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We investigate the Gorkov–Melik-Barkhudarov (GM) correction to superfluid transition temperature in two-
dimensional Fermi gases with Rashba spin-orbit coupling (SOC) across the SOC-driven BCS-BEC crossover.
In the calculation of the induced interaction, we find that the spin-component mixing due to SOC can induce
both of the conventional screening and additional antiscreening contributions that interplay significantly in the
strong SOC regime. While the GM correction generally lowers the estimate of transition temperature, it turns out
that at a fixed weak interaction, the correction effect exhibits a crossover behavior where the ratio between the
estimates without and with the correction first decreases with SOC and then becomes insensitive to SOC when
it goes into the strong SOC regime. We demonstrate the applicability of the GM correction by comparing the
zero-temperature condensate fraction with the recent quantum Monte Carlo results.
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I. INTRODUCTION

The synthetic spin-orbit coupling (SOC) in ultracold gas
systems has attracted a lot of attention because of its im-
portance in realizing a new tunable platform for nontrivial
condensed matter phenomena [1–6]. For instance, the presence
of SOC is an essential part of topological insulators and
superconductors [7,8] and systems for quantum anomalous
Hall effect [9] and topological quantum computation [10].
The realization of SOC in ultracold atomic gases has rapidly
progressed in recent years. The equal mixing of Rashba and
Dresselhaus SOC has been realized first with bosons [11]
and then with fermions [12–14]. Many proposals have been
suggested for experimental realization of Rashba-only SOC
[15–21]. Very recently, the realization of two-dimensional
SOC which can be transformed into either Rashba or Dres-
selhaus SOC has been reported [22–24].

In attractively interacting Fermi gases, spin-orbit coupling
can largely affect the formation of fermion pairs in transition
to superfluid (for reviews, see, e.g., [4–6]). In particular, tuning
the strength of Rashba SOC can produce another type of
crossover between a Bardeen-Cooper-Schrieffer (BCS) super-
fluid and a Bose-Einstein condensate (BEC) of tightly bound
molecules. In the Fermi gases without SOC, the BCS-BEC
crossover is typically implemented by controlling interparticle
scattering length throughout the Feshbach resonance [25–29].
In the presence of the SOC, it has been suggested that a
BEC can be realized even at a fixed weak interaction where
very strong SOC can lead to the formation of the bosonic
bound state called rashbon [30–32]. The BCS-BEC crossover
in spin-orbit-coupled Fermi gases has been studied with
various settings of SOC, interaction, and dimensionality in
the mean-field theory [33–43], also in the beyond-mean-field
approaches for three [44–48] and two dimensions [49–52],
and very recently by using the quantum Monte Carlo (QMC)
method for the ground state in two dimensions [53].
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In this paper, we investigate a many-body correction to
the estimates of superfluid transition temperature in two-
dimensional Fermi gases with Rashba SOC by employing
the Gorkov–Melik-Barkhudarov (GM) approach [54,55]. The
GM correction incorporates the induced interaction due to
the second-order particle-hole processes in the Fermi sea,
providing a simple extension of the BCS mean-field frame-
work. In two-component Fermi gases with attractive s-wave
interaction, without SOC, the screening effect of the induced
interaction reduces critical temperature, for instance, by a ratio
of about 2.22 in three dimensions [54,55] and about 2.72 in
two dimensions [56,57]. The GM correction has been also
extended to systems with mass imbalance [58], optical lattices
[59], BEC-BCS crossover [60], spin-density polarization [61],
three-component gases [62], polar molecules [63–65], and
spin-orbit coupling [66,67].

Here we address two important properties of SOC that
make the calculations of the induced interaction essentially
different from the conventional case without SOC. First,
in the presence of SOC, the spin components are mixed,
forming the two helicity branches of energy dispersion. These
mixed spin states can mediate an antiscreening particle-hole
polarization in addition to the conventional screening one,
which is analogous to the three-component gases where
the third component induces such effect [62]. Second, the
mixed-spin-state character of the Fermi sea abruptly changes
across the SOC-driven BCS-BEC crossover [31], which may
substantially affect the medium contributions to the induced
interaction. However, these properties are not included in
the earlier consideration of the induced interaction for a
spin-orbit-coupled system [66].

In the calculation of superfluid transition temperature in the
weakly interacting limit, we find that the correction effect with
the induced interaction exhibits a crossover behavior between
the weak and strong SOC regimes which is attributed to the
change of the Fermi sea character. At zero SOC, the transition
temperature is confirmed to be reduced with the correction
by a ratio of about 2.7. As the SOC strength increases,
this correction ratio decreases in the weak SOC regime but
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then becomes insensitive to SOC in the strong SOC regime.
The ratio in the strong SOC limit is estimated to be about
1.5 for the mean-field transition temperature, however, the
correction effect turns out to be much more suppressed in
the estimate of the Berezinskii-Kosterlitz-Thouless transition
temperature. In addition, we calculate the condensate fraction
for comparison with the recent ground-state QMC results [53],
showing significant improvement with the GM correction to
the mean-field estimate.

This paper is organized as follows. In Sec. II, we describe
the weak and strong SOC regimes in association with the
change in the noninteracting Fermi sea character in the two-
dimensional Fermi gas with Rashba SOC. Also in Sec. II, the
mean-field approximation to estimate the superfluid transition
temperature is briefly reviewed. In Sec. III, we provide the
detailed procedures of our induced interaction calculation and
the correction to the mean-field equations. In Sec. IV, we
present the correction to the estimates of superfluid transition
temperature in the weakly interacting limit as a function of the
SOC strength. The comparison with the QMC results for the
condensate fraction is given in this section. In Sec. V, summary
and conclusions are given.

II. RASHBA SOC AND HELICITY BRANCH

A. Helicity basis transformation

The Hamiltonian of the Rashba spin-orbit-coupled Fermi
gases in two dimensions can be written as

H =
∑

k,σ=↑,↓
ξkc

†
k,σ ck,σ −

∑
k

[hR(k)c†k,↓ck,↑ + H.c.]

+ g
∑
k,k′

c
†
k,↑c

†
−k,↓c−k′,↓ck′,↑, (1)

where c
†
k,σ (ck,σ ) is the creation (annihilation) operator of

a σ -species fermion with momentum k ≡ (kx,ky), and the

dispersion ξk = h̄2k2

2m
− μ for chemical potential μ. The volume

is set to be unity for simplicity. We consider an attractive
s-wave interaction between the ↑- and ↓-spin species, and
thus a negative value is given to the interaction strength g.
The Rashba SOC is given by the spin-off-diagonal term with
hR(k) ≡ vR(−ky + ikx) where vR indicates the SOC strength.

The noninteracting part of the Hamiltonian is diagonalized
in the (⇑ , ⇓)-helicity basis defined by the unitary transforma-
tion written as(

ck,↑
ck,↓

)
= 1√

2

(
1 −e−iϕk

eiϕk 1

)(
ak,⇑
ak,⇓

)
, (2)

where eiϕk = hR(k)/|hR(k)|. The resulting noninteracting
energy dispersions with SOC are obtained as

ξk,⇑ = ξk − vR|k|, (3)

ξk,⇓ = ξk + vR|k|, (4)

which are referred to as the ⇑- and ⇓-helicity branches,
respectively. For the simplicity of calculations, we use the
natural unit h̄ = 2m = 1, and the Boltzmann constant kB is set
to be unity. The particle density n is fixed at 1/2π throughout
our calculations, which also sets the Fermi momentum in the

ξ ⇑
/⇓

(k
)

ξ ⇑
/⇓
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kx
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kF,⇑
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<

FIG. 1. Fermi surfaces of two-dimensional Fermi gases with
Rashba SOC in noninteracting limit. The solid (dotted) line presents
the ⇑(⇓) helicity branch of the energy dispersion. The horizontal
dashed lines indicate the Fermi energies for the SOC strengths
vR = 1 (a) and 1.7 (b) that belong to the weak and strong SOC
regimes, respectively.

absence of SOC (vR = 0) to be unity as kF = √
2πn = 1. This

is equivalent to setting the unit of momentum and energy to
be kF and εF ≡ h̄2k2

F/2m. The SOC strength vR is accordingly
expressed in the unit of εF/kF.

B. The weak and strong SOC regime

At a given particle density, the character of the noninter-
acting Fermi sea abruptly changes as the SOC strength vR

increases from a small to large value as illustrated in Fig. 1.
At a small vR , both of the ⇑- and ⇓-helicity branches can be
occupied, and thus the Fermi sea is composed of two different
helicity branches. In contrast, at a large vR the Fermi sea
transforms into a doughnutlike shape with two surfaces of the
same ⇑-helicity branch. For kF = √

2πn = 1, one can easily
verify that this transition occurs at vR = √

2. For vR <
√

2,
the radii of the ⇑- and ⇓-helicity Fermi seas are

kF,⇑ = vR/2 +
√

1 − (vR/2)2, (5)

kF,⇓ = −vR/2 +
√

1 − (vR/2)2. (6)

On the other hand, for vR >
√

2, the Fermi sea is surrounded
by the two surfaces with radii k>

F,⇑ and k<
F,⇑ which are obtained

as

k>
F,⇑ = vR/2 + 1/vR, (7)

k<
F,⇑ = vR/2 − 1/vR. (8)

In order to distinguish these two different characters of the
noninteracting Fermi sea, we refer to the SOC strengths of
vR <

√
2 and vR >

√
2 as the weak and strong SOC regimes,

respectively.

C. Mean-field approach to superfluid transition

The GM correction procedures are based on a perturbative
approach that preserves the structure of the mean-field theory.
The many-body effect induced by the Fermi sea is considered
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as an effective interaction. With the superfluid order parameter
� ≡ g

∑
k〈c−k,↓ck,↑〉, the mean-field Hamiltonian is written

as

HMF = 1

2

∑
k

�
†
kH̃k�k +

∑
k

ξk − |�|2
g

, (9)

where �
†
k = (c†k,↑,c

†
k,↓,c−k,↑,c−k,↓), and the matrix,

H̃k =

⎛⎜⎜⎜⎝
ξk −h∗

R(k) 0 �

−hR(k) ξk −� 0

0 −�∗ −ξk −hR(k)

�∗ 0 −h∗
R(k) −ξk

⎞⎟⎟⎟⎠. (10)

Diagonalizing H̃(k), one can obtain the quasiparticle energies
as Ek,± =

√
(ξk ± vRk)2 + |�|2, and accordingly one can

write down the thermodynamic potential as

	 =
∑

k,s=±

[
ξk

2
− Ek,s

2
− 1

β
ln

(
1 + e−βEk,s

)] − |�|2
g

.

From the saddle-point condition 1
�

∂	
∂�∗ = 0, the mean-field gap

equation is derived as∫
d2k

(2π )2

[
1

2εk + εB

−
∑
s=±

tanh βEk,s

2

4Ek,s

]
= 0, (11)

where εk = h̄2k2/2m. Note that the bare interaction strength
g is replaced by the two-body binding energy εB through the
relation for a two-dimensional gas,

− 1

g
=

∫
d2k

(2π )2

1

2εk + εB

. (12)

The number equation n = − ∂	
∂μ

is also written as

n =
∫

d2k

(2π )2

[
1 −

∑
s=±

(ξk + svRk)
tanh βEk,s

2

2Ek,s

]
. (13)

For a given particle density, the superfluid transition tem-
perature is determined by self-consistently solving the gap
and number equations for the vanishing order parameter. The
modification by the GM correction is to be brought only into
the mean-field gap equation by replacing the bare interaction
g with the effective interaction ḡeff that includes the induced
interaction correction.

III. INDUCED INTERACTIONS

Figure 2 illustrates the two relevant second-order diagrams
of the induced interaction in the presence of SOC. While
diagram 1 shown in Fig. 2(a) is typical in a two-component
system with an s-wave interaction, diagram 2 shown in
Fig. 2(b) is allowed by the spin-off-diagonal propagators
available in the mixed spin states due to the SOC. The
particle-hole polarizations presented in diagrams 1 and 2
contribute to the induced interaction correction. In the GM
correction scheme, the effective interaction ḡeff is written with
the correction up to the second order of interaction as

ḡeff = g + ḡind � g − g2(�1 + �2), (14)

(a) (b)

+ +(c)

p, ↑

k, ↑

p, ↑ k, ↑

p + k + q p − k + q
q

q

−p, ↓

−k, ↓

−p, ↓ −k, ↓

FIG. 2. Second-order diagrams of the medium-induced inter-
action between the ↑- and ↓-spin components. The solid lines
are propagators, and the single dotted line indicates the bare
two-body interaction. The diagram in (a) is conventional in usual
two-component systems, and the one in (b) is mediated by the
spin-component mixing due to SOC. (c) The schematic diagram of the
effective interaction (double dotted line) with the induced interaction
correction.

where the induced interaction ḡind ≡ −g2(�1 + �2) is to
be averaged over the Fermi surfaces that are expected to
dominantly contribute to the fermion pairing.

The contributing polarization functions �1 and �2 of
diagrams 1 and 2 are expressed by using propagators in an
imaginary-frequency domain as

�1(p̃,k̃) = 1

β

∑
q̃

G(0)
↑↑(p̃ + k̃ + q̃)G(0)

↓↓(q̃), (15)

�2(p̃,k̃) = − 1

β

∑
q̃

G(0)
↑↓(p̃ − k̃ + q̃)G(0)

↓↑(q̃), (16)

where the four-momentum z̃ ≡ (z,izn) is fermionic, and
the noninteracting Matsubara Green’s function G(0)

σσ ′(z̃) =
− ∫ β

0 〈Tτ (czσ (τ )c†zσ ′(0))〉0e
iznτ dτ . The spin-diagonal and off-

diagonal parts of G(0)
σσ ′ can be evaluated through the helicity

basis transformation as

G(0)
σσ (k̃) = 1

2 [G0⇑(k̃) + G0⇓(k̃)], (17)

G(0)
σ σ̄ (k̃) = 1

2esσσ̄ iϕk [G0⇑(k̃) − G0⇓(k̃)], (18)

where s↑↓ = −s↓↑ = 1, and G0a(k̃) = 1/(ikn − ξk,a) for a ∈
{⇑ , ⇓}. Then, �1 and �2 can be decomposed with the inter-
and intra-helicity-branch components as

�1,2(p,k) =
∑

a,b∈{⇑,⇓}
[�1,2(p,k)]ab, (19)

where

[�1(p,k)]ab = 1

4

∫
d2q

(2π )2
χab(p + k,q), (20)

[�2(p,k)]ab = −cab

4

∫
d2q

(2π )2
ei�ϕχab(p − k,q). (21)

The coefficient cab is +1 for a = b or −1 for a �= b, and �ϕ =
ϕq − ϕp−k+q. The function χab is calculated by performing
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imaginary-frequency summation as

χab(p ± k,q) = 1

β

∑
iqn

G0a(p̃ ± k̃ + q̃)G0b(q̃)

= nF (ξp±k+q,a) − nF (ξq,b)

i	 + ξp±k+q,a − ξq,b

, (22)

where nF (ξ ) = 1/(eβξ + 1), and the bosonic frequency 	 is
taken to be zero in the low temperature limit in the evaluation
of the effective interaction. Our formulation of the induced
interaction extends the previous approach [66] where only the
interbranch χ⇑⇓ was considered within diagram 1. Later, we
will show that the contribution of χ⇑⇓ is rather small at strong
SOC.

In the standard procedures of the GM correction, the
induced interaction is evaluated as � being averaged over
the Fermi surface momenta [55], which can be justified in
the weakly interacting limit where the scattering processes
for pairing would dominantly occur near the Fermi surface.
Indeed, the recent QMC calculations for two-dimensional
Fermi gases with Rashba SOC showed that the condensate
wave functions are peaked at the two Fermi surfaces in the
weak and strong SOC regimes [53]. Therefore, we evaluate
the induced interaction as

ḡind ≡ −g2[�1 + �2] = −g2[〈�1(p,k)〉FS + 〈�2(p,k)〉FS],

(23)

where 〈�〉FS = 1
||SF ||2

∑
p∈SF

∑
k∈SF

�(p,k), and SF denotes
a set of the Fermi surface momenta. We treat the two Fermi
surfaces on an equal footing for averaging, and thus SF

includes all momenta residing on the two surfaces composed
of the one with kF,⇑ (k>

F,⇑) and the other with kF,⇓ (k<
F,⇑) in the

weak (strong) SOC regime. All momentum integrations are
done numerically for the evaluation of the induced interaction.

The GM correction to the mean-field gap equation is then
readily done by replacing bare interaction g with effective
interaction ḡeff . In the weakly interacting limit, the inverse of
the effective interaction becomes

1

ḡeff
= 1

g − g2(�1 + �2)
� 1

g
+ �1 + �2, (24)

which rewrites the mean-field gap equation (11) as∫
d2k

(2π )2

[
1

2εk + εB

−
∑
s=±

tanh βEk,s

2

4Ek,s

]
= �1 + �2. (25)

The applicability of the GM-corrected gap equation mainly de-
pends on the interaction strength since the induced interaction
is basically a second-order perturbation expansion for a weak
interaction. In addition, we have assumed that all intra- and
intersurface pairs of the Fermi momenta equally participate
in the Fermi surface average for the induced interaction.
These approximations may need to be examined in more
rigorous approaches. We will examine the improvement with
the correction by comparing with the recent ground-state QMC
results for the condensate fraction [53] in the following section.
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FIG. 3. Induced interaction as a function of the SOC strength. The
values are scaled with the density of states N2D of two-dimensional
Fermi gases without SOC. (a) Total induced interaction ḡind/(−g2) ≡
�1 + �2, and the screening and antiscreening contributions �1 and
�2 from diagrams 1 and 2 given in Fig. 2, respectively. The inter- and
intra-helicity-branch components (�)ab are presented for diagrams
1 (b) and 2 (c). The vertical dotted lines indicate vR = √

2 where the
character of the Fermi sea abruptly changes.

IV. RESULTS AND DISCUSSIONS

A. Induced interactions

Figure 3 presents the induced interaction calculated from
diagrams 1 and 2 as a function of the SOC strength vR . The
total induced interaction ḡind = −g2(�1 + �2) is positive for
all vR and thus reduces the bare attraction g in the effective
interaction ḡeff ≡ g + ḡind. This would lower the estimation
of superfluid transition temperature. However, we find that the
induced interaction and its components exhibit a nontrivial
SOC-strength dependence. This appears as a crossover from
the weak to strong SOC regime that is attributed to the abrupt
change in the mixed-spin-state character of the noninteracting
Fermi sea.

In the weak SOC regime, the induced interaction is mainly
determined by the screening effect of �1 from the contribution
of diagram 1. In the limit of vR → 0, all components of the
polarization function, χab given in Eq. (23), become identical,
leading to the complete cancellation in �2, while in turn �1

recovers the case without SOC. The negative sign of �1 can
be easily understood from the form of χab which is similar to
the conventional two-component systems without SOC. As vR

increases, �2 becomes finite with the opposite sign indicating
an antiscreening effect, although it remains much smaller in
magnitude than �1 for small vR .

On the other hand, in the strong SOC regime, the antis-
creening contribution of �2 is no longer small but considerably
weakens the screening effect of �1 in the total induced inter-
action. At vR >

√
2, the noninteracting Fermi sea is available

only with the ⇑-helicity branch for particles to reside, which
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FIG. 4. Induced-interaction correction to the mean-field transi-
tion temperature as a function of the interaction strength. The ratio of
the transition temperature without the correction (T (0)

c ) and with the
correction (T (GM)

c ) is compared between the weak and strong SOC
regimes at (a) vR = 0.5 and (b) vR = 2.0, respectively.

leads to the dominant contribution of the χ⇑⇑ component
in both �1 and �2 while the other components are largely
suppressed. A kink was found at vR = √

2 where the ⇓-helicity
branch disappears in the Fermi sea. The induced interaction is
determined by a net effect of the opposite contributions of �1

and �2, and their proper consideration becomes very important
for the evaluation of the GM correction in spin-orbit-coupled
systems.

B. Correction to superfluid transition temperature

We calculate the correction to the estimates of superfluid
transition temperature in the weakly interacting limit. First, we
present the effects of the induced interaction correction on the

mean-field calculations which can be more relevant in a quasi-
two-dimensional system supporting the long-range order.
Additionally, for a strictly two-dimensional system where the
long-range order is absent, we provide a rough estimate of the
Berezinskii-Kosterlitz-Thouless transition temperature under
the assumption that the induced interaction effect is limited
to the mean-field gap amplitude. The influence of the induced
interaction correction varies with the strength of SOC, which
we discuss below in terms of the ratio between the estimates
of the transition temperature without and with the correction.

We first examine the interaction dependence of the GM
correction to the superfluid transition temperature in the weak
and strong SOC regimes. Figure 4 shows the comparison
between the mean-field transition temperature estimates T (0)

c

without the correction and T (GM)
c with the correction and the

reduction ratio T (0)
c /T (GM)

c as a function of εB . In both of the
values of vR that we have examined, the reduction ratio goes
below the known zero-SOC value of about 2.7 in the weakly
interacting limit and also shows the weaker influence of the
correction at the stronger SOC.

The variation of the correction effect with the SOC strength
is more systematically shown in Figs. 5(a) and 5(b) at the
fixed values of εB = 0.001 and εB = 0.01 that are close to
the weakly interacting limit. We find that the reduction ratio
T (0)

c /T (GM)
c first decreases monotonically from the zero-SOC

value of about 2.7 as vR increases within the weak SOC regime,
but then the ratio becomes insensitive to SOC when vR goes
into the strong SOC regime. A kink appears at vR = √

2 where
the noninteracting Fermi sea abruptly changes. While the effect
of the induced interaction decreases with increasing SOC in
terms of the reduction ratio, it turns out that the ratio at a large
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FIG. 5. Superfluid transition temperature with the GM correction and comparison with the QMC data of condensate fraction. The mean-field
transition temperature Tc (a) and (b), and the BKT transition temperature TBKT (c) and (d), are calculated as a function of the SOC strength vR at
weak attractions of εB = 0.001 and εB = 0.01. The superscripts (GM) and (0) indicate ones with and without the GM correction, respectively.
The condensate fraction at zero temperature is compared with the recent QMC results [53] for the weak and strong SOC regimes at (e)
α ≡ 2v2

R/εF = 1 and (f) α = 7. For direct comparison, the binding energy εB is converted into the scattering length a through the relation
εB ≡ 4h̄2/ma2e2γ where γ is the Euler’s constant. The lines marked by MF indicate the mean-field values without the GM correction.
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vR approaches a constant value about 1.5 which still gives a
sizable reduction to T (0)

c .
On the other hand, in strictly two dimensions, the true long-

ranger order is absent because of strong quantum fluctuations.
Although it is well known that the superfluid transition at finite
temperature is still possible by the Berezinskii-Kosterlitz-
Thouless (BKT) mechanism of the vortex-antivortex pairing
[68,69]. In the spin-orbit-coupled Fermi gases, the BKT
transition temperature and superfluid properties have been
estimated with consideration of the phase fluctuations in
the order parameter beyond the mean-field approximation
[49–52].

Regarding the GM correction, the following question
naturally arises for the BKT transition temperature. At weak
interactions, the previous result [50] shows that the BKT
transition temperature recovers the mean-field estimate when
the Rashba SOC strength is small, while in the strong SOC
limit, the BKT temperature largely deviates from the mean-
field estimate. However, we find that, for instance, at a very
small vR , the estimate of the mean-field transition temperature
with the GM correction is reduced by a factor of about 2.7,
and therefore it happens that the mean-field estimate with the
correction actually goes much below the BKT temperature if
estimated without such correction.

Here we suggest that in the weakly interacting limit, the
GM correction may be applicable to the estimate of the
BKT temperature by restricting the influence of the induced
interaction within the mean-field or saddle-point gap equation.
We follow the description of the phase fluctuations given in
Ref. [50]. In the procedures, when the amplitude fluctuations
of the order parameter is neglected, the amplitude is still
determined from the same mean-field gap equation. Thus,
as a rough approximation in the weakly interacting limit, by
ignoring any effects on the anomalous propagators, one may
include the correction in the same way as for the mean-field
calculations with the GM-corrected gap equation.

The BKT transition temperature (TBKT) can be determined
through the universal Nelson-Kosterlitz (NK) relation [70]
which can be written as TBKT = π

4 ρs(TBKT) in our natural unit.
The superfluid density ρs is evaluated as ρs(T ) = n − ρ1(T ) −
ρ2(T ) [50] as a function of temperature T , where ρ1 and ρ2 in
our unit are given as

ρ1(T ) = vR

16π

∑
s=±

∫ ∞

0
dk s

(
ξk,s + �2

ξk

)
tanh

[ βEk,s

2

]
Ek,s

,

ρ2(T ) = β

8π

∑
s=±

∫ ∞

0
kdk

(
k + s

vR

2

)2
sech2

[
βEk,s

2

]
,

for ξk,+/− ≡ ξk,⇓/⇑. With the GM-corrected gap equation
employed for �, one can find the corresponding correction
in the estimate of the BKT transition temperature T

(GM)
BKT by

solving the NK relation.
The correction in the BKT transition temperature is shown

in Figs. 5(c) and 5(d) for the same choices of εB . With the
correction, it turns out that T

(GM)
BKT becomes very close to

the mean-field estimate T (GM)
c at small vR , recovering the

expectation of Ref. [50]. In the reduction ratio between T
(0)

BKT,
the one without the correction, and T

(GM)
BKT , the behavior of its

SOC dependence exhibits the similar crossover observed in
the mean-field result: The ratio decreases with vR at first and
then becomes insensitive to vR in the strong SOC regime.
Interestingly, the asymptotic value of the ratio approaches
unity at a large vR , implying that the effect of the induced
interaction on the BKT transition temperature may diminish
in the Rashbon limit.

C. Comparison with the QMC results

Finally, we demonstrate the applicability of the GM-
corrected gap equation by the comparison with the re-
cent ground-state QMC calculations [53] for the conden-
sate fraction. In the mean-field approximation [49,50], the
condensed density of fermion pairs n0 is expressed as
n0 = ∑

k |φ↑↓(k)|2 + |φ↑↑(k)|2 where the spin-singlet pair-
ing field φ↑↓(k) ≡ 〈ck,↑c−k,↓〉 = −�

∑
s=± 1/4Ek,s and the

SOC-induced spin-triplet pairing field φ↑↑(k) ≡ 〈ck,↑c−k,↑〉 =
−�e−iϕk

∑
s=± s/4Ek,s at T = 0. The total condensate frac-

tion nc ≡ 2n0/n is then written as

nc = |�|2
4

∫ ∞

0
kdk

(
1

E2
k,+

+ 1

E2
k,−

)
. (26)

This only depends on the zero-temperature order parameter
which is obtained from Eq. (25) when the GM correction is
included.

In Figs. 5(e) and 5(f), we provide the condensate fraction
calculated at the two chosen values of the SOC strength
for direct comparison with the QMC data in the weak and
strong SOC regimes. The total condensate fractions indicate
good agreement, showing a significant improvement with the
GM correction to the mean-field estimate. The agreement
is better in the stronger SOC even at relatively strong
interactions, which is notable since the GM correction is
generally expected to be most reliable at weak interactions.
In the spin-triplet component, the perturbative nature of the
GM correction indeed becomes apparent at strong interactions
where the QMC data deviate from the GM-corrected one. Such
systematic deviation with increasing interaction is not seen in
the total condensate fraction at the stronger SOC, implying that
the underestimation of the singlet component compensates the
difference.

V. SUMMARY AND CONCLUSIONS

We have investigated the Gorkov–Melik-Barkhudarov cor-
rection to superfluid transition temperature in attractively
interacting Fermi gases with Rashba SOC in two dimensions.
The main differences due to the presence of SOC are
summarized as follows. First, the spin-component mixing
allows another second-order process that additionally leads
to the antiscreening effect that is prohibited in the usual
two-component case without SOC. The induced interaction
is thus determined by a net effect of the antiscreening and
conventional screening contributions. Second, the induced
interaction and corresponding correction to the superfluid
transition temperature largely depends on the SOC strength,
which is attributed to the abrupt change of the Fermi sea
character across the SOC-driven BCS-BEC crossover.
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In the estimate of the mean-field transition temperature in
the weakly interacting limit, the correction due to the induced
interaction shows a crossover behavior across the weak and
strong SOC regimes. At strong SOC, it is found that the mean-
field temperature is reduced by a ratio of about 1.5 with the GM
correction which is in contrast to the known value of about 2.7
for the case without SOC. This ratio decreases with increasing
SOC in the weak SOC regime, but then it becomes largely
insensitive to SOC in the strong SOC regime. The similar
crossover is also found in our estimation of the BKT transition
temperature at weak interactions. However, our calculation
indicates that the correction becomes quantitatively very small
in the strong SOC limit in the case of the BKT transition
temperature.

The essence of the GM correction procedures is in the
modification of the mean-field gap equation with the induced
interaction. Our comparison with the recent ground-state QMC
result for the condensate fraction [53] shows remarkable im-
provement to the use of the usual mean-field order parameter,
demonstrating the importance of the GM correction in a
spin-orbit-coupled system. While exact numerics with SOC

for the transition temperature have not been available yet, our
estimates with the GM correction would motivate applications
of other beyond-mean-field approaches, for instance, with
the functional renormalizaton group [71], particle-hole fluc-
tuations with self-energy renormalization [72], non-Gaussian
fluctuation theory [45], and t-matrix approaches [46,47,73–
76], to two-dimensional Fermi gases with SOC. In addition,
we expect that it is also possible to extend our formulation
of the GM correction to systems in three dimensions or with
other types of SOC, which would provide more improved
mean-field-based predictions of experimental relevance.
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