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Photoionization using attosecond pulses can lead to the formation of coherent superpositions of the electronic
states of the parent ion. However, ultrafast electron ejection triggers not only electronic but also nuclear
dynamics—leading to electronic decoherence, which is typically neglected on time scales up to tens of
femtoseconds. We propose a full quantum-dynamical treatment of nuclear motion in an adiabatic framework,
where nuclear wave packets move on adiabatic potential energy surfaces expanded up to second order at the
Franck-Condon point. We show that electronic decoherence is caused by the interplay of a large number of
nuclear degrees of freedom and by the relative topology of the potential energy surfaces. Application to H2O,
paraxylene, and phenylalanine shows that an initially coherent state evolves to an electronically mixed state
within just a few femtoseconds. In these examples the fast vibrations involving hydrogen atoms do not affect
electronic coherence at short times. Conversely, vibrational modes involving the whole molecular skeleton, which
are slow in the ground electronic state, quickly destroy it upon photoionization.
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I. INTRODUCTION

The advent of attosecond pulses allows studying elec-
tronic correlation and ultrafast molecular dynamics through
pump-probe experiments with unprecedented time resolution
[1–3]. Attosecond, broad-band pulses can be used to generate
coherent superpositions of cationic states [3–6]. The ionization
triggers electronic and nuclear dynamics, finally leading to
electronic decoherence. Decoherence is defined as the process
where an initially pure state evolves to a statistical ensemble
[7,8]. Electronic coherences are assumed to be responsible for
a number of chemical processes, for example the high quantum
efficiency of the energy conversion in photosynthesis, which
is a matter of intensive current debate [9].

Long-lived coherences are predicted by theories that focus
on the evolution of the electronic subsystem, driven by
electronic correlation [10,11]. Nuclear motion is neglected,
because the electrons move much faster than the heavier nuclei.
This results in charge migration, an oscillatory motion of hole
and electron density with frequencies defined by the energy
gaps among the cationic states populated in the ionization pro-
cess. In Ref. [3], ultrafast dynamics in polyatomic molecules
on a time scale shorter than the vibrational response were
attributed to charge migration.

In recent theoretical work, the quantum nature of the nuclei
was approximately taken into account [12–15]. The authors
sampled nuclear geometries within the width of the Gaussian
wave packet of the nuclear ground state. This leads to a su-
perposition of coherent oscillations with different frequencies
that average out within a few femtoseconds. The cancellation
of the oscillations is due to the energy gap between the cationic
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states at the respective nuclear geometries. This approach takes
into account the spatial delocalization of the nuclear wave
packet. However, it does not consider the time evolution of the
nuclear wave packet on the different potential energy surfaces.
In the context of high-order harmonic generation (HHG) in
molecules, the propagation of vibrational wave packets on
adiabatic potential energy surfaces was studied in Ref. [16].
It was pointed out that the spatial overlap of vibrational wave
packets in different electronic states depends on the topology
of the potential energy surfaces.

In this paper, we present a model for an ab initio, full
quantum-mechanical treatment of nuclear motion on short
time scales. Nuclei move on adiabatic potential energy surfaces
that are expanded up to second order around the Franck-
Condon point, i.e., the equilibrium geometry of the ground
state. Bilinear mode-mode couplings are included. Due to the
different values of the mode-mode couplings on each potential
energy surface, they cannot be all removed simultaneously
by rotation to another set of normal modes, and the model
must be solved numerically. Using the multiconfiguration
time-dependent Hartree method (MCTDH) [17–19] for the
wave packet propagation, this allows us to numerically study
the electronic coherence in large molecules considering all
internal degrees of freedom at short times, as long as the
Taylor expansion of the potential energy surfaces remains
valid. We observe electronic decoherence on a femtosecond
time scale that can be attributed to the interplay of various
vibrational modes in a molecule. Contrary to the widely
held belief that fast modes are responsible for decoherence
at short times [20], it is the small displacement of many
slow modes that is ultimately responsible for the loss of
coherence. In Sec. II we introduce the model and argue that,
generally, electronic decoherence is a multimodal effect. This
is illustrated in Sec. III by application to H2O, paraxylene [13],
and phenylalanine [3].
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II. MODEL FOR THE DYNAMICS FOLLOWING
PHOTOIONIZATION

We study the dynamics following photoionization in an
electronically adiabatic framework. In the Born-Oppenheimer
approximation, the nuclei move on adiabatic potential energy
surfaces defined by the spectrum of the electronic Hamiltonian
at the respective nuclear geometries. We consider the situation
where a coherent attosecond pulse is used to excite a molecule
above the ionization threshold. As the pulse is wide in the
frequency domain, it is likely that two or more cationic
states are populated in a coherent way [4]. We assume
vertical excitation, where the ground-state nuclear wave packet
is placed on the potential energy surfaces of the cationic
electronic states. Furthermore, we neglect the photoelectron,
so that the cation is initially in a pure electronic state.

Generally speaking, the equilibrium geometry of the ground
state does not correspond to an equilibrium geometry of
the excited states. After photoionization, the system enters
a nonstationary state, and electronic and nuclear dynamics set
in. In the adiabatic approximation, the nuclear wave packets
move independently of each other on their respective potential
energy surfaces.

A. Adiabatic Hamiltonian

Finding the shape of the adiabatic potential energy surfaces
is the bottleneck towards establishing an exact solution
of the problem outlined in the previous paragraph. The
computational effort for determining the potential energy
surfaces grows exponentially with the number of degrees of
freedom. For small times, the potential energy surfaces can
be approximated by Taylor polynomials up to second order,
as proposed in the vibronic-coupling Hamiltonian [21]. This
corresponds to vibrations of the nuclei around their equilibrium
configuration [16]. In this work, we neglect nonadiabatic
couplings, which will play a role only if the cationic electronic
states feature conical intersections or avoided crossings close
to the Franck-Condon region [5]. The shorter and thus
spectrally broader the ionization pulse, the less important
nonadiabatic effects should become. The Hamiltonian of the
cationic electronic state μ in a molecule with f nuclear degrees
of freedom is then given by

H (μ)(Q1, . . . ,Qf )

= T + �E(μ) +
f∑

i=1

κ
(μ)
i Qi + 1

2

f∑
i,j=1

γ
(μ)
ij QiQj . (1)

We use atomic units and mass- and frequency-weighted
normal-mode coordinates Qi throughout this paper. T =∑f

i=1 −ωi

2 ∂2
Qi

refers to the kinetic energy, where the ground-
state normal-mode frequencies ωi are employed. The energy
difference to the lowest cationic state is denoted by �E(μ). The
coefficients κ

(μ)
i ,γ

(μ)
ii ,γ

(μ)
ij are obtained by central-difference

approximation for small displacements from the Franck-
Condon point along the normal modes. They describe the
gradient, curvature, and mode-mode coupling, respectively.

For propagating the nuclear wave packet, we use the
multiconfiguration time-dependent Hartree method (MCTDH)
[19] in its multiset formulation [22,23]. The nuclear wave

packet in each electronic state is described by an independent
product of time-dependent single-particle functions, thus
optimally treating the independent nuclear evolution on the
different cationic potential energy surfaces.

B. Electronic decoherence

To quantify electronic decoherence, the coherence among
the n cationic states is calculated from the reduced density
matrix ρ of the electronic subsystem. Starting from the
Born-Huang ansatz [24], the decomposition of the total wave
function in terms of nuclear and adiabatic electronic wave
functions χ,φ, respectively, reads


(r,Q,t) =
n∑

μ=1

cμχμ(Q,t)φμ(r; Q), (2)

where r refers to electronic coordinates. The expectation value
of an electronic observable Ô(r) can be obtained via

〈Ô(r)〉 =
∫

dQ

∫
dr
∗(r,Q,t)Ô(r)
(r,Q,t) (3)

=
∑
μν

∫
dQc∗

μχ∗
μ(Q,t)Oμν(Q)cνχν(Q,t) (4)

≈
∑
μν

Oμνρνμ, (5)

where for the last line we make the assumption Oμν(Q) =
Oμν . The electronic reduced density matrix elements in Eq. (5)
correspond to the nuclear wave packet overlaps:

ρνμ(t) = cνc
∗
μ

∫
dQχ∗

0 (Q,0)eiH (μ)te−iH (ν)tχ0(Q,0). (6)

In the single-geometry model [13,15], the nuclear functions
reduce to delta peaks, χ0(Q) = c0δ(Q − Q0). Neglecting
nuclear motion, Eq. (6) reduces to the long-lived electronic co-
herences predicted in charge-migration theories [3,11,25,26]

ρ̃νμ = c∗
νcμei(�E(μ)−�E(ν))t . (7)

Evolution of this single geometry along a trajectory as a
consequence of an averaged force corresponds to Ehrenfest
dynamics, also resulting in a perpetually pure electronic
subsystem without decoherence. A full quantum-mechanical
treatment of the nuclei, however, reveals that electronic
decoherence is caused by the fast spread of nuclear wave
packets along all degrees of freedom. The associated speed
is determined by the relative topology of the potential energy
surfaces, as shown in Fig. 1. Consider an initial state formed
by a product of Gaussians and the electronic ground state |0〉


0 =
f∏

i=1

χ0,i |0〉 , χ0,i = Nie
−(Qi−Q0,i )2/2 (8)

with appropriate prefactors Ni ensuring normalization. This
ground-state wave packet is placed on the cationic surfaces
following the ionization by a coherent pulse. Neglecting the
mode-mode couplings γ

(μ)
ij ,i �= j , the Hamiltonian allows one

to factorize the wave packet along the coordinates Qi for all
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FIG. 1. The spatial overlap of vibrational wave packets, and thus
the electronic coherence, depends on the topology of the potential
energy surfaces relative to each other. This is illustrated here for
the motion along one normal-mode coordinate Qi . After excitation
from the ground state (gray), the nuclear wave packets evolve on
the cationic potential energy surface (orange). Left side: Different
gradients and curvatures lead to diminishing spatial overlap and
decoherence. Right side: The potential energy surfaces are displaced
only vertically. The nuclear wave packets move synchronously;
spatial overlap is high throughout the propagation.

times, where H (μ) = ∑f

i=1 H
(μ)
i . From Eq. (6),

ρνμ(t) = cνc
∗
μ

f∏
i=1

∫
dQiχ

∗
0,i(Qi,0)eiH

(μ)
i te−iH

(ν)
i tχ0,i(Qi,0)

= cνc
∗
μ

f∏
i=1

ρ(i)
νμ(t). (9)

The oscillating ρ(i)
νμ(t) will dephase, because, in general, the

frequencies defined by the gaps among the cationic electronic
states are Q dependent. Essentially, coherence is lost because
the product of a large number of factors ranging between 0 and
1 tends to 0. The process is speeded up if at least one mode
contributes a factor close to 0. This corresponds to a vanishing
spatial overlap caused by differing gradients in the potential
energy surfaces. The frequency of the mode itself in the ground
state does not determine its influence on decoherence.

We calculate the purity Tr(ρ2) to monitor the evolution of
an initially pure state into a mixed state. The former yields
Tr(ρ2) = 1, the latter, in an n-state system with equal weights
1
n

for each state, Tr(ρ2) = 1/n. This approach is convenient
especially if more than two cationic states are considered;
furthermore, it is representation independent. Note that if the
decay of the off-diagonal matrix element can be expressed as
ρμν = ce−γ t , the purity decays twice as fast; for an equally
weighted two-level system, Tr(ρ2) = 1

2 + 2|c|2e−2γ t .

III. RESULTS AND DISCUSSION

In the following, we apply our model to H2O, paraxylene,
and phenylalanine cations. For H2O and paraxylene, the poten-

(ρ
2
)

FIG. 2. Evolution of electronic purity in H2O with four cationic
states. The propagation using one mode only (blue dashed lines) is
compared to the propagation of the full-dimensional system (orange
solid line). The system, initially prepared in an equally weighted
superposition of all cationic states, evolves to a mixed state within
1 fs. This is attributed to the loss of coherence along the bending
mode as well as the interplay of the three vibrational modes.

tial energy surfaces were calculated at the multiconfigurational
self-consistent field (MCSCF) level of theory restricting the
active orbitals of the ion to occupied orbitals in a Hartree-Fock
calculation of the neutral system and using the GAMESS

software package [27]. This level of accuracy was found to
be sufficient in previous work [28,29]. For phenylalanine, we
approximate the potential energy surfaces of the cation using a
single configuration, using Koopmans’ theorem. We compare
one-dimensional simulations, where only one normal mode
at a time is considered, to full-dimensional simulations. By
this, we demonstrate that decoherence is an effect that can
be attributed to the interplay of a large number of vibrational
modes, rather than to a small number of fast modes.

A. H2O

H2O was chosen as a model molecule for its simplicity.
The coefficients for the adiabatic potential energy surfaces
were calculated for four cationic states using seven electrons
in four active orbitals. The energy spacings with respect to the
cation ground state are 0.06 eV, 0.27 eV, 0.87 eV, respectively.

Figure 2 shows the evolution of the coherence in the H2O
molecule. The results for one-dimensional simulations with
one normal mode each are shown together with the simulation
of the full three-dimensional system.

We observe that the initially pure state


(Q,0) = χ0,1(Q1,0)χ0,2(Q2,0)χ0,3(Q3,0)

× 1√
4

(|1〉 + |2〉 + |3〉 + |4〉) (10)

evolves towards a mixture in the electronic subsystem. A
constant value is reached already after 1 fs. The individual
modes are identified with the asymmetric stretch (3756 cm−1),
the symmetric stretch (3657 cm−1) and the bending motion
(1595 cm−1). While the fast modes alone maintain electronic
coherence, the slow mode is mainly responsible for the overall
loss of coherence. The rate of the decoherence, and the
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suppression of recurrence, is attributed to the dephasing of
the oscillations along single modes. Even in H2O with only
three degrees of freedom, the loss of coherence is thus seen to
be a multimodal effect with a strong participation of the slower
bending motion.

The full quantum-mechanical treatment of nuclear motion
reveals its high influence on electronic decoherence. In
Ref. [30], long-lived oscillations were observed in ionized
liquid water and were attributed to coherent hole dynamics
including the two lowest-lying cationic states. While the
chemical environment of a single water molecule does not
directly translate to liquid water or water clusters, the loss of
coherence can be expected to occur even faster if more modes
are included. Restriction to two states in H2O does not change
the decoherence time scale.

B. Paraxylene

We now apply the model to paraxylene, a benzene molecule
with two methyl groups on opposite sides of the benzene
ring. Paraxylene was included in the aforementioned study
[13], which makes it suitable to compare the conceptually
different approaches. With 18 atoms, paraxylene has 48
internal degrees of freedom. We chose to project out the two
methyl group rotations, which otherwise should have been
treated as hindered rotors with a periodicity of 60◦ [31]. Two
additional very low frequency modes were left out of the model
to avoid numerical problems. Leaving modes out of the model
can only slow down decoherence, not accelerate it, thus leaving
our conclusions unchanged.

Following Ref. [13], we include the first two cationic states
of paraxylene, separated by 0.51 eV at the Franck-Condon
point. The cationic potential energy surfaces were determined
at the MCSCF level of theory using five electrons in three
active orbitals.

Initially, the system is prepared in an equally weighted
superposition of the two cationic states,


(Q,0) =
48∏
i=1

χ0,i(Qi,0)
1√
2

(|1〉 + |2〉). (11)

The high number of degrees of freedom restricts us to one
time-dependent single-particle function (SPF) per degree of
freedom and state, which is, however, fully flexible and
expanded in a harmonic DVR grid [18]. For selected states,
more SPF were included to estimate their contributions.

Figure 3 shows the evolution of the initially pure state to a
mixed state on the timescale of 2–3 fs. The one-dimensional
simulations, represented by the blue dashed curves, show that
coherence is maintained at the single-mode level for most
of the modes. Recurrence is observed after the associated
oscillation period. The overall coherence, as outlined in Sec. II,
can be described as the product of the one-dimensional
coherences, if mode-mode couplings are neglected. Due to
the dephasing of the oscillations along the different normal
modes, the overall coherence drops to zero and does not
recur. This shows that the loss of coherence can be explained
from the high number of degrees of freedom. There is no
single mode that is responsible alone for the fast decoherence.
The breathing mode (1330 cm−1) and the two Kekule modes

(ρ
2
)

FIG. 3. Evolution of electronic purity in paraxylene with two
cationic states. One-dimensional simulations (blue dotted lines) are
compared to the propagation of the full-dimensional system (orange
solid line). The interplay of the large number of modes leads to a
mixed state on a time scale of 2–3 fs. Recurrence can be seen in the
one-dimensional simulations, but is suppressed when all vibrational
modes are taken into account.

(1777 cm−1,1831 cm−1) show recurrence of the purity on a
femtosecond timescale, if treated individually.

In Fig. 4, we study the influence of various selected modes
on the decoherence. The ten fastest normal modes correspond
to C-H vibrations. Electronic coherence is maintained if only
this subset of modes is considered. The 34 slowest modes, with
their relatively long recurrence times, lead instead to rapid loss
of coherence. It is thus not the speed of the nuclear motion that
defines the influence on electronic decoherence, but rather the
topology of the potential energy surfaces relative to each other,
as illustrated in Fig. 1. Note that, within our adiabatic model,
the decoherence rate is independent of the weights assigned to
the initial states, as shown in Fig. 5.

In a typical MCTDH calculation, the results are taken to
be converged if the population of the highest SPF is below

(ρ
2
)

FIG. 4. Electronic coherence is reduced by the interplay of all
vibrational modes. The ten fastest modes, corresponding to the C-H
vibrations, maintain coherence. It is the slow modes, corresponding to
vibrations of the whole molecule and the benzene-ring carbon atoms,
that account for the fast decoherence.
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FIG. 5. Electronic decoherence in paraxylene for an initially pure
state 
(Q,0) = χ0(Q,0)(

√
c1 |1〉 + √

c2 |2〉). The time scale where
electronic decoherence is destroyed is independent of the choice of
weights c1,c2. A mixed state is reached within few femtoseconds,
where Tr(ρ2) = c4

1 + c4
2.

10−3, or if the effect of leaving the highest SPF out is below
10−5 (see Ref. [18]). This level of accuracy is certainly not
feasible with a large number of degrees of freedom. However,
we can approximate by the following reasoning: There are
many pairs of vibrational modes without discernible mode-
mode coupling. Along these modes, the nuclear wave packet is
very well described using only one SPF. More SPFs are needed
to capture the dynamics with respect to coupled modes. The
one-dimensional calculations are of course exact with one SPF
per surface.

Figure 6 shows the effect of including a second SPF for a
subset of twelve coupled modes (|γ (μ)

ij | > 10−3). The results
are comparable to the ones obtained by using only one SPF per
mode. It is noticeable that the recurrence at 8 fs is suppressed if
two SPF are used in this group of modes and that decoherence
becomes slightly faster.

In Ref. [13], electron dynamics following photoionization
was studied in paraxylene. Decoherence was attributed to the

(ρ
2
)

FIG. 6. In paraxylene, a subset of 12 modes that are coupled to
each other (|γ (μ)

ij | > 10−3) is given a second single-particle function
(SPF) per mode (orange dotted line), compared to one SPF per mode
(blue solid line). This suppresses the small recurrence at 8–10 fs.

(ρ
2
)

FIG. 7. Electronic decoherence in paraxylene including (blue
solid line) and neglecting (orange dashed line) the kinetic energy
operator in the quantum-dynamical calculation.

width of the nuclear wave packet, because the energy gap
and hence the frequency of ρ12 changes over its extension.
After averaging over all nuclear coordinates, coherence is lost
without recurrence, in the case of paraxylene with a half-life
time of t1/2 = 4 fs. This approach does not allow for transfer
of density between the different nuclear geometries within
the wave packet and decoherence becomes a consequence of
dephasing by averaging the coherent matrix elements over
many different geometries. It follows from Eq. (6) if the
kinetic energy operator is neglected and the nuclear wave
packet is replaced by a geometry distribution p(Q). Note that
nonadiabatic effects are thereby excluded. Although this model
provides a physically reasonable time scale for decoherence
in multidimensional systems, it is unclear when and how
the approximation breaks down and how to systematically
improve it. In contrast, in the model proposed here, the whole
nuclear wave packet evolves fully quantum mechanically and
the treatment of decoherence, and potentially of time-resolved
electronic spectroscopies, becomes exact at short times. By
comparing, within our model, the decoherence rate with
and without including kinetic energy, as shown in Fig. 7,
we find that neglecting the kinetic energy operator in the
quantum-dynamical calculation slightly overestimates elec-
tronic decoherence and misses the persisting linear component
seen in the long-term behavior.

C. Phenylalanine

In Fig. 8, we show the evolution of electronic coherence in
phenylalanine, which was studied in Ref. [3] for an initial state
arising from the photoionization cross sections. In our analysis,
initially, the cation ground state and the first excited state are in
a coherent superposition. Again, we use one SPF per surface
and mode, and we compare one-dimensional simulations to
the propagation including all 63 degrees of freedom. Most
mode-mode couplings have a value |γ (μ)

ij | < 10−3. We find that
the initially pure state evolves to a mixed state within about
1 fs, if all modes are considered. Recurrence is suppressed,
as the oscillations dephase along the different modes. While
most modes preserve electronic coherence over the period of
investigation, we observe a stronger participation of relatively
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(ρ

2
)

FIG. 8. Evolution of electronic purity in phenylalanine with two
cationic states. One-dimensional simulations for each of the 63
normal modes (blue dotted lines) are compared to the propagation
including all modes (orange solid line) for an initially pure state.
Electronic decoherence occurs within 1 fs.

slow vibrational modes with ground-state frequencies of
1816 cm−1,1809 cm−1, and 1340 cm−1, respectively.

IV. CONCLUSION AND OUTLOOK

It is often assumed that, if nuclear motion plays a role
in electronic decoherence, it is the fast modes that should
be considered [3]. In an organic molecule, these are the
C-H vibrations with a typical frequency of about 3000 cm−1,
corresponding to a period of vibration of 11 fs. This is
typically slower than calculated charge migration times and is
therefore not considered to have an effect. Our study, however,
indicates that it is not the fast, but the interplay of the slow
modes (in the sense of their inverse vibrational frequencies
in the neutral ground state) that causes decoherence on a
femtosecond timescale. In Fig. 4, we show that, in paraxylene,
if only the 10 C-H vibrations are considered, the system stays
coherent within at least 6 fs. This is because the potential
energy surfaces for the fast modes turn out to be only vertically
displaced from each other. As shown schematically in Fig. 1
and discussed in Sec. II B, in this case, the nuclear wave packets
move synchronously on the potential energy surfaces, and their
spatial overlap does not change much. In the slower modes,
the potential energy surfaces can also be horizontally displaced
from each other, and the spatial overlap is reduced.

We presented an ab initio model for electronic decoherence
following photoionization that takes the quantum nature of the
nuclei into account and allows for a full-dimensional treatment
of the molecule. Combined with a proper treatment of the
preparation step and with the consideration of the relevant
electronic observables it can be used to interpret and predict
the outcome of current experiments in molecular attoscience
[3]. The probe step can be excluded from the analysis, as
the loss of electronic coherence would be apparent in any
probe technique sensitive to electronic structure. We showed
that electronic decoherence can be explained by considering
the topologies of different potential energy surfaces. It is
the interplay of a large number of vibrational modes that
is causing decoherence in the electronic density matrix, not
a set of, e.g., fast C-H vibrations. Our results suggest that
in molecular systems, purely electronic dynamics that may
be described in terms of a coherent electronic wave packet,
exists only for subfemtosecond time scales, and nuclear
motion cannot be neglected. With the approach shown in this
paper, one can calculate the time-dependent density matrix
of the electronic subsystem and from it the time-dependent
expectation values of any observable that depends only on
the electronic subsystem via 〈A〉 = Tr(Aρ), for example the
hole density. Observables of the form Oμν(Q) that depend on
the electronic states and the nuclear geometry can be easily
computed as well since the full nuclear wave packets are
available.

The model is currently limited to short time scales. In
the future, we plan to explore quantum-classical approaches
that allow us to propagate the nuclei for longer times.
However, we note that for describing the short-time electronic
response with nuclear-induced decoherence, this model (with
possible nonadiabatic extensions) is all that is required, as
decoherence sets in before the nuclear wave packets abandon
the quadratically expanded region of the potential energy
surfaces. The exact quantum-mechanical calculations will
serve as a reference for future development of these methods.

Note added. Recently, we became aware a complemen-
tary study on electronic decoherence including quantum-
mechanical treatment of nuclear motion was published [32].
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