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Magnetic solitons in Rabi-coupled Bose-Einstein condensates
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We study magnetic solitons, solitary waves of spin polarization (i.e., magnetization), in binary Bose-Einstein
condensates in the presence of Rabi coupling. We show that the system exhibits two types of magnetic solitons,
called 2π and 0π solitons, characterized by a different behavior of the relative phase between the two spin
components. 2π solitons exhibit a 2π jump of the relative phase, independent of their velocity, the static
domain wall explored by Son and Stephanov being an example of such 2π solitons with vanishing velocity and
magnetization. 0π solitons instead do not exhibit any asymptotic jump in the relative phase. Systematic results are
provided for both types of solitons in uniform matter. Numerical calculations in the presence of a one-dimensional
harmonic trap reveal that a 2π soliton evolves in time into a 0π soliton, and vice versa, oscillating around the
center of the trap. Results for the effective mass, the Landau critical velocity, and the role of the transverse
confinement are also discussed.
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I. INTRODUCTION

Solitary waves are nontrivial collective excitations that
appear in a wide variety of systems in different physical
branches including classical fluids, cosmology [1], condensed
matter [2,3], optics [4], and cold atoms [5,6]. Despite the
fact that they do not correspond to the ground states of the
systems, these solitary waves can be stable and live for a
long time under certain physical conditions, which may have
important applications for information processing. Because of
the tunability of the interaction coupling constants and the
absence of disorder, ultracold atomic gases provide an ideal
playground for the observation of these excitations. Since the
first realization of Bose-Einstein condensate with alkali atoms,
various solitary waves and other quantum defects have been
experimentally observed and/or theoretically investigated,
such as scalar solitons [5–8], vector solitons [9–12], domain
walls [13–15], vortices [16–18], and skyrmions [19,20].

The application of a coherent coupling between two internal
states is a powerful tool for the control of spinor condensates
with external fields [21,22]. In this work, we consider a two-
component Bose-Einstein condensate in the presence of a weak
Rabi coupling,

� � μ/h̄, (1)

where μ is the chemical potential of the system, the corre-
sponding solitons being intrinsically different from those in
the absence of Rabi coupling [23–25]. Useful simplifications
in the determination of the solitonic solutions in uniform matter
take place when the intraspecies coupling constants are equal
(g ≡ g11 = g22) and very close to the interspecies coupling
g12, i.e.,

δg ≡ g − g12 � g, (2)

with δg > 0 in order to ensure miscibility even in the absence
of Rabi coupling [26]. Conditions (1) and (2) ensure that
the total density n = n1 + n2 is only weakly affected by the
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presence of the soliton and can be considered a constant
n = μ/g, thereby reducing the relevant variables of the
problem to the spin density n1 − n2 and to the phases of
the two spin components (see Sec. III A for a discussion of
the accuracy of the constant-total-density approximation). For
this reason the corresponding solutions are called magnetic
solitons. Condition (2) is fulfilled, for example, by the |F =
1; mF = ±1〉 hyperfine states of 23Na.

We note that magnetic solitons have been predicted in the
absence of Rabi coupling where the relative phase of the two
components exhibits a π phase jump across the soliton [27]
(see also Ref. [28] for more general solutions available under
the same condition, (2), and Ref. [29] for a recent experimental
observation). In the presence of Rabi coupling, the relative
phase ϕA should satisfy the condition cos ϕA = 1 at large
distances from the soliton, which implies that the jump of
the relative phase must be equal to 2nπ with n = 0,±1, . . ..

A prominent example of a solitonic solution in a Rabi-
coupled binary condensate is the static domain wall identified
by Son and Stephanov in 2002 [15] by considering two equally
populated spin states coupled by a weak Rabi coupling of
strength [characterized by Eq. (1)] in uniform matter. Under
assumption (2) these authors found a metastable solution,
corresponding to a local minimum of the energy functional,
characterized by the 2π jump of the relative phase of the two
components across the wall (see Fig. 1). This static soliton is
characterized by the absence of magnetization (i.e., the spin
is balanced) and corresponds to a metastable solution of the
coupled Gross-Pitaevskii equations (GPEs) if the condition

h̄� < h̄�c ≡ 1
3nδg (3)

is satisfied. For larger values of � the static domain wall does
not correspond to a local minimum of the energy functional and
the resulting configuration is consequently unstable in uniform
matter [15] (see also Ref. [30]). Actually the magnetization of
the domain wall becomes energetically profitable. In this paper
we assume condition (1) and mainly focus on configurations
which satisfy the stability condition, (3).
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FIG. 1. Phase structure of the static Son-Stephanov domain wall.
The relative phase ϕA = ϕ1 − ϕ2 of the two spin states exhibits a 2π

jump when one moves from −∞ to +∞. The width of the domain
wall is fixed by the characteristic length of the relative phase ξphase =√

h̄/2m�, where � is the Rabi coupling.

The absence of magnetization of the static domain wall
makes its experimental detection difficult. In this work we
show that the Son-Stephanov domain wall exhibits a magne-
tization when it moves, thereby opening realistic perspectives
for its experimental detection.

In order to generate moving magnetic solitons we found it
convenient to imprint the phase of the static Son-Stephanov
domain wall (see Fig. 1), with its center displaced from the
center of the trap (see Fig. 2), and to follow the numerical
evolution of the time-dependent GPEs. Initially the densities
of the two components of the mixture have the same profile,
yielding a vanishing value of magnetization. Once the domain
wall moves, a nonvanishing magnetization is formed, giving
rise to a soliton which also exhibits a 2π jump in the relative
phase (2π soliton). Thus the velocity plays the role of an
effective magnetic field, polarizing the soliton. As time evolves
the position of the soliton moves towards the periphery of the
trapped gas and increases its velocity as a consequence of

FIG. 2. Illustration of the dynamics of magnetic solitons in
a harmonic trap. At t = 0, a static Son-Stephanov domain wall,
characterized by a 2π jump in the relative phase, is imprinted at
the right (point A) of the trap center. The 2π soliton starts moving
towards the periphery, and soon after the reflection, it evolves into
a 0π soliton (point D; see text). 2π solitons are indicated by red
circles; 0π solitons, by blue squares. Green X’s are points indicating
the transformation between 2π and 0π solitons.

the fact that its effective mass is positive. Before reaching
the border of the condensate, however, the soliton slows
down as a consequence of the fact that its effective mass at
some intermediate point, labeled “B” in Fig. 2, changes sign
and becomes negative. Eventually the soliton reaches zero
velocity (labeled “C” in Fig. 2) and is thereafter reflected
towards the center of the trap. When the Rabi coupling
is much smaller than the critical value in Eq. (3), soon
after the inversion of the velocity, the 2π soliton exhibits a
deep transformation characterized by a drastic change of its
phase and is transformed into a 0π soliton which does not
exhibit an asymptotic phase jump in the relative phase. This
transformation takes place when the local magnetization at
the center of the soliton is equal to 1, which means that the
density of one of the spin components exactly vanishes (the
X labeled “D” in Fig. 2 ). The 0π soliton is then accelerated
toward the center of the trap and decelerated when it begins to
reach the region of lower density, on the opposite side of the
trap, as a consequence of the negativity of its effective mass.
The 0π soliton cannot reach zero velocity and at some point is
transformed again into a 2π soliton which eventually reaches
zero velocity, to be reflected again. This highly nontrivial
dynamical behavior is illustrated in Fig. 2, where the position
of the soliton is shown as a function of time.

The above concise description of the dynamics of magnetic
solitons permits us to understand the structure of the paper,
which is organized as follows: In Sec. II, we formulate a
variational approach to the time-dependent GPEs, allowing
for the identification of the solitonic solutions. In Sec. III, we
derive analytic results for the static and moving Son-Stephanov
domain wall (2π soliton) in the presence of weak Rabi
coupling. The general solutions of the 2π and 0π moving
magnetic solitons are discussed in Sec. IV. The phase diagram
and the properties of the magnetic solitons are discussed in
Sec. V. Then we discuss the dynamics and stability of the
solitons in a one-dimensional (1D) harmonic trap (Sec. VI) as
well as in the presence of an additional transverse confinement
(Sec. VII). Section VIII is devoted to the final discussion and
conclusions.

II. SOLITONS IN UNIFORM MATTER

A. Equations for magnetic solitons

A two-component Bose-Einstein condensate in the pres-
ence of Rabi coupling is governed by two coupled GPEs which
can be derived from the Lagrangian density

L =
2∑

j=1

ih̄

2

(
ψ∗

j

∂

∂t
ψj − ψj

∂

∂t
ψ∗

j

)
− H, (4)

where ψj=1,2 are the wave functions of the two components
and H is the Hamiltonian density, given by

H = h̄2

2m
|∇ψ1|2 + h̄2

2m
|∇ψ2|2 − 1

2
h̄�(ψ∗

1 ψ2 + ψ∗
2 ψ1)

+ g

2
|ψ1|4 + g

2
|ψ2|4 + g12|ψ1|2|ψ2|2. (5)

In this work, we have assumed the Rabi-coupling parameter
� > 0. Under conditions (1) and (2), the total density
n = n1 + n2 of the condensate exhibiting magnetic solitonic

033614-2



MAGNETIC SOLITONS IN RABI-COUPLED BOSE- . . . PHYSICAL REVIEW A 95, 033614 (2017)

features can be assumed to be constant [27]. As a consequence
we can make the following ansatz for the spinor order
parameter, (

ψ1

ψ2

)
= √

n

(
cos(θ/2)eiϕ1

sin(θ/2)eiϕ2

)
, (6)

where ϕj=1,2 are the phases of the two wave functions.
The densities of the two components are given by n1,2 =
n(1 ± cos θ )/2, and the magnetization m is calculated as m =
(n1 − n2)/n = cos θ . Substituting Eq. (6) into the Lagrangian
density, Eq. (4), we obtain [15]

L = −nh̄

[
cos2 θ

2

∂ϕ1

∂t
+ sin2 θ

2

∂ϕ2

∂t

]
− nh̄2

2m

[
1

4
(∇θ )2

+ cos2 θ

2
(∇ϕ1)2 + sin2 θ

2
(∇ϕ2)2

]
− 1

2
n2g

+ 1

4
n2δg sin2 θ + 1

2
nh̄� sin θ cos(ϕ1 − ϕ2). (7)

It is convenient to introduce the relative and total phases of the
two components

ϕA = ϕ1 − ϕ2, ϕB = ϕ1 + ϕ2, (8)

in terms of which, the Lagrangian density can be rewritten as

L = −nh̄

2
(cos θ∂tϕA + ∂tϕB) − nh̄2

8m
[2 cos θ∇ϕA∇ϕB

+ (∇ϕA)2 + (∇ϕB)2 + (∇θ )2] − 1

2
n2g

+ 1

4
n2δg sin2 θ + 1

2
nh̄� sin θ cos ϕA. (9)

It is important to note that the term ∂tϕB , as a derivative, does
not contribute to equations of motion and thus is omitted in
the following.

We begin our discussion by considering the 1D problem
where all the quantities depend only on the spatial coordinate
z. We look for traveling solutions of the form ϕA,B = ϕA,B(z −
V t) and θ = θ (z − V t) so that the Lagrangian density can be
rewritten as

L = nh̄V

2
cos θ

∂ϕA

∂z
− nh̄2

8m

[
2 cos θ

∂ϕA

∂z

∂ϕB

∂z
+

(
∂ϕA

∂z

)2

+
(

∂ϕB

∂z

)2

+
(

∂θ

∂z

)2]
− 1

2
n2g + 1

4
n2δg sin2 θ

+ 1

2
nh̄� sin θ cos ϕA. (10)

It is instructive to reduce the Lagrangian density to a dimen-
sionless form. To this purpose, due to the magnetic nature of
the solitons, the natural units for the coordinates and velocities
are chosen, respectively, as the spin healing length and the spin
sound velocity defined in the absence of Rabi coupling:

ξs = h̄√
2mnδg

, cs =
√

nδg

2m
.

With the help of the following dimensionless variables for the
position, velocity, and Rabi coupling,

ζ = (z − V t)/ξs, U = V/cs, ωR = �

�c
,

the dimensionless Lagrangian density L̃ = L/nmc2
s is given

by

L̃ = U cos θ
∂ϕA

∂ζ
− 1

2

[(
∂ϕA

∂ζ

)2

+
(

∂ϕB

∂ζ

)2

+
(

∂θ

∂ζ

)2

+ 2 cos θ
∂ϕA

∂ζ

∂ϕB

∂ζ

]
− g

δg

+ 1

2
sin2 θ + ωR

3
sin θ cos ϕA. (11)

Variation of the Lagrangian density with respect to the total
phase ϕB gives

∂ζ

(
∂L̃

∂(∂ζϕB)

)
= ∂ζ (∂ζϕB + cos θ∂ζ ϕA) = 0. (12)

We look for solitonic solutions by imposing the following
boundary conditions: at ζ → ±∞ the total and relative phases
are constant and the spin is balanced (i.e., cos θ = 0). Using
the first boundary condition, we obtain the equation

∂ϕB

∂ζ
+ cos θ

∂ϕA

∂ζ
= 0, (13)

which, after substituting into Eq. (11), yields

L̃ = U cos θ
∂ϕA

∂ζ
− 1

2

[(
∂θ

∂ζ

)2

+ sin2 θ

(
∂ϕA

∂ζ

)2
]

− g

δg
+ 1

2
sin2 θ + 1

3
ω R sin θ cos ϕA. (14)

The variation of L̃ with respect to ϕA and θ gives the two
coupled differential equations for ϕA and θ [31]:

sin θ

(
U

∂θ

∂ζ
+2 cos θ

∂θ

∂ζ

∂ϕA

∂ζ
+sin θ

∂2ϕA

∂ζ 2
− ωR

3
sin ϕA

)
=0,

(15)

−U sin θ
∂ϕA

∂ζ
+ ∂2θ

∂ζ 2
− sin θ cos θ

(
∂ϕA

∂ζ

)2

+ sin θ cos θ

+ ωR

3
cos θ cos ϕA = 0. (16)

We point out that the same differential equations [i.e.,
Eqs. (13), (15), (16)] can also be derived by separating the
coupled GPEs into the real and imaginary parts. Furthermore,
Eqs. (15) and (16) are invariant under the transformation

U → −U, θ → π − θ, (17)

i.e., cos θ → − cos θ , sin θ → sin θ . This transformation
allows us to obtain solutions for U > 0 from solutions for
U < 0, and vice versa. Multiplying Eq. (15) by ∂ϕA/∂ζ and
Eq. (16) by ∂θ/ζ and then adding them together, one can prove
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that the quantity

G̃ = −1

2

[(
∂θ

∂ζ

)2

+ sin2 θ

(
∂ϕA

∂ζ

)2
]

+ g

δg
− 1

2
sin2 θ − 1

3
ω R sin θ cos ϕA (18)

is position independent, i.e., dG̃/dζ = 0. The boundary con-
ditions at ζ = ±∞ imply G̃ = (g/δg − 1/2 − ωR/3). Taking
this expression into account, we can rewrite Eq. (18) as

−1

2

[(
∂θ

∂ζ

)2

+ sin2 θ

(
∂ϕA

∂ζ

)2
]

+ 1

2
cos2 θ

+ 1

3
ωR(1 − sin θ cos ϕA) = 0. (19)

One can understand the physical origin of the integral
G̃ by noting that, if we consider ζ as a time variable, the
quantity L̃ in Eq. (14) is the time-independent Lagrangian of
a mechanical system with two degrees of freedom, ϕA and θ .
Then it is immediately clear that G̃ is the conserving energy
of this auxiliary mechanical system. It is important to stress
that G̃ is different from the actual energy density of the gas
H̃ = H/nmc2

s which can be obtained from G̃ by changing the
sign of the first term in Eq. (18).

As explored below, Eq. (19) provides a very useful relation
between the boundary conditions at infinity and those at ζ = 0.
This relation is crucial for the determination of the solutions
corresponding to the magnetic solitons.

B. Energy of magnetic solitons

For a moving magnetic soliton the analytical expression
of its energy is not accessible. However, the numerical
solutions of the above differential equations allow us to
obtain the energy-velocity curve accurately, which is crucial
to understanding the physical properties of these solitons. As
usual, the energy of a magnetic soliton can be evaluated as
the difference in the canonical energies in the presence versus
the absence of the soliton (see Ref. [34], Chap. 5). Thus we
have

E = nh̄cs

2

∫
dζ

[(
1

2
(∂θ/∂ζ )2 + 1

2
sin2 θ (∂ϕA/∂ζ )2

+ 1

2
cos2 θ + 1

3
ωR(1 − sin θ cos ϕA)

]
. (20)

The integrand in the above equation is the difference in the
dimensionless energy densities H̃ in the presence versus the
absence of the soliton. The derivative terms in Eq. (20) can be
eliminated using Eq. (19). Finally, we find

E = nh̄cs

2

∫
dζ

[
cos2 θ + 2

3
ωR(1 − sin θ cos ϕA)

]
. (21)

Once we find the solutions of the magnetic solitons, i.e., θ and
ϕA, the corresponding soliton energy can be readily obtained
by integration. Although the velocity does not explicitly enter

the above equation, the energy of the soliton still depends on
it since ϕA and θ are velocity dependent. The effective mass,
fixed by the velocity dependence of the energy according to
the definition

m∗ = 1

V

dE

dV
, (22)

can be extracted from the accurate numerical plot of the E-V
curve (see Fig. 7).

III. ANALYTICAL RESULTS

Analytic expressions for the magnetic solitons can be
obtained in special cases discussed in this section.

A. Static Son-Stephanov domain wall

As the first example we recover the static Son-Stephanov
domain wall solution characterized by a relative phase jump
of 2π in a spin-balanced system [15]. By taking U = 0 and
θ = π/2, the differential equation, (15), for the relative phase
becomes

∂2ϕA

∂ζ 2
− ωR

3
sin ϕA = 0, (23)

which is the well-known sine-Gordon equation, whose solu-
tion is given by

ϕA = 4 arctan eζ
√

ωR/3 = 4 arctan eκz, (24)

with κ = √
2m�/h̄ being the inverse of the characteristic

width of the relative phase domain wall,

ξphase = κ−1 = ξs

√
3

ωR
=

√
h̄

2m�
. (25)

The analytic expression for the relative phase of the static
domain wall [see Eq. (24)] allows us to calculate the energy
of the solution explicitly. One finds

ESS = 4nh̄cs

√
ωR

3
= 4nh̄

√
h̄�

2m
, (26)

and thus the dimensionless energy is 2ESS/nh̄cs = 8
√

ωR/3.
Son and Stephanov have proven that this solution cor-

responds to a local minimum of the energy functional if
condition (3) is satisfied [15]. In terms of dimensionless
quantities, condition (3) can be expressed as ωR < ωc

R ≡ 1.
Note that there are two solutions for the static domain wall:
one exhibiting a +2π phase jump and the other exhibiting
a −2π phase jump. Moving magnetic domain walls can be
developed from either of these static domain walls and we
focus on the solutions connected to the former one.

Using the expression for the energy ESS, one can justify
our main assumption that the total density is weakly affected
by the presence of a magnetic soliton. Let us consider a
static domain wall. The number of depleted atoms in the
soliton can be calculated using the thermodynamic relation
ND ≡ ∫ ∞

−∞ [n(z) − n]dz = −∂ESS/∂μ, where μ = ng is the
chemical potential. Straightforward calculation gives ND =
−4h̄

√
h̄�/(2mg2). One can thus estimate the density pertur-

bation near the center of the domain wall as |n(z) − n| ∼
|ND|/ξphase ∼ h̄�/g � n due to inequality (1) [35].
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It is worthwhile discussing the connection of the above
results to the well-known Manakov limit solutions (i.e., when
δg = 0) [37]. One can easily recognize that solution (24)
is independent of the interaction strength δg. It is a formal
solution of Eqs. (15) and (16) holding for any value of the
strength, including the value δg = 0. It is easy to check that in
this case the simple rotation

ψ1,2 = (ψD ± ψB)/
√

2 (27)

in spin space transforms Hamiltonian (5) into the one used
by Busch and Anglin [9]. Correspondingly, within the ap-
proximation n = const, solution (24) coincides with the static
dark-bright soliton in Ref. [9], when written in terms of the new
variables. One should emphasize, however, that, as explicitly
discussed in [15], this solution is energetically unstable. In
the following we restrict ourselves mainly to configurations
satisfying the stability condition, (3), which requires δg �= 0.

B. Moving domain wall for weak Rabi coupling

The second example is a slowly moving domain wall
(2π magnetic soliton) whose properties can be obtained
analytically in the small Rabi-coupling limit,

ωR � 1. (28)

Under this condition, the width of the domain wall becomes
much larger than the spin healing length [see Eq. (25)],

ξphase � ξs, (29)

and consequently, differentiation with respect to ζ gives a
small factor proportional to

√
ωR. Equation (16) then reduces

to the simplified form:

cos θ = U∂ζϕA. (30)

Integration with respect to z gives a simple analytic expression
for the total magnetization:∫ +∞

−∞
cos θdz = 2πξsU. (31)

Substituting Eq. (30) into Eq. (15), after neglecting higher
order terms, we obtain the differential equation for the relative
phase:

(1 − U 2)∂2
ζ ϕA − ωR

3
sin ϕA = 0. (32)

The similarity between this equation and the Son-Stephanov
differential equation [Eq. (23)] indicates that all the results
holding at U = 0 can be generalized to U �= 0 by changing
ωR → ωR(1 − U 2) or � → �/(1 − U 2). In particular, the
solution for the relative phase of the moving domain wall
is

ϕA(U ) = 4 arctan[exp(κ(U )z)], (33)

with the width of the wall,

ξphase(U ) = κ(U )−1 = ξs

√
3(1 − U 2)

ωR
, (34)

becoming thinner and thinner as U increases. With the help of
Eq. (30) and Eq. (33), one can calculate the energy [Eq. (21)]

of the moving domain wall. Ignoring higher order terms in ωR,
one finds

E(U ) = 4nh̄

√
h̄�

2m(1 − U 2)
= 4nh̄cs

√
ωR

3(1 − U 2)
, (35)

which is actually the same expression for the energy of the
static Son-Stephanov domain wall [see Eq. (26)], with ωR

replaced by ωR/(1 − U 2). Furthermore, using the definition
for the effective mass, we find

m∗(U ) = 1

V

dE

dV
= 4nh̄

cs

√
ωR

3

1

(1 − U 2)3/2
. (36)

Thus, the effective mass increases with an increase in U .
However, we emphasize that the equations derived in this
section are not valid when 1 − U 2 is very small. For a low
velocity one finds m∗/m = 8nξ s

√
ωR/3. The positiveness of

the effective mass ensures the stability of the moving domain
wall against snake instability. (For a general discussion of
the snake instability for a plane soliton, see Ref. [38]). It is
noteworthy that we derived the above analytical results under
the assumption in Eq. (28). At a low velocity, the effective mass
m∗ is, however, also positive for finite values of ωR, as long as
ωR < 1. Actually, the fact that solution (24) corresponds to a
local minimum of the energy functional means that the energy
increases for any small perturbations, including the one due a
low velocity of motion. (See the numerical data in Fig. 7.)

IV. APPLICATION OF THE THEORY: GENERAL
SOLUTIONS FOR MAGNETIC SOLITONS

As illustrated in Sec. I, after a static Son-Stephanov domain
wall is imprinted in a trapped binary condensate, the domain
wall starts moving and two types of solitons emerge afterwards,
oscillating in the trap. In this section, we obtain the exact
numerical solutions for both types of magnetic solitons in
uniform matter. Both solutions must satisfy the differential
equations formulated in Sec. II. However, different boundary
conditions should be imposed to identify the two different
solutions. The difference in the boundary conditions mainly
affects the behavior of the relative phase.

A. 2π solitons

The relative phase of these solitons exhibits the same 2π

asymptotic phase jump as in the static case. However, the spin
population becomes imbalanced in the wall center as soon as
the velocity is different from 0. The boundary conditions for
the 2π solitons are

θ (ζ =±∞) = π

2
, ϕA(ζ =−∞)=0, ϕA(ζ =+∞) = 2π,

(37)

and we look for solutions characterized by the following
symmetry properties with respect to the wall center ζ = 0:

ϕA(−ζ ) = 2π − ϕA(ζ ), θ (−ζ ) = θ (ζ ), (38)

which implies ϕA(0) = π, ∂ζ θ |ζ=0 = 0. With the help of
Eq. (19), a relation between the boundary conditions for ϕA
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FIG. 3. Profiles of a 2π soliton with velocity V/cs = 0.28, m0 =
0.48, and Rabi coupling ωR = 0.3. (a) Solid red and dashed blue lines
represent the density distributions of the two components, satisfying
(n1 + n2)/n = 1. (b) Solid green and dashed orange lines show the
relative phase ϕA and total phase ϕB as a function of the coordinate.
The jump of the relative phase is 2π , independent of the velocity.
This solution is close to the critical velocity where the effective mass
diverges (see discussion in Sec. V).

and those for θ at ζ = 0 can be established and hence one finds
the slope of the relative phase as(

∂ϕA

∂ζ

)2

ζ=0

= cos2 θ0 + 2
3ωR(1 + sin θ0)

sin2 θ0
, (39)

where the value of θ0 = θ (ζ = 0) determines the magneti-
zation at the center of the soliton: m0 ≡ m(ζ = 0) = cos θ0.
Equation (39), a direct consequence of the boundary conditions
at ζ = ±∞, is important because it provides a boundary
condition at ζ = 0 which is much more useful in order to
find the solitonic solutions rather than fixing the boundary
conditions at ∞.

The procedure to find the solutions of the coupled dif-
ferential equations, Eq. (15) and Eq. (16), is the following:
For a given velocity U and Rabi-coupling strength ωR, we
carefully tune the input parameter θ0 until the solutions of
these differential equations converge to a form satisfying the
boundary conditions in Eq. (37) for the magnetic solitons [39].
The two possible signs for the slope are related to the two static
Son-Stephanov domain wall solutions as U → 0 and m0 → 0.

Figures 3 and 4 show the density distributions and the
relative and total phases of a 2π soliton with positive (U =
V/cs = 0.28) and negative (U = V/cs = −0.25) velocities,

FIG. 4. Profiles of a 2π soliton with velocity V/cs = −0.25,
m0 = 0.97, and Rabi coupling ωR = 0.3. (a) Solid red and dashed
blue lines represent the density distributions of the two components,
satisfying (n1 + n2)/n = 1. Note that two nodes appear at the wings
of the soliton. (b) Solid green and dashed orange lines show the
relative phase ϕA and total phase ϕB as a function of the coordinate.
This soliton has a negative effective mass and corresponds to the
solution very close to the green X with m0 = 1 in Fig. 7.

FIG. 5. Profiles of a 0π soliton with velocity V/cs = −0.9, m0 =
0.89, and Rabi coupling ωR = 0.3. (a) Solid red and dashed blue
lines show the density distributions of the two components, satisfying
(n1 + n2)/n = 1. (b) Solid green and dashed orange lines show the
relative phase ϕA and total phase ϕB as a function of the coordinate.
This 0π soliton has a negative effective mass and the asymptotic jump
of ϕA is 0.

respectively. The difference between the two cases is that they
correspond, respectively, to a solution before and one after
the turning point (see Fig. 2). The latter case is characterized
by a much higher magnetization (close to 1). For a negative
velocity with even larger |U | (longer evolution times in Fig. 2),
the density of one component vanishes at ζ = 0 and the 2π

soliton breaks off, being converted into a 0π soliton.

B. 0π solitons

Let us now discuss the main features of 0π solitons.
Our results, based on GPE simulations, show that a 2π

soliton transforms into a 0π soliton when the density of
one component vanishes at ζ = 0 where its phase is not
well defined and thus can change by 2π without any energy
cost. Although the asymptotic 2π phase jump disappears, the
relative phase still varies as a function of the position. The
boundary conditions now become

θ (ζ = ±∞) = π

2
, ϕA(ζ = ±∞) = 0, (40)

and the natural symmetries of the ϕ and θ functions are

ϕA(−ζ ) = −ϕA(ζ ), θ (−ζ ) = θ (ζ ), (41)

which implies ϕA(0) = 0,∂ζ θ |ζ=0 = 0. Using Eq. (19), analo-
gously to the derivation of Eq. (39), we obtain the slope of the
relative phase at the soliton center as(

∂ϕA

∂ζ

)2

ζ=0

= cos2 θ0 + 2
3ωR(1 − sin θ0)

sin2 θ0
, (42)

where θ0 = θ (ζ = 0) determines the magnetization of the 0π

soliton at ζ = 0.
The procedure for finding the solutions is similar to the one

developed in the previous section: for a given velocity U and
Rabi-coupling strength ωR, we can tune θ0 until the solution of
the above differential equations is consistent with the boundary
conditions in Eq. (40).

Figure 5 shows the profile of a 0π soliton with negative
velocity U = V/cs = −0.9. The density is magnetized in the
solitonic region and has two spin-balanced points followed by
two oppositely magnetized regions on the wings. We remind
that the relative phase of the 0π soliton is an odd function of
ζ and does not exhibit any asymptotic phase jump. Below we
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show that, as the velocity increases, more and more oscillations
appear in the profile of 0π solitons.

C. Transformation between 2π and 0π solitons

In this subsection we discuss the solution at the transfor-
mation point between 2π and 0π solitons. These two solitons
have different symmetry properties due to the 2π jump in
the relative phase ϕA of 2π solitons, which cannot disappear
continuously, but only in a discrete way where the density of
one of the two components vanishes at ζ = 0. This is a singular
point and requires a separate investigation. We consider the
case where n2(ζ = 0) = 0 and thus θ0 = θ (ζ = 0) = 0, i.e.,
m0 = cos θ0 = 1. As shown in the following section, the
transition between the two solitons with n2(ζ = 0) = 0 takes
place at a negative velocity U < 0. The transition for U > 0
with n1(ζ = 0) = 0 can be obtained using the transformation
in Eq. (17). Our numerical calculations clearly show that
the function θ (ζ ) vanishes at ζ = 0 with a finite slope [see
Fig. 6(a)]. The slope of θ (ζ ) at ζ = 0 can be analytically
derived from Eq. (19) and one finds(

∂θ

∂ζ

)∣∣∣∣
ζ→∓0

= ∓
√

1 + 2

3
ωR, (43)

which is in good agreement with the numerical results [see
Fig. 6(a)].

Let us now discuss the behavior of ϕA near the transforma-
tion point. We consider a solution where ϕA → 0 at ζ → −∞.
The numerical calculation shows that in this case the relative
phase ϕA(ζ = 0) approaches the value π/2 as ζ → −0.

According to Eq. (15) we have, for all ζ �= 0,(
U

∂θ

∂ζ
+ 2 cos θ

∂θ

∂ζ

∂ϕA

∂ζ
+ sin θ

∂2ϕA

∂ζ 2
− ωR

3
sin ϕA

)
= 0.

(44)
As ζ → −0 this equation gives(

U
∂θ

∂ζ
+ 2

∂θ

∂ζ

∂ϕA

∂ζ
− ωR

3

)∣∣∣∣
ζ→−0

= 0 (45)

or, taking Eq. (43) into account,(
∂ϕA

∂ζ

)∣∣∣∣
ζ→−0

= −1

2

[
U + ωR√

9 + 6ωR

]
. (46)

Result (46) for the slope of the relative phase is confirmed by
our calculations with a good accuracy.

At the transformation point, Eqs. (43) and (46) replace
Eqs. (39) and (42). The solutions at ζ � 0 are the same
for both 2π and 0π solitons. The solution at ζ > 0 can be
obtained using the symmetry properties (38) and (41) for the
2π and 0π solitons, respectively. Distributions of the angle
θ are the same for two types of solitons [see Fig. 6 (a)].
Distributions of the relative phase for 2π and 0π solitons
are shown in Figs. 6(b) and 6(c), respectively. The presented
solutions obviously satisfy the correct boundary conditions at
ζ → ∞.

The solutions at the transformation point exhibit a strong
singularity at ζ = 0: a π jump in the relative phase ϕA and a
jump in ∂θ/∂ζ . However, this singularity can be eliminated by
a simple substitution of variables at ζ > 0. Let us define θ (ζ ) =
ν(ζ ) at ζ < 0 and θ (ζ ) = −ν(ζ ) at ζ > 0. Analogously, at ζ <

FIG. 6. (a) Plot of θ (ζ ) at the transformation point between 2π

and 0π solitons for Rabi coupling strength ωR = 0.3. (a) Dashed
lines show the analytical prediction of the behavior of θ (ζ ) at small
ζ → 0 [see Eq. (43)]. Relative phases (b) before and (c) after the
transformation, which exhibit a 2π and 0π phase jump, respectively.
Velocities of the solitons are U = −0.464 (b) and U = −0.467 (c).
As ζ → −0, the relative phase ϕA → π/2 (b, c). As ζ → +0, ϕA →
3π/2 (b) and ϕA → −π/2 (c).

0, let ϕA(ζ ) = χA(ζ ), and at ζ > 0, let ϕA(ζ ) = χA(ζ ) − π for
2π solitons and ϕA(ζ ) = χA(ζ ) + π for 0π solitons. The new
functions ν(ζ ) and χA(ζ ) have no singularities at ζ = 0. They
satisfy the symmetry conditions

ν(−ζ ) = −ν(ζ ), χA(−ζ ) = π − χA(ζ ). (47)

Actually, the functions ν(ζ ) and χA(ζ ) are analytic continua-
tions of the functions θ (ζ ) and ϕA(ζ ) from ζ < 0 to all values
of ζ . Before concluding this section, we point out that phase
reduction is not a unique property of our system. For example,
phase slip has been observed by moving a weak link in a
toroidal atomic BEC [40].
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FIG. 7. (a) Phase diagram of magnetic solitons in the m0-U
plane, where m0 is the magnetization at the center of the soliton
and U = V/cs is the velocity. (b) Velocity dependence of the energy
of magnetic solitons for different Rabi coupling strengths: ωR = 0.3
(solid red line), ωR = 1 (dashed black line), and ωR = 2 (dash-dotted
blue line). Lines without circles indicate that the solutions are the
2π solitons; lines with circles, that the solutions are 0π solitons.
The point of origin in (a) corresponds to the solution of the known
static Son-Stephanov domain wall with a +2π relative phase jump
and its energy increases as the Rabi coupling increases [see (b)].
The green square indicates the solution where the effective mass
of the 2π soliton diverges and the green X indicates the position of
the transformation between 2π and 0π solitons for ωR = 0.3. Note
that there exists another series of solutions obtained by changing
(a) according to the transformation V → −V ; then the solutions are
connected to the known static Son-Stephanov domain wall with a
−2π relative phase jump.

V. PHASE DIAGRAM AND PROPERTIES
OF MAGNETIC SOLITONS

A. Magnetization and energy

Our main results are presented in Fig. 7, where we show
the curves for three values of ωR: ωR = 0.3, 1, and 2,
which correspond to less than, equal to, and larger than the
critical value, (3), for the Rabi coupling below which the
Son-Stephanov solution for the domain wall is stable. In
Figs. 7(a) and 7(b), solid lines without circles label the results

for 2π solitons which exhibit a 2π relative phase jump, while
solid lines with circles label 0π solitons which do not exhibit
an asymptotic relative phase jump.

It is easy to recognize that the origin of Fig. 7(a), the solution
with U = 0 and m0 = 0, is the Son-Stephanov static domain
wall. As shown by the red curve in Fig. 7(b), this solution is
a local minimum of the E-V curve as long as ωR < 1. The
effective mass of solitons [see Eq. (22)] is related to the slope
of the E-V line. As shown in Fig. 7(b), the effective mass of a
2π soliton can be positive or negative when the Rabi coupling
is smaller than the critical value (ωR < 1), while it is always
negative when ωR � 1. In contrast, the effective mass of 0π

soliton is always negative, irrespective of the strength of the
Rabi coupling. Note that 2π solitons with a positive effective
mass are not affected by snake instability.

Let us now discuss in more detail the phase diagram in
Fig. 7 .

(i) ωR < 1. This is the most interesting case, where a 2π

magnetic soliton with a positive effective mass is predicted
to exist. Moving continuously from the solution at the origin
(U = 0) in Fig. 7(a), the solution exists also for finite values
of U and is associated with a positive effective mass and a
finite value of the magnetization (red arrow and its opposite
direction). The effective mass of such solutions diverges at a
critical value of the velocity (indicated by the green square
in the figure). The profiles for the densities and phases at this
critical point are shown in Fig. 3. 2π solitonic solutions with
larger values of |U | do not exist. However, 2π solitons with
smaller |U | and larger magnetization exist as clearly shown in
Fig. 7(a), their effective mass becoming negative. For even
larger magnetization, 2π solitonic solutions with opposite
velocity exist where two nodes appear on the wings of the
soliton as shown in Fig. 4. The nonmonotonic dependence of
the magnetization on the velocity of the soliton [see Fig. 7(a)]
is responsible for the loop of the energy as a function of V in
the same interval of velocities [see Fig. 7(b)].

When |m0| = 1, i.e., when the density of one component
vanishes (green X in the figure), the corresponding phase is
not defined. Then the 2π relative phase jump disappears and
a 0π solitonic solution (solid line with circles emerges at
larger |U |). The profiles of the density and of the phases of
typical 0π solitonic solutions are shown in Fig. 5. The 0π

solitonic solution continues by increasing the velocity with
the corresponding decrease in magnetization until it reaches
a critical velocity UL = VL/cs, where the solitonic solution
disappears, its energy approaching 0 (see below).

We can now check the validity of our theory for a slowly
moving domain wall (2π magnetic soliton) developed in
Sec. III B. In Fig. 8, we compare the energy of the magnetic
soliton numerically calculated in the presence of a small Rabi
coupling ωR = 0.05 and that from the analytical expression
given by Eq. (35). As anticipated, we find that they agree with
each other very well at low velocities.

(ii) ωR � 1. Despite the fact that the stability of moving
solitons for ωR � 1 remains an unexplored problem, in
Fig. 7 we present the velocity dependence resulting from
the formal solution of our coupled differential equations
[Eqs. (15) and (16)] for ωR = 2. The corresponding solitons are
characterized by a monotonic behavior of the magnetization
as a function of the velocity [see blue curve in Fig. 7(a)].
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FIG. 8. Comparison of the numerically calculated energy and the
theoretical prediction for a slowly moving domain wall in the presence
of a weak Rabi coupling, ωR = 0.05. The dashed black line shows
the analytic result [Eq. (35)] and red lines show the numerical results.

The energy of the soliton decreases when |U | increases,
corresponding to a negative effective mass [see blue curves in
Fig. 7(b)]. One should, however, take into account that these
solitons, according to the findings of [15], are unstable for low
enough velocities.

The case ωR = 1 [see black curve in Fig. 7(a)], correspond-
ing to the boundary of stability of the Son-Stephanov domain
wall, is a special one. At this value of ωR, the “polarizability”
d(m0)/dU → ±∞ when U → ±0. The singularity on the
black curve at U = 0 in Fig. 7(b) is related to this divergence.

Further investigation of these solutions should concern their
stability at finite U . The investigation of this problem, however,
lies beyond the scope of this work, which addresses mainly the
ωR < 1 case.

B. Landau critical velocity of 0π solitons

The phase diagram in Fig. 7 shows that 0π magnetic soli-
tons will eventually disappear (i.e., the energy E → 0) when
their velocity tends to a critical value. This critical velocity
(hereafter called Landau’s critical velocity) is determined by
Landau’s criterion,

VL = minp

εs(p)

p
, (48)

associated with the emergence of an energetic instability in the
dispersion of the Bogoliubov spectrum

εs =
√(

h̄2k2

2m
+ h̄�

)(
h̄2k2

2m
+ h̄� + nδg

)
(49)

of spin excitations in the presence of Rabi coupling [41–43].
Using Eq. (48) one finds the result

VL

cs
=

√√√√1 + 2h̄�

nδg
+

√
2h̄�

nδg

(
2h̄�

nδg
+ 2

)

FIG. 9. Landau critical velocity for the disappearance of 0π

magnetic solitons as a function of the Rabi coupling. The solid line
shows the analytic prediction and blue squares represent the numerical
results for the points where the energy of the 0π solitons tends to 0.

for Landau’s critical velocity, which, in dimensionless form,
reads

UL =
√

1 + 2ωR

3
+ 2

√
ωR

3

(
1 + ωR

3

)
. (50)

Figure 9 shows that the critical velocity extracted from the
phase diagram in Fig. 7 is in excellent agreement with the
above analytic prediction.

It is worth noting that when the velocity of the 0π

soliton tends to the Landau critical velocity, not only does its
amplitude decrease, but also its structure changes. The number
of oscillations in the magnetization increases and the soliton
turns into a wide oscillating object in space (see Fig. 10).
This fact is in accordance with the so-called theory of soliton
bifurcation discussed in Ref [44]. We leave this for future
investigation.

VI. DYNAMICS IN A 1D HARMONIC TRAP

In the above sections, we focus on the exact solutions for
2π and 0π solitons propagating in uniform matter, where

FIG. 10. Profiles of the 0π magnetic soliton at velocity V/cs =
−1.3, m0 = 0.405, and Rabi coupling ωR = 0.3. (a) The solid red
and dashed blue lines show the density distributions of the two
components, satisfying (n1 + n2)/n = 1. (b) The solid green and
dashed orange lines show the relative phase ϕA and total phase ϕB as
a function of the coordinate. For 0π solitons the asymptotic jump of
ϕA is 0. Compared to Fig. 5, there are more oscillations because the
velocity of the soliton is close to the Landau critical velocity.
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their shape and velocity remain unchanged during the motion.
However, real experiments are always implemented in trapped
systems, where the density of the condensate varies as a
function of the position. The amplitude and velocity of
magnetic solitons are then expected to change in the trap.
In this section, we discuss the dynamics of magnetic solitons
in a 1D harmonic trapping potential Vext(z) = mω2

hoz
2/2, with

ωho as the trapping frequency.
If the condensate size Lz is large enough in comparison with

ξphase, one can solve this problem by using the conservation of
the energy of the soliton and the local density approximation,
as has been performed for dark solitons in a single-component
BEC [45,46] and for magnetic solitons in the absence of Rabi
coupling [27]. Using results from Sec. II B in the dimensional
form, the energy of the soliton with its center at point Z can
be expressed as

E(Z,V ) = h̄

2

√
δg

2m
n3/2(Z)ε

(
h̄�

n(Z)δg
,

V√
n(Z)δg/(2m)

)
,

(51)

where n(Z) = n(Z = 0) − Vext(Z)/g is the Thomas-Fermi
equilibrium density, V (Z) = dZ/dt is the velocity of the
soliton, and ε is a dimensionless function. Then the energy
conservation of a moving soliton can be written as E(Z,V ) =
E(Z0,V0), where Z0,V0 are the initial values of the position
and velocity of the soliton, allowing one to find dZ/dt as a
function of Z and, consequently, to solve Z(t) after a simple
integration.

However, the absence of an explicit analytical expression
for the energy in the presence of Rabi coupling makes this
approach inconvenient and we therefore numerically solved
the dynamical problem with the help of the time-dependent
coupled GPEs, corresponding to the Lagrangian density,

FIG. 11. Oscillation of magnetic solitons in a 1D harmonic trap.
We imprint a Son-Stephanov domain wall at the initial position z0 =
20 μm; the local Rabi coupling is given by ωR(z0) = �/�c(z0) =
0.22. Evolution of the densities and relative phase of the two
components after a holding time of (a) ωhot = 0, (b) ωhot = 6.3,
and (c) ωhot = 12.6.

Eqs. (4) and (5), exploiting in a more systematic way the
main features anticipated in Sec. I.

To investigate the oscillation dynamics of magnetic solitons
in a 1D harmonic trap, we imprint a Son-Stephanov domain
wall at the initial position z0 and then observe the evolution of
the densities and relative phase of the two components after
a holding time. An example is shown in Fig. 11. The domain
wall was first imprinted at z0 = 20 μm. It moves to the right
edge of the trap and becomes a 2π magnetic soliton. After a
longer evolution time, it returns, moves toward the trap center,
and evolves into a 0π magnetic soliton.

In Fig. 12 and Fig. 13, we track the trajectories of the
magnetic solitons after the imprint of a Son-Stephanov domain
wall at z0 for a complete oscillation period. Note that the
external Rabi coupling � is a constant for each simulation.
However, in the presence of a harmonic trap, the density varies
and the local dimensionless Rabi coupling ωR(z) = �/�c(z)
is also position dependent, its value being minimum at the trap
center and very large near the border of the atomic cloud.

In Fig. 12, we study the oscillation dynamics of the
magnetic solitons for different values of Rabi coupling � [and
thus different values of ωR(z0)] after imprinting a domain wall
at the same initial position, z0 = 20 μm. With the increase in

FIG. 12. (a) In-trap trajectories of magnetic solitons and
(b) evolution of the magnetization m0 at the soliton center after
imprinting a Son-Stephanov domain wall at z0 for different values
of the local Rabi coupling: ωR(z0) = �/�c(z0) = 0.22 (solid red
line), ωR(z0) = �/�c(z0) = 0.66 (dashed black line), and ωR(z0) =
�/�c(z0) = 1.1 (dash-dotted blue line). Lines without circles in-
dicate 2π solitons; lines with circles, 0π solitons. Spin-interaction
parameters have been chosen the same as in 23Na, where δg = 0.07g

and the Thomas-Fermi radius is RTF = 70 μm. All curves presented
here correspond to the time interval of an oscillation period.
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FIG. 13. (a) In-trap trajectories of magnetic solitons and (b)
evolution of the magnetization m0 at the soliton center after imprinting
a Son-Stephanov domain wall at different initial positions: z0 =
20 μm (solid red line) and z0 = 35 μm (dotted blue line). The
corresponding local dimensionless Rabi couplings are ωR(z0) = 0.22
(red) and ωR(z0) = 0.45 (blue), respectively. Lines without circles
indicate 2π solitons; lines with circles, 0π solitons. Spin-interaction
parameters have been chosen the same as 23Na with δg = 0.07g and
the Thomas-Fermi radius is RTF = 70 μm.

ωR(z0), the region exhibiting 0π solitons shrinks and eventu-
ally disappears. Furthermore, the anharmonic oscillations in
the presence of both 2π and 0π magnetic solitons (see red
curve in Fig. 12) tend to become harmonic when 0π solitons
are no longer produced during the oscillation. The black curve
corresponds to the case where 0π solitons no longer emerge
during the oscillation. The blue curve reveals that a 2π soliton,
imprinted in a 1D harmonically trapped condensate under
the condition ωR(z0) > ωc

R(z0) of the Rabi coupling, despite
its instability [15], exhibits a regular oscillation moving first
towards the center of the trap because of its negative effective
mass. The analysis of Fig. 12 shows that, in order to observe the
emergence of both 2π and 0π solitons during the oscillation,
the local Rabi coupling at the initial position z0 should be
significantly smaller than ωc

R(z0).
In Fig. 13, we study the oscillation dynamics of the

magnetic solitons for different initial positions of the phase
imprinting. For larger z0, the density of the condensate is lower
and thus ωR(z0) is larger. In this case, the 2π magnetic soliton
reaches the turning point faster and the 0π soliton appears
earlier.

Finally, we remark that although our theory has been based
on the assumption of condition (2), a similar phenomenon also

FIG. 14. Evolution of the magnetic solitons in an elongated
harmonic trap (aspect ratio = 10) after imprinting a Son-Stephanov
domain wall. For each time instant we show the density of the second
component n2 (the brighter the color, the higher the density) in the
upper panel and the relative phase ϕA (the color or gray scale changes
continuously from 0 to 2π ) in the lower panel: (a) ωhot = 0.8, (b)
ωhot = 3.8, (c) ωhot = 4.2. Rabi coupling � = 0.5ωho and interaction
δg = 0.4g. In the top panel we also show a length scale corresponding
to 5aho.

occurs for larger values of δg where the total density exhibits
a dark soliton. To demonstrate this, we relax condition (2)
and present the simulation dynamics in the presence of larger
δg in the following investigation of the role of transverse
confinement.

VII. ROLE OF THE TRANSVERSE CONFINEMENT

In this section we generalize our results to two-dimensional
(2D) configurations. In 2D or higher dimension, solitons with a
negative effective mass are expected to be unstable due to snake
instability. However, for elongated geometry, it is still possible
to observe persistent oscillations of the solitons. The size of
the transverse confinement ensuring stability of the moving
domain wall or magnetic soliton can be roughly estimated
as R⊥ < ξphase. For parameters used in our calculations,
� = 0.5 ωho, μ ≈ 50h̄ωho, and δg = 0.4 g, this gives an
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FIG. 15. Densities of the two spin components and their relative
phase ϕA calculated on a cut along the longer axis of the configurations
presented in Fig. 14. Soliton (left) before (ωhot = 3.8) and (right) after
(ω hot = 4.2) reflection. We can see that the configuration before the
reflection corresponds to a 2π soliton and the configuration after the
reflection corresponds to a 0π soliton.

aspect ratio ω⊥/ωho > 2
√

μ�/(h̄ω2
ho) = 10. We first consider

the case of an elongated harmonic trap, with aspect ratio
ω⊥/ωho = 10, where ωho (ω⊥) is the harmonic trapping
frequency along the longitudinal (transverse) direction, in
order to understand how the 1D solutions behave in this
elongated geometry. We expect that this elongated geometry
will share many features with one dimension. Indeed, the
domain wall characterized by a 2π relative phase jump,
which was initially imprinted along the weak axis of the
trap and displaced from the center by a small fraction of the
Thomas-Fermi radius, begins to travel along the weak axis
towards the closer edge of the cigar could. When the 2π soliton
moves to the turning point, it develops a density polarization
and induces two vortices at its ends (see Fig. 14). Then it moves
back towards the center of the trap as predicted for the 1D
solution, but now we observe that the soliton is fragmented into
two pieces and no longer extends through the whole transverse
dimension [see Fig. 14(c)]. As discussed in [47,48] the end of
a finite domain wall is always associated with the existence
of a vortex in one of the two spin components, ensuring the
proper behavior of the phase around the end point. In the
region between the vortices we have a polarized density, which
suggests that our solution matches the 0π magnetic soliton
obtained in the 1D configuration. The 0π soliton continues
to move and it survives for a long time while oscillating and
repeatedly transforming to 2π solitons in the harmonic trap.
In Fig. 15 we show the cut of the density and phase of the gas
along the weak confinement axis before and after the reflection.
We can recognize the same structure as in Fig. 3 and Fig. 5 for
2π and 0π solitons, respectively.

For fully 2D configurations, the 1D dynamics of magnetic
solitons discussed in the previous sections no longer applies,
and the soliton cannot oscillate indefinitely due to the snake
instability. To demonstrate this, we have repeated the numer-
ical simulation for an isotropic harmonic potential, where the
2D physics should be fully manifested. We have assumed
� = 0.5ωho and δg = 0.4g. Initially the 2π soliton travels to
the edge of the trap, similarly to the case of an elongated trap.
However, the soliton starts to bend, and the vortices generated
near the end of the soliton become detached from the cloud

FIG. 16. Evolution of an imprinted Son-Stephanov domain wall
in a spherical harmonic trap. For each time instant we show the
density of the second component n2 (the brighter the color, the higher
the density) in the upper panel and the relative phase ϕA (the color or
gray scale changes continuously from 0 to 2π ) in the lower panel: (a)
ωhot = 0, (b) ωhot = 3.2, (c) ωhot = 5.6. Rabi coupling � = 0.5ωho

and interaction δg = 0.4g. In the top left panel we also show a length
scale corresponding to 5aho.

boundary. Furthermore, the reflection is associated with the
production of multiple vortices along what was formerly a
single soliton (see Fig. 16). These vortices travel back towards
the center together, but soon the dynamics becomes very
complicated. The excess energy is converted into phononic
excitations, and the soliton is lost.

VIII. DISCUSSION

We have investigated the main features of moving magnetic
solitons in Rabi-coupled binary Bose-Einstein condensates.
Two types of magnetic solitons have been identified and
characterized: (i) 2π solitons, which are connected to the
unmagnetized static Son-Stephanov domain wall and exhibit
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a 2π relative phase jump; and (ii) 0π solitons, which are
connected to 2π solitons at a critical velocity, where the
density of one component vanishes, and which do not exhibit
a net jump of the relative phase. The complete phase diagram,
the energy, and the magnetic properties of these solitons are
obtained in a uniform matter, and their dynamical evolution is
calculated in a 1D and 2D harmonic trap. A peculiar feature
emerging from our calculations is that 2π solitons evolve into
0π solitons (and vice versa) during their oscillatory motion in
a harmonic trap.

We expect that these novel examples of solitons can be
observed experimentally in the near-future. To observe them in
ultracold atoms one can, for example, use a mixture of the |F =
1,mF = +1〉 and |F = 1,mF = −1〉 hyperfine components of
the 32S1/2 states of sodium, where δg/g ≈ 0.07 [49] and the
exact miscibility of the atomic states can be reached [50].
For typical experimental parameters, the chemical potential
is μ ∼ h × 104 Hz, and thus the critical Rabi coupling is

estimated as �c = nδg/3 = 0.023ng = 0.023μ = h ×
230 Hz. Therefore, a weak Rabi coupling (of the order of
∼100 Hz) is required to observe these magnetic solitons, a
condition which can be achieved with current experimental
techniques.

Although our discussion of magnetic solitons has been
focused on the context of binary Bose-Einstein condensates,
similar physics can be easily generalized to and investigated in
other physical systems which are governed by coupled GPEs,
such as fiber optics [51] and exciton-polaritons [52].
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