc

may offer us some advantage.

2469-9926/2017/95(3)/033619(7) 033619-1 ©2017 American Physical Society

https://doi.org/10.1103/PhysRevA.95.033619


CHI-HO CHENG AND S.-K. YIP PHYSICAL REVIEW A 95, 033619 (2017)

FIG. 1. Feynman diagrams for the first-order �1 and second-
order �2a , �2b contributions in interaction to the thermodynamic
potential.

II. THE THERMODYNAMIC POTENTIAL �(μ,T )

We present here the evaluation of the thermodynamic
potential �(μ,T ) of an Nc component interacting Fermi gas as
a function of the chemical potential μ and temperature T . μ is
taken to be the same for all Nc components. The interparticle
interaction is characterized by a positive s-wave scattering
length a, which is the same irrespective of the hyperfine spin
sublevel mf ’s of the fermions participating in the interaction
[22,23]. Note that the pressure P is just −�/V , where V is
the volume. We evaluate �(μ,T ) up to second order in a,
expressed as a power series in the dimensionless parameter
kμa, where kμ ≡ (2Mμ)1/2 with M the mass of an atom. kμ

would be equal to the Fermi momentum in the special limit of
zero temperature and in the absence of interactions.

The zeroth-order term of �(μ,T ) in a is simply that of the
free gas �0(μ,T ), and hence given by

�0(μ,T ) = Nc

∑
�k

{(
ε0
k − μ

)
f 0

k + T
[
f 0

k ln f 0
k

+ (
1 − f 0

k

)
ln

(
1 − f 0

k

)]}
,

where ε0
k ≡ k2

2M
is just the kinetic energy,

f 0
k (μ,T ) ≡ 1

exp
( ε0

k −μ

T

) + 1

the Fermi function, both of a free particle of wave vector
�k. k is the magnitude of �k. Here we have already used the
fact that f 0

�k,α
,f 0

�k,β
, . . . , the distribution functions for species

α,β, . . . are all given by f 0
k (μ,T ), since we have assumed

equal chemical potentials for all species. We have thus

�0(μ,T ) = V NcT

∫
d3k

(2π )3
ln

(
1 − f 0

k

)
. (1)

The Feynmann diagrams for the first- and second-order
terms in a are shown in Fig. 1. The first-order term �1(μ,T ) is
simply 4πa

MV

∑
α>β N0

αN0
β , where N0

α , N0
β are the total number of

particles for species α and β, respectively. In this expression,
the sum over components is restricted to different species since,
for short-range interactions, the contributions from direct and
exchange interaction cancel for identical species. Furthermore,

we have used the fact that, at this order, it is sufficient to use
the particle numbers N0

α,β at zeroth order. We thus have

�1(μ,T ) = V
Nc(Nc − 1)

2

4πa

M
n0

αn0
β, (2)

where there is no sum over α,β in the above formula, and
n0

α(μ,T ) is simply the number density of the α component,
given by

∫
d3k

(2π)3 f
0
k .

There are two diagrams to second order in a. The first one,
which we shall denote as �2a and is depicted in the middle of
Fig. 1, is given by

�2a(μ,T ) = −Nc(Nc − 1)

2

(
4πa

MV

)2

×
∑

�k1,�k2,�k′
1

f 0
�k1,α

f 0
�k2,β

(
f 0

�k′
1,α

+ f 0
�k′

2,β

)
k2

1+k2
2−k′

1
2−k′

2
2

2M

, (3)

where α,β again are not summed, and �k′
2 ≡ �k1 + �k2 − �k′

1. �2a

is the only term in the thermodynamic potential, up to this order
in a, which is responsible for modifications of the physical
properties of the system that cannot be regarded as just a
chemical potential shift due to interaction. This diagram is
also responsible for the induced interaction among Landau
quasiparticles studied in, e.g., Refs. [32,33]. The second
diagram, which we shall denote as �2b and is depicted on the
right part of Fig. 1, can be considered as a Hartree correction
to the diagram for �1: For example, one can regard the line
labeled γ as simply giving a constant energy shift δε = 4πa

M
n0

γ

to the propagator labeled α. Noting the combinatorial factor of
1/2! for second-order interaction diagrams, the part that is of
order a2 is thus 1

2
4πa
MV

∑
α>β(Nα − N0

α)N0
β where the difference

(Nα − N0
α)/V is given by∫
d3k

(2π )3

(
1

exp
( (ε0

k +δε−μ

T

) + 1
− 1

exp
( ε0

k −μ

T

) + 1

)

= −∂n0
α

∂μ
(δε).

Summing over possible choices of γ finally gives us

�2b(μ,T ) = V
Nc(Nc − 1)2

2

(
4πa

M

)2(
−∂n0

α

∂μ

)
n0

βn0
γ , (4)

where again α, β, γ are not summed.
We therefore have, up to second order in a,

�(μ,T ) = V Nc

k3
μ

6π2

k2
μ

2M
{ω̃0

+ (kμa)ω̃1 + (kμa)2(ω̃2a + ω̃2b)}, (5)

with

ω̃0 = ω0,

ω̃1 = (Nc − 1) ω1,

ω̃2a = (Nc − 1) ω2a,

ω̃2b = (Nc − 1)2 ω2b, (6)

where ω0, . . . ,ω2b are Nc independent dimensionless functions
of μ, T and hence only of t ≡ T/μ, and ω0 originated from �0,
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ω1 from �1, etc. We shall provide the explicit expressions for
ω0, . . . ,ω2b later after we discuss the zero temperature limit.

At T = 0, we easily find, using nα(μ,0) = k3
μ/6π2,

∂nα(μ,0)/∂μ = Mkμ/2π2,

ω0(0) = −2

5
, (7)

and

ω1(0) = 2

3π
. (8)

ω2a is given by a rather complicated integral but has already
been evaluated before in the literature, as the same integral
appears in the energy of a two-component Fermi gas to second
order in a; see, for example, §6 of Ref. [9]. We find then

ω2a(0) = 4

35

(11 − 2 ln 2)

π2
≈ 0.11132. (9)

ω2b can be easily found to be

ω2b(0) = − 4

3π2
≈ −0.1351. (10)

The total number of particles Ntot can be found via
−∂�/∂μ, and defining the Fermi momentum kF via Ntot =
V Nc

k3
F

6π2 (with Ntot the total number of particles at T = 0) gives
us

kF = kμ

{
1 − 3(kμa)ω̃1 − 7

2
(kμa)2ω̃2

}1/3

≈ kμ

{
1 − (kμa)ω̃1 − (kμa)2

[
7

6
ω̃2 + ω̃2

1

]}
, (11)

where ω̃2 = ω̃2a + ω̃2b. Using the relation E = � + μNtot for
the total energy E at zero temperature and eliminating μ

in favor of kF , one can check that (see Appendix A) our
expressions above reproduce the result for E given in the
literature (e.g., Refs. [9,34,35]).

At finite temperatures, the dimensionless functions
ω0, . . . ,ω2b are given by

ω0(t) = 3
T

μ

1

k3
μ

∫ ∞

0
dkk2 ln

(
1 − f 0

k

)
, (12)

ω1(t) = 2

3π

(
n0

α(μ,T )

n0
α(μ,0)

)2

, (13)

ω2a(t) = −3 × 26 × π4

k7
μ

∫
�k1

∫
�k2

∫
�k′

1

f�k1
f�k2

(
f�k′

1
+ f�k′

2

)
k2

1 + k2
2 − k′

1
2 − k′

2
2

(14)

(where we have introduced the short-hand
∫

�k ≡ ∫
d3k

(2π)3 ), and

ω2b(t) = − 4

3π2

(
n0

α(μ,T )

n0
α(μ,0)

)2(
∂n0

α(μ,T )/∂μ

∂n0
α(μ,0)/∂μ

)
. (15)

Below we discuss the low-temperature expansion of
�(μ,T ). It is convenient first to ignore the contribution from
ω2a , that is, we include the Hartree-Fock diagrams only. We
shall call this result �HF(μ,T ). The low-temperature formulas
for ω0,1,2b can be easily obtained by standard Sommerfeld

expansion. We get

ω0(t) = −2

5

[
1 + 5π2

8
t2 − 7π4

384
t4 + · · ·

]
, (16)

and with the help of

n0
α(μ,T )

n0
α(μ,0)

= 1 + π2

8
t2 + 7π4

640
t4 + · · · ,

∂n0
α(μ,T )/∂μ

∂n0
α(μ,0)/∂μ

= 1 − π2

24
t2 − 7π4

384
t4 + · · · ,

also

ω1(t) = 2

3π

[
1 + π2

4
t2 + 3π4

80
t4 + · · ·

]
, (17)

and

ω2b(t) = − 4

3π2

[
1 + 5π2

24
t2 + 17π4

1920
t4 + · · ·

]
, (18)

where t ≡ T/μ and the higher order terms not displayed here
are t6, t8, etc.

The above implies, to order T 2,

�HF(μ,T )

= �HF(μ,0) − V Nc

Mkμ

2π2

π2T 2

6

[
1 − (Nc − 1)

2kμa

3π

+ (Nc − 1)2 10

9

(
kμa

π

)2]
. (19)

This result is in accordance with the expectation from Fermi
liquid theory [9,10], though with interactions now restricted to
Hartree-Fock. In this theory, the specific heat should be linear

in T at low temperatures, and is given by V Nc
MkHF

F

2π2
π2T

3 . Note

that the density of states for each fermion component MkHF
F

2π2

that enters here is related to the Fermi wave vector kHF
F for the

corresponding particle density at zero temperature. Since we
are using the chemical potential as an independent variable,
kHF
F is given by the corresponding Hartree-Fock value, thus by

Eq. (11) but with the contribution from ω̃2a dropped. Indeed,
using Eqs. (7), (8), and (10), we obtain

kHF
F = kμ

[
1 − (Nc − 1)

2kμa

3π
+ (Nc − 1)2 10

9

(
kμa

π

)2]
.

(20)

Together with SHF = −∂�HF/∂T , and noting that to linear
order in T , the entropy SHF(μ,T ) of the system is given by
the same expression as the specific heat, we verify our claim
above.

ω2a , in contrast to the other terms discussed above, is not
expected to be analytic in t . Rather, we anticipate

ω2a(t) = 4

35π2
(11 − 2 ln 2) + B22t

2

+B23t
4 ln t + B24t

4 + · · · . (21)

The first term was already given in Eq. (9).
Let us first discuss B22. With similar discussions for the

Hartree-Fock contributions above, we expect from Fermi

033619-3



CHI-HO CHENG AND S.-K. YIP PHYSICAL REVIEW A 95, 033619 (2017)

liquid theory that the thermodynamic potential, up to T 2, is
given by

�(μ,T ) = �(μ,0) − V Nc

M∗kF

2π2

π2T 2

6
, (22)

with now kF given by Eq. (11), and M∗ the effective mass
of the quasiparticles. M∗ is available from standard text with
rather straight-forward extension [32] to our SU(N ) system.
We have

M∗/M = 1 + (Nc − 1)
8

15π2
(7 ln 2 − 1)(kμa)2, (23)

where we have already taken the liberty that, at this order, we
can simply use kμ instead of kF in the last term. Equations (22)
and (19) imply that we expect

�2a(μ,T ) = �2a(μ,0) − V Nc

M∗kF − MkHF
F

2π2

π2T 2

6
. (24)

Using Eqs. (23) and (11), we obtain, to second order in a,

M∗kF − MkHF
F = Mkμ(Nc − 1)

(
kμa

π

)2

2[2 ln 2 − 1].

Equation (5) together with Eq. (21) show that we anticipate

B22 = − ln 2 + 0.5 ≈ −0.1936, (25)

a value which we shall verify independently below.
The term proportional to B23 is the first nonanalytic con-

tribution to �2a(μ,T ) and hence �(μ,T ) at low temperatures.
Theories presented in Refs. [12,14] provided formulas for this
quantity, and their results are in agreement with each other. In
Ref. [12], Eq. (22), the nonanalytic contribution to the entropy
S was written as, for the two-component system Nc = 2,

�S = −V
π4

20
ntotB

s

(
T

TF

)3

ln

(
T

TF

)
, (26)

where ntot is the total density, and TF the Fermi temperature. To
our required accuracies we can put ntot = 2k3

μ/6π2 (Nc = 2),
and replace TF by μ. Bs is a quantity that can be expressed
in terms of scattering amplitudes between particles. To second
order in these amplitudes, we have, via Eq. (65) in Ref. [12],

Bs = − 1
2

[(
As

0

)2 + 3
(
Aa

0

)2]
, (27)

where As
0,A

a
0 are the angular-averaged scattering amplitudes

symmetric and antisymmetric, respectively, with respect to
spins. To lowest order in a, they are in turn given by As

0 =
−Aa

0 = 2kμa

π
. The same �S can be obtained from Ref. [14] by

combining their Eqs. (39), (11), and (12) with their U replaced
by 4πa

M
. On the other hand, �S can be obtained from −∂�/∂T ,

noting that it originates the B23 term of Eq. (21) of ω2a only.
We get

�S = −V Nc(Nc − 1)
k3
μ

6π2
(kμa)2(4B23)t3 ln t. (28)

Comparison between Eqs. (26) and (28) gives

B23 = −π2

10
≈ −0.9869, (29)

a value which we shall check also later.

0.1 1
t

0

2

4

6

8

δω
2a

 / 
t4

0 0.1 0.2 0.3
t

0.11

0.115

ω
2a

FIG. 2. (Inset) ω2a(t) as a function of reduced temperature t ≡
T/μ. (Main figure) δω2a(t) divided by t4, plotted as a function of ln t .
Here δω2a(t) ≡ ω2a − B20 − B22t

2, that is, ω2a(t) after subtraction
of the lower order analytic terms in t . The values of B20 and B22

used in this subtraction are 0.1113 and −0.1936. The straight line
corresponds to B23 = −0.9869. The fit also gives B24 defined in
Eq. (21) to be approximately 1.62.

Now we present our numerical results. We first consider
ω2a(t), presented in the inset of Fig. 2. Our numerical results
for this quantity at low temperatures agree with what we
expect from Eq. (21) with B22 given in Eq. (25). Subtracting
these lower order (constant and t2) analytic terms and defining
the resultant quantity to be δω2a(t), the plot of δω2a/t4 as a
function of ln t is given in the main part of Fig. 2. The lower
temperature data show clearly a t4 ln t contribution to ω2a(t),
applicable for t up to ≈0.2, where then we find deviation from
Eq. (21) due to contributions from higher order terms in t

(which likely also contain further nonanalytic contributions).
The slope of this plot gives B23 also in good agreement
Eq. (29). There are some deviations from the straight line
for very low temperatures due to numerical inaccuracies from
the subtraction. The fit also gives us B24 ≈ 1.62.

Figure 3 shows an example for the total thermodynamic
potential �(μ,T ), in units of V Nck

5
μ/(12π2M) [see Eq. (5)]

for various values of Nc. The nonanalytic contributions are not
directly evident from this plot. The inset shows the behavior
of the analytic contributions ω0,1,2b(t) plotted in analogous
manner to the main Fig. 2, that is, after subtraction of the
lower order t terms and divided by t4. Since these quantities are
power series in t2, after these subtractions they become roughly
constants at low temperatures in this plot. Their intersections
with the y axis give values that are in full agreement with the t4

coefficients in Eqs. (16)–(18). Deviations from the horizontal
lines are due to contributions from higher order (t6, t8, . . .)
terms. We see that they become significant for t � 0.1.

If experimentally the pressure and hence �(μ,T ) can be
measured for various μ, T , and Nc, one can normalize this
quantity to V Nck

5
μ/(12π2M), extract the coefficients of kμa

and (kμa)2, and obtain the quantities ω̃0,1 and ω̃2a + ω̃2b

defined in Eq. (5). One can then fit ω̃2a(t) + ω̃2b(t) at low
temperatures to obtain the t = 0 value and a t2 contribution.
Subtract these lower order analytic terms and let us define the
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0 0.1 0.2 0.3 0.4 0.5
t

-1.2

-1

-0.8

-0.6

-0.4

ω
to

t

Nc = 1
        2
        6
        10

0.001 0.01 0.1 1

0

0.5

1

δω0
δω1
δω2b

FIG. 3. ωtot {≡�(μ,T )/[V Nck
5
μ/(12π 2M)]} as a function of

reduced temperature t ≡ T/μ, with kμa = 0.1. (Inset) δω0,1,2b(t)/t4

as functions of ln t . δω0,1,2b(t) are defined as ω0,1,2b(t) after subtraction
of their lower order (constants and t2) analytic terms (c.f. Fig. 2).

resulting quantity to be δω̃2a(t) + δω̃2b(t) [which should then
be given by (Nc − 1)δω2a + (Nc − 1)2δω2b]. This quantity,
after division by (Nc − 1)t4, would behave as what is plotted
in Fig. 4 for various Nc’s. For a given Nc � 2 (note that
Nc = 1 gives only a noninteracting gas) there would be a
ln t contribution. The range where this ln t would be evident
actually decreases with Nc, and even for Nc = 2 is restricted
to t < 0.1, as compared with ∼0.2 for ω2a(t) in Fig. 2. This is
due to the contribution from the “bump” near t ∼ 0.1 arising
from the t6,t8, . . . contributions we described for δω2b(t) for
the inset of Fig. 3. However, if data for various Nc’s are
available, one can in principle extrapolate the data at a given
t to Nc = 1 and obtain the nonanalytic term δω2a . Note that
Fig. 4 implies that, at large Nc, the nonanalytic contribution
from ω̃2a becomes less and less important as compared with
ω̃2b, in accordance with the expectation that at large Nc, the
thermodynamic potential is more and more mean-field-like
[see Eq. (6)].

0.1
t

3

4

5

[ δ
ω

2a
 +

 (N
c-1

)δ
ω

2b
 ] 

/ t
4

Nc = 2
        3
        4
        6
        8
        10

FIG. 4. [δω̃2a(t) + δω̃2b(t)]/(Nc − 1)t4 = [δω2a(t) + (Nc −
1)δω2b(t)]/t4 as a function of ln t . δω̃2a(t) + δω̃2b(t) is defined as
ω̃2a(t) + ω̃2b(t) after subtraction of their lower order analytic terms.
Circles ◦ represent the limit Nc → 1 hence δω2a(t)/t4.

III. DISCUSSIONS

In principle the nonanalytic contribution to � can also be
studied for a two-component resonant Fermi gas [26–30],
at temperatures above the superfluid transition temperature
Tc. At small and negative scattering length a, the transition
temperature is small and there would still be a temperature
range where the T 4 ln T term should be observable. The
advantage of studying this system is that kμa can be varied over
a wide range, and we can study the higher order contributions
in kμa not analyzed in the present paper, though one has to
stay sufficiently above Tc so that pairing fluctuations would not
introduce complications. One can also use the “upper” a > 0
branch of the Feshbach resonance at magnetic fields where the
stability of the gas is not an issue. An advantage of this case is
that the higher order interaction terms, not studied in this paper,
may give rise to an enhancement for the nonanalytic term
similar to what occurs in 3He [12]. A disadvantage, however,
is that we only have Nc = 2 and the extrapolation procedure
described near the end of the last section is not available. The
T 4 ln T term would also be present for an interacting Fermi
gas without SU(N ) symmetry, with again no extrapolating
procedure in the component number feasible.

Experimentally, the density n(μ,T ) can also be measured.
Since n(μ,T ) = −∂�(μ,T )/∂μ, it is also nonanalytic in T

with a T 4 ln T contribution when Nc � 2. The necessary
formulas can be straightforwardly derived from the ones we
gave here. They are listed in Appendix B and the nonanalytic
terms can be extracted by a similar analysis as we discussed
in text for �(μ,T ).

The extraction of the nonanalytic terms in the thermody-
namic potential or density seems demanding as very accurate
experimental data would be required. On the other hand, these
studies would shed valuable new light on an old and interesting
problem.
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APPENDIX A: ZERO TEMPERATURE

Here we verify that Eq. (5), together with Eqs. (7)–(10),
does yield the correct result for the energy E given in the
literature [9,34,35]. The total number of particles Ntot can be
obtained by −∂�/∂μ, and so

Ntot = V Nc

k3
μ

6π2

{
1 − 3(kμa)ω̃1 − 7

2
(kμa)2ω̃2

}
, (A1)

hence, with E = � + μNtot,

E = V Nc

k3
μ

6π2

k2
μ

2M

{
3

5
− 2(kμa)ω̃1 − 5

2
(kμa)2ω̃2

}
, (A2)

kF was already obtained in Eq. (11). Inverting that equation,
we obtain

kμ = kF

[
1 + ω̃1(kF a) + (

7
6 ω̃2 + 3ω̃2

1

)
(kF a)2

]
. (A3)

At this stage, we can already verify the dependence of the
chemical potential μ on kF , since μ ≡ k2

μ/2M . With the help
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of the zero temperature values of ω1,2a,2b in Eqs. (8)–(10), we
get

μ = k2
F

2M

[
1 + (Nc − 1)

4

3π
(kF a)

+ (Nc − 1)
4

15

11 − 2 ln 2

π2
(kF a)2

]
, (A4)

in agreement with, e.g., Ref. [34]. Note that the last term
is proportional to (Nc − 1) and contributions that are (Nc −
1)2 mutually cancel. Substituting Eq. (A3) into Eq. (A2) and
directly using the relation between Ntot and kF gives us

E

Ntot
= k2

F

2M

[
3

5
+ (Nc − 1)

2

3π
(kF a)

+ (Nc − 1)
4

35

11 − 2 ln 2

π2
(kF a)2

]
, (A5)

in agreement with Refs. [9,34,35].

APPENDIX B: PARTICLE DENSITY n(μ,T )

We give here the low-temperature expansion for the density
n(μ,T ). We write it in a form similar to �(μ,T ) in text. We
have

n(μ,T ) = V Nc

k3
μ

6π2
{ν̃0 + (kμa)ν̃1 + (kμa)2(ν̃2a + ν̃2b)},

(B1)

where

ν̃0 = ν0,

ν̃1 = (Nc − 1) ν1,

ν̃2a = (Nc − 1) ν2a,

ν̃2b = (Nc − 1)2 ν2b, (B2)

with

ν0(t) = 1 + π2

8
t2 + 7π4

640
t4 + · · · , (B3)

ν1(t) = 2

3π

[
− 3 − π2

4
t2 + 3π4

80
t4 + · · ·

]
, (B4)

ν2b(t) = 4

3π2

[
7

2
+ 5π2

16
t2 − 17π4

3840
t4 + · · ·

]
, (B5)

and

ν2a(t) = −7

2
ω2a(0) − 3

2
B22t

2 + 1

2
B23t

4 ln t

+
(

B24

2
+ B23

)
t4 + · · · , (B6)

where ω2a(0), B22, B23, B24 are the same coefficients that
appeared in text for �(μ,T ).
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