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Critical behavior in one dimension: Unconventional pairing, phase separation, BEC-BCS crossover,
and magnetic Lifshitz transition

Andrzej Ptok,1,2,* Agnieszka Cichy,3,† Karen Rodrı́guez,4,5,‡ and Konrad Jerzy Kapcia6,§

1Institute of Physics, Maria Curie-Skłodowska University, Plac M. Skłodowskiej-Curie 1, PL-20031 Lublin, Poland
2Institute of Nuclear Physics, Polish Academy of Sciences, ul. E. Radzikowskiego 152, PL-31342 Kraków, Poland

3Institut für Physik, Johannes Gutenberg-Universität Mainz, Staudingerweg 9, D-55099 Mainz, Germany
4Departamento de Fı́sica, Universidad del Valle, A.A. 25360, Cali, Colombia

5Centre for Bioinformatics and Photonics–CiBioFi, Calle 13 No. 100-00, Edificio 320 No. 1069, Cali, Colombia
6Institute of Physics, Polish Academy of Sciences, Aleja Lotników 32/46, PL-02668 Warsaw, Poland

(Received 11 November 2016; published 13 March 2017)

We study the superconducting properties of population-imbalanced ultracold Fermi mixtures in one-
dimensional optical lattices that can be effectively described by the spin-imbalanced attractive Hubbard model in
the presence of a Zeeman magnetic field. We use the mean-field theory approach to obtain the ground-state phase
diagrams including some unconventional superconducting phases such as the Fulde-Ferrell-Larkin-Ovchinnikov
(FFLO) phase, and the η phase (an extremal case of the FFLO phase), both for the case of a fixed chemical
potential and for a fixed number of particles. It allows us to determine optimal regimes for the FFLO phase
as well as η-pairing stability. We also investigate the evolution from the weak coupling (BCS-like limit) to the
strong coupling limit of tightly bound local pairs (BEC) with increasing attraction, at T = 0. Finally, the obtained
results show that in spite of the occurrence of the Lifshitz transition induced by an external magnetic field, the
superconducting state can still exist in the system, at higher magnetic field values.
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I. INTRODUCTION

The immense development of experimental techniques
in cold atomic Fermi gases in previous years has opened
new avenues for research of strongly correlated systems
in condensed matter physics and beyond. The ability to
control the interactions via Feshbach resonances [1] sets
new perspectives for experimental realization and studies of
many different unconventional systems, such as spin-polarized
superfluidity (with population imbalance), superconductivity
with nontrivial Cooper pairing, Bose-Fermi mixtures or
mixtures of fermions with unequal masses [2–5].

There are indications that the properties of unconventional
superconductors place them between two regimes: BCS and
BEC [6–10]. The evolution from the weak attraction (BCS-
like) to the strong attraction (BEC-like) limit takes place when
the interaction is increased or the particle concentration is de-
creased at moderate fixed attraction. According to the Leggett
criterion [11], the Bose regime begins when the chemical
potential μ drops below the lower band edge. The possibility
of controlling population imbalance has motivated attempts
to understand the BCS-BEC crossover phase diagrams in the
presence of spin polarization [9,12].

Currently, the unconventional superconductivity with a
nontrivial Cooper pairing lays down one of the most important
directions of studies in the theory of condensed matter [13]
and ultracold quantum gases [14,15]. In the presence of a
Zeeman magnetic field, the densities of states are different for
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the particles with spin down and spin up. In the case of ultracold
Fermi gases, paramagnetic effects are introduced artificially
by population imbalance producing a mismatch between the
Fermi surfaces. At strong imbalance, in the weak coupling
regime, superfluidity is destroyed and undergoes a first-order
phase transition to the polarized normal state at a universal
critical magnetic field hP = �0/

√
2 ≈ 0.707�0. The latter is

called the Chandrasekhar-Clogston (CC) limit or Pauli limit
[16,17], where �0 is the gap at zero temperature in the absence
of external field. Rather recently, a behavior in accordance
with the CC limit has been observed in population imbalanced
atomic Fermi gases [18,19].

In the weak coupling limit, at a large difference in the
occupation number (or at a strong magnetic field), states with
nontrivial Cooper pairing can exist. An example of such pairing
is the formation of Cooper pairs across the spin-split Fermi
surface with nonzero total momentum (k ↑, −k + Q ↓), lead-
ing to the so-called Fulde-Ferrell-Larkin-Ovchinnikov [20,21]
(FFLO) state. Solid-state experiments typically involve highly
anisotropic materials—made up either of weakly coupled
two-dimensional (2D) planes or one-dimensional (1D) wires
[13]. The potential candidates for finding the FFLO phase
are heavy fermions [13,22–25], organic [26–28] or iron-based
superconductors [29–31]. These systems are characterized by
a discontinuous phase transition from the superconducting to
the normal state in the regime of low temperatures. However,
it is still unclear in which range of parameters the FFLO
phase is stable. Moreover, the observation of this type of
superconductivity is very difficult because of the very strong
destructive influence of the orbital (diamagnetic) effect.

For instance, some calculations indicate that if a FFLO
phase exists in three-dimensional (3D) trapped gases, it will
occupy a very small volume in parameter space [32–34].
Another kind of pairing and phase coherence that can appear is
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the spatially homogeneous spin-polarized superfluidity (called
breached pair state or Sarma phase [35]), which has a gapless
spectrum for the majority spin species.

Quite recently, the Rice University experimental group [32]
predicted the FFLO phase appearance in ultracold lattice gases.
The experimental setup allows one to investigate imbalanced
quantum Fermi gases (N↓ �= N↑) by trapping the two lowest
hyperfine levels of the 6Li ground state in quasi-1D geometries
[36]. Similar experiments have been performed for the mass-
imbalanced mixtures of 6Li and 40K atoms [37–40].

Also theoretical analyses suggest a possibility of a real-
ization of the FFLO phase in optical lattices [19,41,42]. The
existence of nonzero total momentum Cooper pairs leads to
a spontaneous symmetry breaking of the order parameter
in real space [13]. It is manifested by sign change of the
superconducting order parameter as well as the occurrence
of nodal lines in real space. The spatial profile and the number
of the nodal lines depend on the magnetic field [43]. The same
behavior of the order parameter can be observed in ultracold
fermionic gases in parabolic or toroidal traps. In the former
case there can occur oscillations of the order parameter in
the radial direction [42,44,45], whereas in the latter case the
breaking of the rotational symmetry can result in oscillations
of the order parameter depending on the angle [46,47].

For one-dimensional two-component Fermi atomic gases
in a magnetic trap the exact thermodynamic Bethe ansatz
[48] solution shows that (in some range of magnetic field
and in the strong coupling limit) a mixed phase with the
two-shell structure with a partially polarized superfluid core
surrounded (analogous to the FFLO phase) by either a fully
paired or fully polarized phases occurs in the ground state
[49,50]. Similar situation has been found in a case of the
one-component trapped gas [51]. Moreover, the FFLO phase
occurs at all nonzero partially polarization for any attractive
interaction, whereas all of the phase transitions are continuous
[49–51]. Theoretical investigations predict that the FFLO
state can be also realized in a case of the mass-imbalance
fermionic system [52–55]. There has been work on exact
numerical studies [quantum Monte Carlo (QMC) simulations
and density matrix renormalization group (DMRG)] of the
1D attractive Hubbard model with population-imbalanced
fermions [55–65], suggesting that the FFLO state is stable
in one dimension. Indeed, the instability of the normal state
with respect to FFLO is due to a Fermi surface “nesting” which
is enhanced in one dimension [66].

Motivated by the experimental feasibility of such systems
with ultracold gases loaded on a quasi-1D lattice, we study
the unconventional superfluid phases of the attractive Hubbard
model (AHM) (U < 0), in the presence of an external magnetic
field. We show that with increasing magnetic field, the system
evolves from the BCS-type superconducting state to the FFLO
phase (where the Cooper pairs have nonzero total momentum
Q). In an extremal case, this momentum Q can lie on the vertex
of the first Brillouin zone (FBZ) [67–69] and the so-called η

phase emerges. It should be stressed that the Hubbard model
on a bipartite (alternate) lattice has been rigorously proved to
have η states as eigenstates [70]. Moreover, η pairing has been
found as a mechanism of superconductivity in a large class
of models of strongly correlated electron systems (extended
Hubbard models) [71].

We obtain the magnetic field vs chemical potential as well as
vs filling (i.e., h − μ and h − n, respectively) phase diagrams
for several values of the on-site pairing interactions. Therefore,
the results of our analysis can be compared to experimental
results where the filling or particle concentrations can be
fully controlled and measured. We find a topological quantum
phase transition, of the Lifshitz type, in the ground-state phase
diagrams. As a consequence of this transition, there is a change
of the Fermi surface (FS) topology due to the variation of the
Fermi energy and/or the band structure.

The paper is organized as follows. In Sec. II, we introduce
the main theoretical model for the system under study, the
attractive Hubbard model in a Zeeman magnetic field and
we briefly discuss the mean-field method. Section III presents
numerical results and their discussion: the h − μ as well as h −
n phase diagrams in the weak coupling limit (Sec. III A), the
BCS-BEC crossover analysis and magnetic Lifshitz transition
(Sec. III B). We conclude in Sec. IV with a brief summary of
the obtained results and an outlook.

II. MODEL AND METHOD

We study an s-wave superconductor on a one-dimensional
lattice, described by the AHM (U < 0) in a magnetic field
which in real space takes the form,

Ĥ =
∑
〈i,j〉σ

(−t − (μ + σh)δij )ĉ†iσ ĉjσ + U
∑

i

n̂i↑n̂i↓, (1)

where t is the nearest-neighbor hopping, σ = ↑,↓ the spin
index, U the on-site attraction, and μ is the chemical potential;
h is a Zeeman field, which originates from an external magnetic
field (in gμB/2 units) or from a population imbalance in the
context of the cold atomic Fermi gases with μ = (μ↑ + μ↓)/2
and h = (μ↑ − μ↓)/2, where μσ is the chemical potential of
atoms with (pseudo)spin σ . The second term can be decoupled
using the mean-field approximation,

n̂i↑n̂i↓ = �∗
i ĉi↓ĉi↑ + �iĉ

†
i↑ĉ

†
i↓ − |�i |2, (2)

where �i = 〈ĉi↓ĉi↑〉 is defined as the superconducting order
parameter (SOP). Then, the mean-field Hamiltonian in real
space takes the form,

ĤMF =
∑
〈i,j〉σ

(−t − (μ + σh)δij )ĉ†iσ ĉjσ

+U
∑

i

(�∗
i ĉi↓ĉi↑ + H.c.) − U

∑
i

|�i |2. (3)

Without loss of generality, we can write down the SOP as
�i = �0 exp(i Q · Ri), where �0 is the spatially oscillating
amplitude and Q is the total momentum of the Cooper pair.

Transforming Hamiltonian (1) to the reciprocal space, one
obtains

ĤMF =
∑
kσ

Ekσ ĉ
†
kσ ĉkσ + U

∑
k

(�∗
0ĉ−k+ Q↓ĉk↑ + H.c.)

−UN |�0|2. (4)

In the one-dimensional lattice case, the dispersion relation is
given by Ekσ = −2t cos(kx) − (μ + σh). Using the Nambu
notation, the Hamiltonian (4) can be rewritten in a matrix

033613-2



CRITICAL BEHAVIOR IN ONE DIMENSION: . . . PHYSICAL REVIEW A 95, 033613 (2017)

form, ĤMF = ∑
k �̂

†
kHk�̂k, with

Hk =
(

Ek↑ U�0

U�∗
0 −E−k+ Q↓

)
, (5)

where �̂
†
k = (ĉ†k↑,ĉ−k+ Q↓) are the Nambu spinors. Then, the

eigenvalues λk± of ĤMF are given by

λk± = η−
k ± ϑk, η±

k = Ek↑ ± E−k+ Q↓
2

,

ϑk =
√

(η+
k )2 + U 2|�0|2. (6)

The grand canonical potential defined by 	 ≡
−kBT ln{Tr[exp(−ĤMF/kBT )]} can be written as

	 = −kBT
∑

k,α∈±
ln

(
1 + exp

(−λkα

kBT

))

+
∑

k

(Ek↓ − U |�0|2), (7)

while the particle number equation takes the form,

n ≡ −1

N

∂	

∂μ
= 1 + 1

N

∑
k

η+
k

ϑk
(f (λk,+) − f (λk,−)). (8)

In above, f (x) = 1/(1 + exp(x/kBT )) denotes the Fermi-
Dirac distribution function. The ground state is found by a
minimization of 	 with respect to the SOP amplitude �0 and
momentum Q, for fixed μ and h, at a temperature T/t = 10−5

(effectively T = 0, nonzero value has been taken for numerical
reasons). As mentioned above, the systems in which the FFLO
phase can be realized are characterized by discontinuous phase
transitions, which are associated with discontinuous changes
of �0 and/or Q. As a consequence, the energy gap equation for
a given phase, equivalent to one of the conditions of the energy
minimization d	/d�0 = 0, at fixed Q, cannot be used for the
phase boundary estimations. In this case, the procedure of the
minimization of 	 with respect to the SOP amplitude and
all possible momenta Q realized in the system is essential.
Because of the unequivocal relation of the real space and
reciprocal space (via the Fourier transform), the number of
all possible Q vectors in the lattice is equal to the number of
lattice sites (given by N ). It is worth mentioning that Q as well
as �0 change discontinuously [30] going from the BCS to the
FFLO phase. To find the minimum of the energy of the system,
one minimizes 	(�0) functions for N different Q vectors. For
simplicity, without loss of generality, numerical calculations
have been performed in the lattice with N = 200 sites and
periodic boundary conditions, which makes the finite-size
effects negligible [72]. To speed up the calculations, graphical
cards have been used. We have proceeded according to the
numerical procedure described in Ref. [31].

III. NUMERICAL RESULTS AND DISCUSSION

In this section, we focus on the analysis of superconducting
properties of ultracold atomic mixtures assuming a one-
dimensional lattice geometry. Within the mean-field (BCS-
Stoner) approach, we construct the phase diagrams in two
ways: by fixing either the chemical potential (μ) or the particle

concentration (n), and show the relevant differences resulting
from these possibilities. The ground-state phase diagrams are
obtained for a wide range of attractive interactions, i.e., for
a weak and intermediate coupling (Sec. III A) and for the
local pairs limit (BEC) (Sec. III B) by using the mean-field
approximation. Notice that in the general case this approxi-
mation overestimates critical temperatures and can give only
a qualitative description of the long-range order phases.
However, it gives a fairly good account of the system in the
ground state (at T = 0) even in the strong coupling limit [6].

A. Superconducting properties of the AHM in the presence of a
Zeeman magnetic field: Weak and intermediate coupling

In this subsection, we consider the ground-state phase
diagrams in the weak and intermediate couplings. In the
following, we set the hopping parameter as an energy unity,
i.e., t = 1.

In the weak coupling regime and in the absence of an exter-
nal Zeeman field, the usual superconducting BCS-type s-wave
state is stable (Fig. 1). As the magnetic field rises, superfluidity
gets destroyed, at weak and intermediate couplings, due to
paramagnetic effects or by population imbalance. Hence,
the unpolarized BCS-like superconducting phase undergoes
a first-order phase transition to the polarized normal state
or to the FFLO phase. Rising higher the field and close to
half-filling, the polarized FFLO-η-pairing superconducting
phase also undergoes a first-order phase transition to the
normal state.

These two first-order phase transition lines were determined
from the conditions: 	BCS = 	FFLO, 	BCS = 	NO,
	FFLO = 	NO, where 	BCS, 	FFLO and 	NO denote the grand
canonical potential of the BCS (�0 �= 0, Q = 0, P = 0),
FFLO (�0 �= 0, Q �= 0, P �= 0), and the normal (�0 = 0,
P �= 0) state, respectively, where P = (n↑ − n↓)/(n↑ + n↓)
is the polarization. Then, these results have been mapped onto
the case of fixed n (Fig. 2). Moreover, there is a special case
of the FFLO phase, for which the Cooper pair momentum
takes the value of the momentum on the FBZ vertex (|Q| = π ).
This case is called η pairing and is found in the phase diagrams
as well. It is worth mentioning that we take into account in
our analysis the Sarma phase, which is characterized by the
spatially homogeneous order parameter, in the presence of
nonzero polarization (i.e., �0 �= 0, Q = 0, P �= 0). However,
these solutions are unstable for the whole region of parameters.

h vs μ phase diagram. Figure 1 shows the h − μ phase
diagrams at T = 0. These diagrams are symmetric with respect
to the sign change of μ or h due to the particle-hole symmetry.
For the sake of clarity, we only show the range of μ from 0
to 3 and h � 0. In this case (see Fig. 1), we find two types of
superconducting phases: BCS and FFLO type. Note that inside
the latter, above some magnetic field value identified by a red
dashed line, we find the η-FFLO phase. The stability range of
the BCS state as well as the η pairing depends on the value
of the attractive interaction—both phases widen when increas-
ing the attraction and the FFLO phase shrinks. Notice that
obtained phase diagrams (Fig. 1) are in a qualitative agreement
with the previous DMRG calculation performed for trapped
spin-imbalanced Fermi gas, where partially polarized state
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(a) (b)

(c) (d)

(e) (f)

FIG. 1. h − μ ground-state phase diagram for several values
of the pairing interaction U . Labels are as follows: NO, normal
phase; BCS, nonpolarized superconducting state with Q = 0; FFLO,
polarized superconducting phase with Q �= 0. Additionally, within
the FFLO phase, above the dashed red line there is a region where
the η phase is distinguished. The solid blue lines indicate first-order
phase transitions between different states. The white region indicates
the empty state (or fully filled state, depending on the sign of the
chemical potential).

(i.e., the FFLO state in the present paper) exists in a large
range of the model parameters [62].

Phase transitions. We find that the phase transition from
the BCS phase to the FFLO or NO state for h �= 0 is always
of the first order (associated with a discontinuous change of
the order parameters). At relatively high magnetic field and
around half-filling (μ � 0), we also obtain a first-order phase
transition from the η-FFLO phase to the NO state (blue solid
lines in Fig. 1), whereas the transition for larger μ changes
its nature into second order. On the other hand, the transitions
from the FFLO phase to the NO state as well as between
the BCS phase and the empty (full-filled) state are second-
order ones (connected with a continuous change of the order
parameters). It is important to emphasize that the first-order
phase transitions are reflected by the existence of the phase
separation (PS) regions in the h − n phase diagrams. The BCS

(a) (b)

(c) (d)

(e) (f)

FIG. 2. h − n ground-state phase diagram for several values of
the pairing interaction U . Labels are as follows: NO, normal phase;
BCS and FFLO, superconducting states with Q = 0 and Q �= 0,
respectively; PS1, phase separation region between BCS and FFLO
phases or between BCS and NO phases (details in the text); PS2,
phase separation region between BCS and NO phases; PS3, phase
separation region between FFLO (η pairing) and NO phases. Within
the FFLO phase the η state exists above the dashed red line.

boundary shows strong nonlinearities, especially around the
BCS-BEC crossover point (for |μ| � 2), while the boundary
between the FFLO phase and the NO state changes in an
approximately linear way with μ.

Generally, the order of the phase transition between the
FFLO and BCS phases is still under debate [73–79]. For 1D
systems the studies of that problem within the framework
of the Ginzburg-Landau theory show that, e.g., disorder can
change the type of the phase transition [80]. A combination
of the renormalization group and mean-field approximation
for Fermi gases with attractive interaction gives second-order
phase transition between uniform (BCS) and nonuniform
(FFLO) superconducting states [81]. Moreover, studies of two-
component Fermi atomic gases in a magnetic trap using the
exact thermodynamic Bethe ansatz solution in the continuum
model show that all phase transitions are continuous [49–51].
In such systems there has been shown that the phase separation
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in a real space can occur which can be the source of
other types of the phase transitions. The effective Ginsburg-
Landau theory studies for quasi-2D d-wave superconductors
by renormalization group analysis indicate that the transition
form the FFLO to normal state is generically first order, even
when the mean-field theory suggests a continuous transition
[74].

However, it is crucial to emphasize that the validity of
the mean-field results is generally limited, especially in the
1D case in which the pair fluctuations become increasingly
important [82]. Moreover, the mean field can fail regarding the
identification of the nature of the phase transition, although this
approximation has been found to provide useful description in
the weak and intermediate coupling, basing on the comparison
with the exact or asymptotically exact Bethe ansatz for a free
polarized Fermi gas [82]. Additionally, there is evidence that
the mean-field description with a single-plane-wave FF-type
order parameter does not predict the correct phase transition
between BCS and FFLO states, although the self-consistent
Bogoliubov–de Gennes formalism gives the results which are
in good agreement with those from Bethe ansatz. Hence, it
has been shown, for continuum models, that the first-order
phase transition is merely an artifact of the single-plane-wave
approximation for the order parameter [82]. This suggests that
the same problem can appear for the system on the lattice, at
least in the dilute limit, when both n → 0 and a → 0 (a is the
lattice constant).

h vs n phase diagram and phase separations. As mentioned
above, there are relevant differences between the phase
diagrams obtained for fixed chemical potential and fixed
particle concentration. Figure 2 shows the dependence of the
critical magnetic fields on the filling, for several attraction
values. Here, due to the particle-hole symmetry, we only show
the range of |n − 1| from 0 to 1. In contrast to the fixed
chemical potential case, if the number of particles is fixed
and n �= 1, there are phase separated states present on the
diagrams. The occurrence of the phase separated states for
fixed concentration (so-called macroscopic phase separation)
is associated with the first-order phase transitions occurring
for fixed μ [8,83]. We have found that the transition for fixed
μ between the FFLO and BCS phases, between the BCS and
NO phases, and between the η-FFLO and NO phases (in some
ranges of the model parameters) are discontinuous, hence,
the corresponding phase separated states are presented on
the diagrams as a function of n. One can distinguish three
different phase separation regions in the h − |n − 1| phase
diagram: PS1, the region of phase separation between the
BCS and FFLO phases as well as between the BCS and
NO phases (for h above and below, respectively, the points
indicated by the arrow in Fig. 2), PS2, between the BCS and
NO phases, and PS3, between the η-FFLO-pairing and NO
states.

The phase diagrams in Fig. 2 show that the FFLO phase
can be realized at relatively large doping. Similarly as in the
case of the h − μ phase diagram, the phase boundaries show
strong nonlinearities in the BCS-BEC regime (small density of
particles). The blue dashed vertical line indicates the critical
value of n above which, according to the Leggett criterion,
there is the BCS-BEC crossover at the large spin imbalance or
Zeeman fields.

(a) (b)

FIG. 3. The influence of the pairing U interaction on the BCS-
BEC region for h = 0 (a) and the magnetic Lifshitz transition region
for μ = 0 (b); color-coded �0 the amplitude of the order parameter.

Role of the pairing U interaction. The increasing of the
pairing interaction U leads to the stabilization of some critical
behaviors (Fig. 3). As it is known, in the strong coupling limit
of AHM (h = 0), the tightly bound local pairs of fermions
behave as hard-core bosons and can exhibit a superfluid state
similar to that of 4He II [6]. According to the Leggett criterion,
the Bose regime begins when the chemical potential μ drops
below the lower band edge. In the case of a one-dimensional
system, the band edges are at ±μ/t = 2. Figure 3(a) shows the
μ vs U phase diagram, at T = 0 and h = 0. As one can notice,
in the case of the strong coupling (larger values of U ), the
superconducting phase exists above the band boundary (white
dashed line). Above this line, one can speak about non-BCS
behavior.

We observe similar critical behavior with an increasing
Zeeman magnetic field [Fig. 3(b)]. Namely, at the critical point,
U = 0 and h/t = 2, the magnetic Lifshitz transition (MLT)
[84] takes place. As has been mentioned above, at a nonzero
Zeeman magnetic field, the population imbalance introduces a
mismatch between the Fermi surfaces. Hence, effectively there
are two Fermi surfaces in the system, one for the majority spin
component and one for the minority spin component. However,
above h/t = 2 (the value of the band edge), one of the Fermi
surfaces disappears. Therefore, one can observe a change in
the FS topology. Strikingly, the superconducting phase can
still survive above MLT and the increasing of U stabilizes the
η phase [Fig. 3(b)]. The boundary between the FFLO and η

phase is moved towards lower values of the magnetic field,
which is clearly visible in the h − μ as well as h − |n − 1|
phase diagrams.

B. BCS-BEC crossover and magnetic Lifshitz transition

In this subsection, we present results concerning the BCS-
BEC crossover as well as the magnetic Lifshitz transition.
Both possibilities can be simply shown by means of μ↑ vs μ↓
phase diagrams (Fig. 4), where μσ = μ + σh is the effective
chemical potential.

First, let us discuss the schematic phase diagram in Fig. 4(a).
In the weak coupling limit, for |μσ |/t � 2 (the inside of
the dashed black square), we have the BCS phase or FFLO,
depending on the population imbalance. If μ↑ � μ↓ (i), there
is the unpolarized BCS phase, otherwise [for μ↑ �= μ↓ (ii)] the
FFLO state is stable. In Fig. 4(a), dashed blue lines indicate the
schematic boundaries between the BCS phase and the FFLO
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(a) (b)

(c) (d)

FIG. 4. Ground-state effective chemical potentials μ↑ = μ + h

vs μ↓ = μ − h phase diagram. (a) A schematic diagram. The dashed
black square indicates the band edges. The inside of the square
shows possible regions of the BCS, FFLO, BEC state. Red region,
magnetic Lifshitz transition (MLT) occurrence; blue region, the BCS-
BEC crossover region. The dashed blue lines show the schematic
boundaries of the BCS and FFLO phase occurrence. (b)–(d) Results
for different values of the paring interaction U .

state. In Figs. 4(b)–4(d), these boundaries are obtained from
the minimization of the grand canonical potential with respect
to the amplitude of the order prameter �0 and the vector Q.

With increasing U , when the effective chemical potentials
drop below the lower band edge, there is the crossover to
the tightly bound local pair region [BEC is the blue shaded
area in Fig. 4(a)]. It takes place in the region of parameters
for which μ↑ � μ↓, i.e., the polarization P of the system
is low. However, it is worth emphasizing that the BCS-BEC
crossover takes place both for a low particle concentration
[μ = (μ↑ + μ↓)/2 < −2t] and for a low concentration of
holes [μ = (μ↑ + μ↓)/2 > 2t]. This behavior is clearly vis-
ible in Figs. 4(b)–4(d) in which the orange area significantly
exceeds the black dashed square. Therefore, one can speak of
the crossover to the tightly bound local pairs.

In the weak coupling region, in the presence of a Zeeman
magnetic field, there are two FS’s in the system. If the system
is strongly polarized, i.e., μ↑ + μ↓ ∼ 0, the magnetic Lifshitz
transition can take place. In this case, one of the spin bands
is fully filled or empty. However, the increase of the attractive
interaction leads to the stabilization of the superconducting
state, although there is only one FS in the system (see: Fig. 5).
Pairing between particles with opposite spins is possible but
the total momentum of pairs (Q) takes the maximum allowed
value of momentum in the system (i.e., the vertex of the FBZ),
in the presence of high polarization.

The phase diagrams for different values of pairing in-
teraction U are shown in Figs. 4(b)–4(d). As it is clearly

visible, in the weak coupling limit (|U/t | → 0), the BCS phase
(μ↑ � μ↓) as well as the FFLO state (μ↑ �= μ↓) are stable.
However, the increasing U widens the range of occurrence of
the BEC and MLT regions, which is clearly visible in Fig. 4(d).
In the strong coupling limit, the chemical potential drops
below the band edge, the Fermi surfaces disappear and the
FFLO phase is unstable. In this regime, only the unpolarized
superconducting state is realized.

IV. SUMMARY

We studied the superconducting properties of the spin-
imbalanced attractive Hubbard model in the context of exper-
iments with ultracold atomic Fermi mixtures with population
imbalance in one-dimensional optical lattices. The ground-
state phase diagrams were obtained for the cases of a fixed
chemical potential and a fixed density (lattice filling) by using
the mean-field approach for the 1D system. We found that the
FFLO phase is stabilized for a wide range of atomic densities
due to a Fermi surface nesting, which is enhanced in one
dimension. Superconductivity is destroyed by the pair breaking
in a very weak coupling regime. If the number of particles is
fixed and n �= 1, one can obtain two critical Zeeman magnetic
fields (population imbalance), which limit the phase separation
of the superconducting and the normal states.

At relatively high values of a Zeeman magnetic field,
there is a region of the η pairing (within the FFLO phase).
With an increasing attractive interaction, the η pairing is
stabilized with respect to the FFLO state. Moreover, the η

phase can be stable even above the magnetic Lifshitz transition
(Fig. 5). As a consequence of this transition, there is a change
of the Fermi surface topology due to the variation of the
Fermi energy and/or the band structure. Our finding of an
MLT in the spin-imbalanced AHM with the external field in

FIG. 5. A schematic illustration of the (quasi)particle band
structure above the magnetic Lifshitz transition. The solid (dashed)
lines indicate the quasiparticle (particle) bands in the superconducting
(normal) state. At relatively high magnetic field and interaction, the η

pairing can be realized (which is the superconducting state with total
momentum of the Cooper pairs equaling M point of the first Brillouin
zone). In this case, the magnetic field causes a splitting of bands with
opposite spins and, hence, one of the bands can be fully filled (empty),
whereas the top or bottom of the other band crosses the Fermi level.
However, the existence of a strong pairing interaction (and the energy
gap) leads to pairing and modifies the quasiparticle spectrum in a
similar manner to that in the BCS-BEC crossover regime [85–87], at
Q > 0.
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one-dimensional lattice and determination of the stability of η

pairing are reported here.
Hence, at T = 0, in the weak coupling regime and for fixed

n, the following states have been found in the 1D system: at
h � 0, the BCS state; for higher values of magnetic fields
(h �= 0), the FFLO phase; at relatively high h �= 0, the η

pairing; three different PS regions. Phase separated states
end at tricritical points. The NO phase is also present on the
diagrams. In the present paper, we have not considered the
magnetic orderings.

We have also investigated the ground-state BCS-BEC
crossover diagrams for the AHM in the presence of a Zeeman
magnetic field. We have observed that the FFLO phase is
suppressed with increasing attraction, and the η pairing is
favored as well as only the BCS-like phase in the strong
coupling limit.
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[12] M. J. Wolak, B. Grémaud, R. T. Scalettar, and G. G. Batrouni,
Pairing in a two-dimensional Fermi gas with population imbal-
ance, Phys. Rev. A 86, 023630 (2012).

[13] Y. Matsuda and H. Shimahara, Fulde-Ferrell-Larkin-
Ovchinnikov state in heavy fermion superconductors, J. Phys.
Soc. Jpn. 76, 051005 (2007).

[14] H. Hu and X.-J. Liu, Mean-field phase diagrams of imbalanced
Fermi gases near a Feshbach resonance, Phys. Rev. A 73, 051603
(2006).

[15] O. Dutta, M. Gajda, P. Hauke, M. Lewenstein, D.-S. Lühmann,
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Larkin-Ovchinnikov state in the one-dimensional attractive
Hubbard model and its fingerprint in spatial noise correlations,
Phys. Rev. A 78, 013637 (2008).

[59] M. Rizzi, M. Polini, M. A. Cazalilla, M. R. Bakhtiari, M. P.
Tosi, and R. Fazio, Fulde-Ferrell-Larkin-Ovchinnikov pairing
in one-dimensional optical lattices, Phys. Rev. B 77, 245105
(2008).

[60] M. Tezuka and M. Ueda, Density-Matrix Renormalization
Group Study of Trapped Imbalanced Fermi Condensates, Phys.
Rev. Lett. 100, 110403 (2008).

[61] E. Burovski, G. Orso, and T. Jolicoeur, Multiparticle Composites
in Density-Imbalanced Quantum Fluids, Phys. Rev. Lett. 103,
215301 (2009).

[62] F. Heidrich-Meisner, G. Orso, and A. E. Feiguin, Phase separa-
tion of trapped spin-imbalanced Fermi gases in one-dimensional
optical lattices, Phys. Rev. A 81, 053602 (2010).

033613-8

https://doi.org/10.1103/PhysRevLett.97.157001
https://doi.org/10.1103/PhysRevLett.97.157001
https://doi.org/10.1103/PhysRevLett.97.157001
https://doi.org/10.1103/PhysRevLett.97.157001
https://doi.org/10.1103/PhysRevLett.99.187002
https://doi.org/10.1103/PhysRevLett.99.187002
https://doi.org/10.1103/PhysRevLett.99.187002
https://doi.org/10.1103/PhysRevLett.99.187002
https://doi.org/10.1038/nphys3121
https://doi.org/10.1038/nphys3121
https://doi.org/10.1038/nphys3121
https://doi.org/10.1038/nphys3121
https://doi.org/10.1103/PhysRevLett.111.057007
https://doi.org/10.1103/PhysRevLett.111.057007
https://doi.org/10.1103/PhysRevLett.111.057007
https://doi.org/10.1103/PhysRevLett.111.057007
https://doi.org/10.1088/0953-8984/27/48/482001
https://doi.org/10.1088/0953-8984/27/48/482001
https://doi.org/10.1088/0953-8984/27/48/482001
https://doi.org/10.1088/0953-8984/27/48/482001
https://doi.org/10.1016/j.cpc.2015.02.012
https://doi.org/10.1016/j.cpc.2015.02.012
https://doi.org/10.1016/j.cpc.2015.02.012
https://doi.org/10.1016/j.cpc.2015.02.012
https://doi.org/10.1038/nature09393
https://doi.org/10.1038/nature09393
https://doi.org/10.1038/nature09393
https://doi.org/10.1038/nature09393
https://doi.org/10.1103/PhysRevA.83.013606
https://doi.org/10.1103/PhysRevA.83.013606
https://doi.org/10.1103/PhysRevA.83.013606
https://doi.org/10.1103/PhysRevA.83.013606
https://doi.org/10.1038/srep39783
https://doi.org/10.1038/srep39783
https://doi.org/10.1038/srep39783
https://doi.org/10.1038/srep39783
https://doi.org/10.1016/0022-3697(63)90007-6
https://doi.org/10.1016/0022-3697(63)90007-6
https://doi.org/10.1016/0022-3697(63)90007-6
https://doi.org/10.1016/0022-3697(63)90007-6
https://doi.org/10.1007/s10909-009-9948-1
https://doi.org/10.1007/s10909-009-9948-1
https://doi.org/10.1007/s10909-009-9948-1
https://doi.org/10.1007/s10909-009-9948-1
https://doi.org/10.1103/PhysRevLett.100.053201
https://doi.org/10.1103/PhysRevLett.100.053201
https://doi.org/10.1103/PhysRevLett.100.053201
https://doi.org/10.1103/PhysRevLett.100.053201
https://doi.org/10.1103/PhysRevLett.102.020405
https://doi.org/10.1103/PhysRevLett.102.020405
https://doi.org/10.1103/PhysRevLett.102.020405
https://doi.org/10.1103/PhysRevLett.102.020405
https://doi.org/10.1103/PhysRevLett.106.115304
https://doi.org/10.1103/PhysRevLett.106.115304
https://doi.org/10.1103/PhysRevLett.106.115304
https://doi.org/10.1103/PhysRevLett.106.115304
https://doi.org/10.1103/PhysRevLett.112.075302
https://doi.org/10.1103/PhysRevLett.112.075302
https://doi.org/10.1103/PhysRevLett.112.075302
https://doi.org/10.1103/PhysRevLett.112.075302
https://doi.org/10.1088/0953-8984/27/22/225601
https://doi.org/10.1088/0953-8984/27/22/225601
https://doi.org/10.1088/0953-8984/27/22/225601
https://doi.org/10.1088/0953-8984/27/22/225601
https://doi.org/10.1103/PhysRevLett.97.120407
https://doi.org/10.1103/PhysRevLett.97.120407
https://doi.org/10.1103/PhysRevLett.97.120407
https://doi.org/10.1103/PhysRevLett.97.120407
https://doi.org/10.1143/JPSJ.67.736
https://doi.org/10.1143/JPSJ.67.736
https://doi.org/10.1143/JPSJ.67.736
https://doi.org/10.1143/JPSJ.67.736
https://doi.org/10.1103/PhysRevA.72.025601
https://doi.org/10.1103/PhysRevA.72.025601
https://doi.org/10.1103/PhysRevA.72.025601
https://doi.org/10.1103/PhysRevA.72.025601
https://doi.org/10.1103/PhysRevB.79.054512
https://doi.org/10.1103/PhysRevB.79.054512
https://doi.org/10.1103/PhysRevB.79.054512
https://doi.org/10.1103/PhysRevB.79.054512
https://doi.org/10.1103/PhysRevB.80.220510
https://doi.org/10.1103/PhysRevB.80.220510
https://doi.org/10.1103/PhysRevB.80.220510
https://doi.org/10.1103/PhysRevB.80.220510
https://doi.org/10.1007/s10948-012-1574-5
https://doi.org/10.1007/s10948-012-1574-5
https://doi.org/10.1007/s10948-012-1574-5
https://doi.org/10.1007/s10948-012-1574-5
https://doi.org/10.1103/RevModPhys.85.1633
https://doi.org/10.1103/RevModPhys.85.1633
https://doi.org/10.1103/RevModPhys.85.1633
https://doi.org/10.1103/RevModPhys.85.1633
https://doi.org/10.1103/PhysRevB.76.085120
https://doi.org/10.1103/PhysRevB.76.085120
https://doi.org/10.1103/PhysRevB.76.085120
https://doi.org/10.1103/PhysRevB.76.085120
https://doi.org/10.1103/PhysRevLett.98.070402
https://doi.org/10.1103/PhysRevLett.98.070402
https://doi.org/10.1103/PhysRevLett.98.070402
https://doi.org/10.1103/PhysRevLett.98.070402
https://doi.org/10.1103/PhysRevLett.98.070403
https://doi.org/10.1103/PhysRevLett.98.070403
https://doi.org/10.1103/PhysRevLett.98.070403
https://doi.org/10.1103/PhysRevLett.98.070403
https://doi.org/10.1103/PhysRevLett.90.047002
https://doi.org/10.1103/PhysRevLett.90.047002
https://doi.org/10.1103/PhysRevLett.90.047002
https://doi.org/10.1103/PhysRevLett.90.047002
https://doi.org/10.1007/s10909-014-1166-9
https://doi.org/10.1007/s10909-014-1166-9
https://doi.org/10.1007/s10909-014-1166-9
https://doi.org/10.1007/s10909-014-1166-9
https://doi.org/10.1103/PhysRevA.91.063624
https://doi.org/10.1103/PhysRevA.91.063624
https://doi.org/10.1103/PhysRevA.91.063624
https://doi.org/10.1103/PhysRevA.91.063624
http://arxiv.org/abs/arXiv:1612.03149
https://doi.org/10.1103/PhysRevB.76.220508
https://doi.org/10.1103/PhysRevB.76.220508
https://doi.org/10.1103/PhysRevB.76.220508
https://doi.org/10.1103/PhysRevB.76.220508
https://doi.org/10.1103/PhysRevLett.100.116405
https://doi.org/10.1103/PhysRevLett.100.116405
https://doi.org/10.1103/PhysRevLett.100.116405
https://doi.org/10.1103/PhysRevLett.100.116405
https://doi.org/10.1103/PhysRevA.78.013637
https://doi.org/10.1103/PhysRevA.78.013637
https://doi.org/10.1103/PhysRevA.78.013637
https://doi.org/10.1103/PhysRevA.78.013637
https://doi.org/10.1103/PhysRevB.77.245105
https://doi.org/10.1103/PhysRevB.77.245105
https://doi.org/10.1103/PhysRevB.77.245105
https://doi.org/10.1103/PhysRevB.77.245105
https://doi.org/10.1103/PhysRevLett.100.110403
https://doi.org/10.1103/PhysRevLett.100.110403
https://doi.org/10.1103/PhysRevLett.100.110403
https://doi.org/10.1103/PhysRevLett.100.110403
https://doi.org/10.1103/PhysRevLett.103.215301
https://doi.org/10.1103/PhysRevLett.103.215301
https://doi.org/10.1103/PhysRevLett.103.215301
https://doi.org/10.1103/PhysRevLett.103.215301
https://doi.org/10.1103/PhysRevA.81.053602
https://doi.org/10.1103/PhysRevA.81.053602
https://doi.org/10.1103/PhysRevA.81.053602
https://doi.org/10.1103/PhysRevA.81.053602


CRITICAL BEHAVIOR IN ONE DIMENSION: . . . PHYSICAL REVIEW A 95, 033613 (2017)

[63] F. Heidrich-Meisner, A. E. Feiguin, U. Schollwöck, and W.
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