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Quantum non-Markovian reservoirs of atomic condensates engineered via dipolar interactions
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We investigate the quantum dephasing dynamics of an impurity qubit immersed in a quasi-two-dimensional
dipolar Bose-Einstein condensate whose collective excitations act as a reservoir for the qubit. We show that the
properties of the environment are highly engineerable through the relative strength of the dipolar and contact
interactions such that qubit’s dephasing dynamics could be Markovian, weak non-Markovian, or even highly
non-Markovian. It is also revealed that the appearance of the roton excitation is responsible for the highly
non-Markovian dephasing dynamics. Since rotonlike dispersions also appear in condensates placed in cavities
or with spin-orbit couplings, our results pave the way for searching for systems that are suitable environment
engineering.
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I. INTRODUCTION

Open quantum systems always decohere through their
couplings to the surrounding environments [1]. In the sim-
plest situations, a decoherence process is described by the
Markovian master equation of the Lindblad form [2], which
assumes that information flows only from the system to the en-
vironment. However, in a non-Markovian process, information
also flows from the environment back to the system such that
the open quantum system recovers some of its lost memory.
Recently, information flow has been successfully employed to
quantify the non-Markovianity of quantum processes [3–7].
Of particular importance, non-Markovianity has been found
to be an essential resource in applications such as detect-
ing the characteristic properties of the environment [8,9],
quantum metrology [10], continuous-variable quantum key
distribution [11], energy transfer processes in photosynthetic
complexes [12], and steady-state entanglement [13]. Although
transitions from Markovian to non-Markovian dynamics have
been experimentally realized in all-optical setups [14–17], they
are generally difficult to achieve due to the large number of
degrees of freedom of the environment.

Owing to their unprecedented controllability and low
temperature, atomic Bose-Einstein condensates (BECs) are
often referred to as the reservoirs suitable for engineering in
both experimental [18–24] and theoretical [25–30] studies.
Moreover, a qubit coupled to a BEC reservoir is described
by a pure dephasing model [28–30], which is exactly solv-
able [1,31] and is considered to be an ideal test bed for
investigating the quantum memory effects. In fact, Haikka
et al. show that the information flow between the system
and the BEC reservoir can be manipulated by engineering
the control parameters of the BEC reservoir [29,30].

In this work, we study the quantum dynamics of an atomic
impurity qubit immersed in a quasi-two-dimensional (quasi-
2D) dipolar BEC. The system under consideration is described
by a pure dephasing spin-boson model, in which the collective
excitations of the BEC act as the reservoir to the qubit. We show

that, by increasing the strength of the dipole-dipole interaction
(DDI), the dephasing dynamics of the qubit changes from
being Markovian to weak non-Markovian and eventually to
highly non-Markovian. Remarkably, the non-Markovianity
for the latter case diverges, in striking contrast to the small
non-Markovianity realized in the nondipolar BECs [29,30].
We also analytically demonstrate that high non-Markovianity
is associated with the roton softening of the excitation
spectrum [32–35], which makes the density of states singular at
one or two particular frequencies. Therefore, the dipolar BEC
reservoir can be engineered from a Markovian one to highly
non-Markovian monochromatic or bichromatic reservoirs. On
the other hand, the non-Markovianity of the impurity qubit can
also be used as a probe qubit [25–27,30,36,37] to detect the
roton mode softening.

We note that dipolar BECs have been experimentally
realized for atoms with large magnetic dipole moments
[38–40]. Following the fast experimental developments in
creating degenerate gases of polar molecules, dipolar BEC
is also expected to be realized in gases of heteronuclear
molecules [41–47]. Meanwhile, rotonlike dispersions are
also found in atomic condensates placed inside an optical
cavity [48] or with spin-orbit coupling [49]. Therefore, our
results suggest that similar reservoir engineering can be
realized in a wide range of BECs.

II. MODEL

As schematically shown in Fig. 1(a), we consider a single
two-level atom immersed in a thermally equilibrated quasi-2D
dipolar gas reservoir at temperature T . The qubit is confined
in a harmonic trap VA(x) = mAω2

Ax2/2 that is independent
of the internal states, where mA is the mass of the impurity
and ωA is the trap frequency. For h̄ωA � kBT , the spatial
wave function of the qubit is the ground state of VA(x), i.e.,
ϕA(x) = π−3/4�

−3/2
A exp[−x2/(2�2

A)], with �A = √
h̄/(mAωA).

The Hamiltonian of the qubit is

ĤA = h̄�A|e〉〈e|,
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FIG. 1. Schematic diagrams of (a) a two-level atom immersed in
a quasi-2D dipolar gas and (b) the typical roton spectrum of dipolar
BECs.

where h̄�A is level splitting between the ground (|g〉) and
excited (|e〉) states.

For the reservoir, we assume that each atom possesses a
magnetic dipole moment μm that is polarized to the z direction.
Therefore, two atoms interact via the potential V (3D)(x − x′) =
gBδ(x − x′) + 3gD(1 − 3 cos2 θ )/(4π |x − x′|3), where gB =
4πh̄2aB/mB represents the contact interaction strength, with
mB being the mass of the reservoir atom and aB being
the s-wave scattering length; gD = μ0μ

2
m/3, with μ0 being

the permeability of vacuum; and θ is the polar angle of
x − x′. Moreover, the gas is confined along the z axis by the
potential VB(z) = mBω2

zz
2/2, where ωz is the trap frequency.

For sufficiently large ωz, the motion of the atoms along the
z axis is frozen to the ground state of VB(z), i.e., ϕB(z) =
π−1/4�

−1/2
B exp[−z2/(2�2

B)], with �B = √
h̄/(mBωz), which

effectively reduces the reservoir into a quasi-2D one. Finally,
for small T , we may assume that most of the reservoir atoms are
condensed to the zero-momentum state with an area density n.
Then, following Bogoliubov’s method, the uncondensed atoms
are described by the quasiparticle Hamiltonian

ĤB =
∑
k �=0

εkb̂
†
kb̂k, (1)

where k ≡ (kx,ky), b̂k is the annihilation operator for the
quasiparticle with wave vector k, and the excitation energy
is [34]

εk = 1
2h̄ωz

√
(�Bk)4 + P (�Bk)2[1 + χṽD(�Bk)], (2)

with P = 8
√

2π�BaBn being a dimensionless parameter that
measures the strength of the contact interaction, χ = gD/gB

being the relative DDI interaction strength, and ṽD(x) = 2 −
3
√

π/2xex2/2erfc(x/
√

2) being the Fourier transform of the
effective 2D DDI. It is now well established that a sufficiently
strong DDI would lead to the roton excitation and, eventually,
the instability. In fact, for P = 2, roton excitation sets in when
χ > χ∗ 
 4.23. In addition, the condensate becomes unstable
for χ > χ∗∗ = 5.67. The typical roton spectrum is shown
in Fig. 1(b).

For the qubit-reservoir coupling, we assume that the qubit
undergoes s-wave collisions with reservoir atoms only when
the qubit is in the excited state [27,29]. Let aAB be the
corresponding scattering length; the qubit-reservoir interaction
Hamiltonian is then

ĤAB = h̄δe|e〉〈e| + h̄|e〉〈e|
∑
k �=0

gk(b̂k + b̂
†
k), (3)

where δe = 2
√

πh̄naAB/[mAB(�2
A + �2

B)1/2] is the excited
level shift due to the collision, mAB = mAmB/(mA + mB) is
the reduced mass, and gk = (nS)−1/2δee

−(�Ak)2/4√Ek/εk are
the qubit-reservoir coupling parameters, with S being the area
of the reservoir and Ek = h̄2k2/(2mB) being the free-particle
energy.

Now the total Hamiltonian, Ĥ = ĤA + ĤB + ĤAB , is

Ĥ = h̄(�A + δe)|e〉〈e|+
∑
k �=0

εkb̂
†
kb̂k+h̄|e〉〈e|

∑
k �=0

gk(b̂k + b̂
†
k).

(4)

Since ĤA commutes with ĤAB , the dynamics of the impurity
qubit in the reservoir is purely dephasing. Namely, for the
density matrix of the qubit ρ(A), the diagonal elements, ρ(A)

gg and
ρ(A)

ee , remain constants, and the off-diagonal elements evolve
as ∣∣ρ(A)

eg (t)
∣∣ = e−γ (t)

∣∣ρ(A)
eg (0)

∣∣, (5)

with γ being the dephasing factor. To find γ (t), we assume
that the density matrix of the initial state is ρ(T )(0) =
ρ(A)(0) ⊗ ρ(B), where the density matrix of the reservoir is
ρ(B) = ∏

k ρ
(B)
k ≡ ∏

k (1 − eεk/(kBT ))e−εkb
†
kbk , with kB being

the Boltzmann constant. The dephasing factor of the qubit
is then [31,50]

γ (t) =
∫ ∞

0
dωG(ω,T )[1 − cos(ωt)], (6)

where

G(ω,T ) = J (ω)

ω2
coth

(
h̄ω

2kBT

)
, (7)

with J (ω) = ∑
k �=0 |gk|2δ(ω − εk/h̄) being the reservoir spec-

tral density. In particular, in the continuum limit, S−1 ∑
k →

(2π )−2
∫

dk, we have

J (ω) = Qh̄ω3
z�

4
B

∫ ∞

0
dk

k3e−�2
Ak2/2

ε(k)
δ

(
ω − ε(k)

h̄

)
, (8)

where Q = na2
AB�2

B(mA + mB)2/[m2
A(�2

A + �2
B)] is a dimen-

sionless parameter measuring the qubit-reservoir coupling and
in the continuum limit εk is denoted as ε(k), i.e., ε(k) ≡ εk.

To measure the degree of non-Markovianity, we note
that, for purely dephasing dynamics described by Eq. (5),
information flows from the system to the environment when
γ ′(t) > 0 and it flows reversely if γ ′(t) < 0. Therefore, based
on Breuer et al. [3], the measure of non-Markovianity is

N =
∫

γ ′(t)<0
de−γ (s), (9)

where the integration is over all intervals in which γ ′(t) < 0.

III. RESULTS

To present our results, we consider a single 87Rb atom
immersed in a BEC of Dy atoms [39] which possess a
magnetic dipole moment of 10μB . In this work, the relative
DDI strength χ is treated as a control parameter that is tunable
through the Feshbach resonance. To fix the values of P and
Q, we assume a typical trap frequency ωz = 2π×103 Hz;
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FIG. 2. Time dependence of the dephasing factor for (a) χ = 2,
(b) 4.1, (c) 4.6, and (d) 5.4. The insets show the corresponding G(ω,0)
(in units of ω−1

z ).

the corresponding harmonic oscillator width is �B 

2.5×10−5 cm. Next, we consider a typical condensate
peak density of 1014 cm−3; the area density is then n =
4.4×109 cm−2. Consequently, we have P ∼ 1.4 if aB is taken
as 5.9 nm [51]. To find Q, we assume that the s-wave scattering
length between Rb and Dy atoms is aAB ∼ 5 nm and the width
of the impurity trap �A equals to �B ; we therefore have Q ∼
4.6×10−3. Without loss of generality, we shall take P = 2
and Q = 4×10−3 in the results presented below. It has been
verified that changing the values of P and Q will not change
our main results qualitatively. In fact, the dephasing factor γ is
simply proportional to Q, whose value can be efficiently tuned
through the density n, the interspecies scattering length aAB ,
and the mass of the qubit atom mA. Finally, for simplicity, we
shall consider only the zero-temperature case in this work.

Since the non-Markovianity depends only on γ , let us
examine the time dependence of the dephasing factor. Figure 2
plots the typical behaviors of γ (t) for χ �= 0. In the absence
of the DDI, γ (t) increases monotonically from zero to a
steady value in a short period of time, indicating that the
system is Markovian. In fact, it was shown that, independent
of the contact interaction strength P , the dynamics of the
impurity qubit is always Markovian for a 2D environment
with χ = 0 [30]. When DDI is switched on, γ (t) exhibits very
distinct behaviors for different χ ’s. For an intermediate DDI
strength, χ = 2, γ (t) starts to show nonmonotonic behavior,
but it quickly converges to the asymptotic value after a
few oscillations, demonstrating a weak non-Markovianity
in the qubit. Remarkably, when χ is close to the critical
value χ∗, γ (t) becomes a damped oscillating function that
oscillates for a very long period of time. More interestingly, for

χ > χ∗, γ (t) appears as a damped beat-frequency oscillation,
which suggests that it originates from the interference of
two frequencies. Finally, under an even stronger DDI, the
beat-frequency oscillation is gradually washed out, implying
that one of the frequencies starts to dominate.

To understand the behavior of γ (t), we plot the
corresponding G(ω,0) in the insets of Fig. 2. As χ increases,
the position of the peak of G(ω,0) moves from ωp = 0 for
χ = 0 to ωp �= 0 for χ �= 0. In particular, G(ω,0) becomes a
sharply peaked function of ω as χ approaches χ∗. Intuitively, a
peak of G(ω,0) located at ωp indicates that the spectral density
is particularly high at ωp, which picks up the frequency ωp

for γ (t) through Eq. (6) and results in an oscillating γ (t).
To see this more clearly, we approximate G(ω,0) as a δ

function, i.e., G(ω,0) ∝ δ(ω − ωp), which immediately leads
to γ (t) ∝ 1 − cos(ωpt), an undamped oscillating function of
t . The same procedure can also be used to explain the beat-
frequency oscillations of γ (t) when χ > χ∗. In fact, the two
peaks on G(ω,0) give rise to two frequency components for
γ (t) through Eq. (6), which naturally leads to beat. However,
in order to explain the damping in γ (t), we need to be more
careful about how to choose the approximation of G(ω,0).

Let ki(ω) be the roots of the equation ε(k) = h̄ω; the reser-
voir spectral density, Eq. (8), can be explicitly expressed as

J (ω) = Qh̄ω3
z�

4
B

∑
i

f (ki(ω))

ω

∣∣∣∣dε(k)

dk

∣∣∣∣−1

k=ki (ω)

, (10)

where f (k) ≡ k3e−�2
Ak2/2. When χ > χ∗, the excitation

spectrum has a local maximum at kM and a local minimum at
km; the corresponding excitation energies are h̄ωM = ε(kM )
and h̄ωm = ε(km), respectively. Based on Eq. (10), J (ω)
diverges at ωM and ωm. To accurately take into account the
contributions from these singularities to G(ω,0), let us focus
on ε(k) in the vicinities of kM where the excitation energy can
be approximated as ε(k) ≈ h̄ωM + ε′′(kM )(k − kM )2/2.
Using Eq. (10), it can then be shown that, in the
vicinity of ωM , we have G(ω,0) ≈ gM (ωM − ω)−1/2 for
ω < ωM , where gM = (2h̄)1/2Qω3

z�
4
Bf (kM )|ε′′(kM )|−1/2ω−3

M .
Similarly, in the vicinity of the local minimum, we
have G(ω,0) ≈ gm(ω − ωm)−1/2 for ω > ωm, where
gm = (2h̄)1/2Qω3

z�
4
Bf (km)[ε′′(km)]−1/2ω−3

m . Now, by
assuming that these two singularities give rise to the
largest contribution to G(ω,0), we define the function

G̃(ω,0) = gM

H (ωM − ω)√
ωM − ω

+ gm

H (ω − ωm)√
ω − ωm

(11)

as the approximate of G(ω,0), where H (x) is the Heaviside
step function.

To evaluate γ (t), we note, from Eq. (6), that it contains two
parts: the time-independent part γ0 = ∫ ∞

0 dωG(ω,0) and the
time-dependent part γ1(t) = − ∫ ∞

0 dωG(ω,0) cos(ωt). Since
γ0 diverges with the approximation equation (11), we shall
compare only the time-dependent parts γ1(t) and γ̃1(t), which
are evaluated using G(ω,0) and G̃(ω,0), respectively. After
some straightforward calculations, we find analytically that

γ̃1(t) 
 −
(

1
2

)
t1/2

[
gM cos

(
ωMt− π

4

)
+ gm cos

(
ωmt + π

4

)]
,

(12)
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χ = χ∗. Parameters used in (a) are ω1/2
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z gm = 8.84×10−3, and ωm/ωz = 0.853 and in (b) are
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z gI = 4.65×10−3 and ωI/ωz = 0.912.

where (·) denotes the Gamma function. In Fig. 3(a), we
compare γ1(t) for χ = 4.6 with the corresponding γ̃1(t). The
parameters gm,M and ωm,M used in γ̃1(t) are all obtained with
the given χ using the excitation spectrum equation (2). As can
be seen, the agreement is remarkable. In fact, we numerically
find that such agreement still holds for ωzt over 2000. As the
DDI strength is increased, for instance, to χ = 5.4, ωM (ωm)
is increased (decreased) such that gm becomes much larger
than gM . As a result, the frequency component ωm dominates
in Eq. (12), and as shown in Fig. 2(d), the beat-frequency
oscillation is washed out.

For χ < χ∗, there does not exist a simple model that can
capture the peak of G(ω,0). However, at χ = χ∗, G(ω,0)
is singular at the inflection point kI where ε′(kI ) = ε′′(kI ) =
0 and ε′′′(kI ) �= 0. Let h̄ωI = ε(kI ); the excitation energy in
the vicinity of the inflection point is ε(k) ≈ h̄ωI + ε′′′(kI )(k −
kI )3/6. It can then be shown that the approximation of G(ω,0)
is

G̃(ω,0) = gI

(ω − ωI )2/3
, (13)

where gI = 3−2/3(2h̄)1/3Qω3
z�

4
Bf (kI )[ε′′′(kI )]−1/3ω−3

I . Now it
can be easily shown that

γ̃1(t) 
 −
(

1
3

)
gI

t1/3

[
cos

(
ωI t − π

6

)
+ cos

(
ωI t + π

6

)]
.

(14)

Figure 3(b) compares γ1(t) and γ̃1(t) for χ = χ∗, which again
exhibits remarkable agreement.
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FIG. 4. Non-Markovianity N versus χ .

It is now clear that the strong oscillation of γ (t) is associated
with the singularities of G(ω,0). To gain more insight into
its physical origin, we consider the density of states ρ(ω) ∝∫ ∞

0 dkkδ[ω − ε(k)/h̄], which can be rewritten as

ρ(ω) ∝
∑

i

ki(ω)

∣∣∣∣dε(k)

dk

∣∣∣∣−1

k=ki (ω)

. (15)

Apparently, each singularity on G(ω,0) has a one-to-one
correspondence to that on ρ(ω), which is, in fact, the so-called
Van Hove singularity [52]. Now, if ρ(ω) is singular at certain
frequencies, the modes corresponding to those frequencies
then dominate in the reservoir. As a result, the condensate
can be regarded as a highly structured monochromatic or
bichromatic reservoir which can lead to the oscillating γ (t).

As to the non-Markovianity of the impurity qubit, because
γ1(t) decays slower than t−1 for χ � χ∗, N must diverge
if χ is in the roton spectrum regime. Figure 4 shows the χ

dependence of the non-Markovianity at zero temperature for
χ up to 4.15 that is less than χ∗. For a slightly larger χ value,
we find that it is very difficult to obtain a converged N . As
expected, N increases very quickly when χ approaches χ∗,
signaling that it is close to the divergence.

IV. CONCLUSION

In conclusion, we have studied the quantum non-Markovian
dynamics of an atomic impurity qubit coupled to a quasi-2D
dipolar BEC. It has been shown that, by increasing DDI, the
dephasing dynamics of the qubit undergoes a transition from
being Markovian to highly non-Markovian such that the non-
Markovianity can even diverge. We have also proved that this
transition is due to the roton mode softening of the collective
excitations, which leads to the Von Hove singularities in the
excitation density of states. Our study therefore reveals a wide
range of non-Markovian BEC reservoirs that can be tuned
efficiently via their rotonlike excitation spectra.
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464, 388 (2010).

[23] S. Schmid, A. Härter, and J. H. Denschlag, Phys. Rev. Lett. 105,
133202 (2010).

[24] J. B. Balewski, A. T. Krupp, A. Gaj, D. Peter, H. P. Büchler,
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