
PHYSICAL REVIEW A 95, 033424 (2017)

Driving the formation of the RbCs dimer by a laser pulse: A nonlinear-dynamics approach
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We study the formation of the RbCs molecule by an intense laser pulse using nonlinear dynamics. Under the
Born-Oppenheimer approximation, the system is modeled by a two-degree-of-freedom rovibrational Hamiltonian,
which includes the ground electronic potential energy curve of the diatomic molecule and the interaction of the
molecular polarizability with the electric field of the laser. As the laser intensity increases, we observe that the
formation probability first increases and then decreases after reaching a maximum. We show that the analysis
can be simplified to the investigation of the long-range interaction between the two atoms. We conclude that the
formation is due to a very small change in the radial momentum of the dimer induced by the laser pulse. From
this observation, we build a reduced one-dimensional model which allows us to derive an approximate expression
of the formation probability as a function of the laser intensity.
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I. INTRODUCTION

During the past two decades, the development of sophisti-
cated experimental techniques allowed one to use ultracold
atoms to create two new states of matter that can be
manipulated with high precision: the Bose-Einstein conden-
sates (BECs) [1–3] and the degenerate Fermi gases (DFGs)
[4–6]. Using the deep experimental background obtained
with the investigations on BEC and on DFG, efforts have
been dedicated to achieving a similar degree of control in
molecular gases. Indeed, the production and manipulation
of dense gases of cold and ultracold molecules constitute
nowadays an active research field in atomic and molecular
physics. In particular, starting from a gas of ultracold atoms,
the photoassociation [7,8], the magnetoassociation [9], and the
stimulated Raman adiabatic passage (STIRAP) [10] are among
the usual techniques to create cold and ultracold molecules.
These experimental techniques have been successfully applied
to form different homonuclear and heteronuclear alkali-metal
diatomic molecules in the rovibrational ground state, such
as C2 [11,12], LiCs [13], KRb [14], or RbCs [15–17].
Furthermore, a number of theoretical studies have guided and
promoted many of the experimental achievements. Among
other theoretical studies, we refer the reader to Refs. [18–20]
and references therein. For a review about science, technology,
and applications of cold and ultracold molecules, we refer to
Ref. [21].

All the aforementioned techniques to create molecular
bound states are based on the external control of the inter-
actions of atoms and molecules with electromagnetic fields.
From a classical point of view, it is of particular interest to
study how the mechanical forces exerted by light on atoms
and molecules perturb their motion. Moreover, the nonlinear
nature of these forces make these systems very appealing
for classical studies because, by the external control of the
strengths of the interactions, we have at hand the possibility
of tuning the system through different classical regimes. It is
worth noting at this point that the use of classical mechanics
to study microscopic systems is not new: Over the past
three decades, a plethora of studies related to the classical

dynamics of atoms and molecules in external fields can be
found in the literature. Some examples of such as studies can
be found in Refs. [22–32]. Furthermore, classical studies in
microscopic systems have revealed themselves as a power tool
to understand quantum mechanical results in many cases (see,
e.g., Refs. [22,32–36] and references therein).

Here we use nonlinear dynamics to explore the feasibility
of creating cold diatomic molecules by using a strong linearly
polarized laser pulse. While the usual techniques to create cold
and ultracold diatomic molecules require the use of several
excited electronic states, we describe here how the nonlinear
mechanical force exerted by a laser field on an initially
unbounded pair of cold atoms in their ground electronic state
can lead to the formation of a bounded dimer. More precisely,
we focus on the influence of the laser field in the formation of
RbCs molecules. Besides the kinetic terms, the rovibrational
Hamiltonian of the system includes two fundamental terms:
namely, the potential energy curve between the Rb and Cs
atoms and the interaction between the molecular polarizability
and the laser field. Because the laser pulse contains an envelope
with ramp-up, plateau, and ramp-down, the system depends
explicitly on time and the corresponding Hamiltonian has
3 + 1/2 degrees of freedom. However, by using spherical
coordinates, the number of degrees of freedom can be reduced
to 2 + 1/2. For a convenient ensemble of initial conditions,
we compute the formation probability as a function of the
laser field strength for different values of the parameters of
the pulse. In all cases we find that, as the field strength
increases from zero, the formation probability first increases
before reaching a maximum and then decreases for larger
values of the field strength. It is worth noting that a similar
behavior has been found in the ionization probability of
atoms in the presence of an intense laser field [37,38]. From
a detailed exploration of the dynamics of the system after
the ramp-up, plateau, and ramp-down sequences of the laser
pulse, we infer that the study of the formation mechanism can
be reduced to the investigation of the long-range interaction
between the two atoms. Indeed, we show that the formation
is due to a very small change in the radial momentum of
the dimer induced by the laser pulse. These observations
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allow us to build a simplified one-dimensional Hamiltonian
where only the long-range terms of the potential energy curve
and the molecular polarizabilities are taken into account.
From this simplified Hamiltonian, we obtain an analytic
approximate expression for the formation probability as a
function of the laser intensity. This analytic expression mimics
very accurately the described behavior of the formation
probability.

The paper is organized as follows: In Sec. II we present
the main ingredients of the Hamiltonian of the system. In
Sec. III we compute the formation probability as a function
of the laser field strength. In order to get some insights
into the behavior of the formation probability, we study the
particular role played by the ramp-up, the plateau, and the
ramp-down of the laser pulse. The results of Sec. III allow
us to define in Sec. IV a one-dimensional version of the full
Hamiltonian which captures the main characteristics of the
system. In Sec. V we define the simplified Hamiltonian with
only the long-range terms of the potential energy curve and
the molecular polarizabilities. We show that this asymptotic
Hamiltonian is sufficient to describe the behavior of the
formation probability. Furthermore, we construct an analytic
expression for the formation probability which includes the
parameters of the laser pulse and the long-range parameters of
the potential energy curve and the molecular polarizabilities.

II. THE HAMILTONIAN OF THE SYSTEM

Within the Born-Oppenheimer approximation, we describe
the dynamics of the RbCs molecule in its 1�+ electronic
ground state in the presence of a strong linearly polarized laser
field. The electric field of the laser is assumed to propagate in
the parallel direction of the z axis of an inertial reference
frame with the origin at the center of mass of the nuclei. For a

TABLE I. Values of the fitting parameter for the long-range
behavior of the potential energy curve ε(R) and the parallel and
perpendicular polarizabilities α‖,⊥(R). All parameters are given in
atomic units.

b6 = 5284 b8 = 730520 b10 = 1.0831 × 108

c2 = 1888.9 c3 = −351865.9 c4 = 1.5056 × 106

d2 = 1277.8 d3 = 374596.4 d4 = 2.7868 × 106

nonresonant laser field, the Hamiltonian of the system can be
expressed as [39]

H = P 2
R

2μ
+ P 2

θ

2μR2
+ P 2

φ

2μR2 sin2 θ
+ V (R,θ,t), (1)

where μ is the reduced mass of the nuclei, (R,θ , φ) are the
internuclear distance and the Euler angles, and (PR,Pθ ,Pφ) are
the corresponding canonically conjugate momenta. V (R,θ,t)
is the potential energy surface given by

V (R,θ,t) = ε(R) + VL(R,θ,t), (2)

which is made of the field-free adiabatic electronic potential
energy curve ε(R) and the laser-molecule interaction potential
VL(R,θ,t),

VL(R,θ,t) = −g(t)
F 2

4
[α‖(R) cos2 θ + α⊥(R) sin2 θ ]. (3)

The function g(t) is the laser pulse envelope and F is
the strength of the electric field of the laser. The functions
α‖,⊥(R) are the parallel and the perpendicular molecular
polarizabilities [40]. The pulse envelope g(t) contains a ramp-
up, a plateau, and a ramp-down with durations Tru, Tp, and Trd,
respectively, and its profile is taken to be [41]

g(t) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

sin2
(

πt
2Tru

)
if 0 � t < Tru,

1 if Tru � t < Tru + Tp,

sin2
(

π(t−Tru−Tp−Trd)
2Trd

)
if Tru + Tp � t < Tru + Tp + Trd,

0 elsewhere.

(4)

This field envelope describes accurately experimental laser
pulses [42].

In order to manage an analytical representation for the
potential energy surface V (R,θ,t) for the RbCs molecule, we
have fitted the available data of ε(R) [43] and α‖,⊥(R) [40]
to three appropriate functional forms. In the case of ε(R),
the fitting function of the ab initio data includes the long-
range behavior of the energy curve, which is expressed
as [44]

εLR(R) = − b6

R6
− b8

R8
− b10

R10
. (5)

For the 1�+ RbCs these coefficients can be found
in the literature [44] and their values are reported
in Table I. The asymptotic behavior of the polariz-
abilities α‖,⊥(R) is well described by the Silberstein

expressions [45,46]

αLR
‖ (R) = αRbCs + 4αRbαCs/R

3

1 − 4αRbαCs/R6
,

(6)

αLR
⊥ (R) = αRbCs − 2αRbαCs/R

3

1 − αRbαCs/R6
,

where αRb ≈ 313 a.u. and αCs ≈ 394 a.u. are the atomic
polarizabilities of the atoms and αRbCs = αRb + αCs. The two
Silberstein expressions (6) diverge when R → (4αRbαCs)1/6 ≈
8.8889 a.u. and R → (αRbαCs)1/6 ≈ 7.0552 a.u., respectively.
This is a drawback for classical calculations. Taking into ac-
count that computational data for the molecular polarizabilities
are available up to the intermolecular distance of R = 30 a.u.,
instead of using the analytical expression (6) to model the
long-range behavior of α‖,⊥, we append to the computational
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FIG. 1. (a) Electronic potential energy curve ε(R) of the RbCs
and (b) parallel α‖(R) and perpendicular α⊥(R) components of the
molecular polarizability of the RbCs molecule.

data of the molecular polarizabilities, values of α‖,⊥ evaluated
for R > 30 a.u. at the Silberstein expressions (6). This allows
us to fit the polarizabilities α‖,⊥ with smooth functions which
are very convenient for classical calculations. The long-range
fittings for α‖,⊥(R) are given by

αLR
⊥ (R) = αRbCs + c2

R2
+ c3

R3
+ c4

R4
, (7)

αLR
‖ (R) = αRbCs + d2

R2
+ d3

R3
+ d4

R4
. (8)

The fitting parameters bi , ci , and di are shown in Table I. The
fitted curves ε(R) and α‖,⊥(R) are plotted in Fig. 1.

Owing to the continuous axial symmetry of the system, the
polar angle φ is cyclic in Hamiltonian (1) and the z component
Pφ of the angular momentum is conserved. This allows one to
consider the expression (1) as a classical Hamiltonian system
with 2 + 1/2 degrees of freedom in (R,θ ). The 1/2 degree
of freedom is due to the explicit time dependence in H.
The present study is restricted to the Pφ = 0 case, i.e., the
corresponding magnetic quantum number is zero, being this
particular value widely used is several studies [47,48]. The
landscape of the potential energy surface V (R,θ,t) during the
plateau [g(t) = 1] is strongly determined by the polarizability.
Indeed, as we can observe in Fig. 2, for F = 1.5 × 10−3 a.u.,
the energy surface V (R,θ,t) presents four critical points: two
equivalent minima P1,2 at θ = 0,π respectively, a saddle point
P3 at θ = π/2 and a maximum P4 at θ = π/2. These critical
points create two different regions of motion. When the energy
of the molecule is below the energy of the saddle point P3,
the rovibrational motion of the dimer is made of pendular
states [49] around the minima P1,2 because the molecule is
confined in one of the potential wells around P1,2. In other
words, we find the expected behavior of a dimer aligned in the
θ = 0,π directions [50]. On the other hand, when the energy
of the system is above the saddle-point energy, the molecule
can describe complete rotations. Due to the so-called energy
hill around the maximum P4 created by the polarizability, the
molecular bond R always reaches its largest values along the
θ = 0,π directions. As the electric field strength F increases,
the maximum P4 approaches the saddle point P3 and its energy
increases. The directions θ = 0,π together with the threshold
dissociation conditions R → ∞, PR → 0, and Pθ → 0 allow
us to get an analytical estimate of the dissociation energy
Ed . Under the condition R → ∞, the function ε(R) tends to
0, and α‖(∞) = α⊥(∞) = αRb + αCs. Then, the approximate

FIG. 2. Equipotential curves of the potential energy surface
V (R,θ,t) during the plateau [g(t) = 1] for a laser field strength
F = 1.5 × 10−3 a.u.

value for the dissociation energy is given by

Ed ≈ −F 2

4
α‖(∞) = −F 2

4
(αRb + αCs). (9)

Thus, the molecular polarizabilities lead to a decrease of
the dissociation energy to a negative value, which depends on
the electric field strength F as well as on the polarizabilities
of the atoms.

III. DRIVING THE FORMATION OF THE DIMER:
NUMERICAL EXPERIMENTS

We use Hamiltonian (1) to study the impact of the laser
field in the creation of bound molecular states. In particular,
we compute numerically the formation probability P (F ) as
a function of the field strength F . To do that, we consider a
large ensemble of initially free pairs of Rb-Cs atoms, whose
dynamics is governed by the free Hamiltonian

H0 = P 2
R

2μ
+ P 2

θ

2μR2
+ ε(R). (10)

All the initial conditions (R0,P
0
R,θ0,P

0
θ ) of the ensemble

have the same positive energy H0 = E0 = 3 × 10−9 a.u. This
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FIG. 3. Formation probability as a function of F for an initial
energy E0 = 3 × 10−9 computed from Hamiltonian (1). The pa-
rameters of the pulse are Tru = Trd = 5 ps and Tp = 70 ps (shaded
red line), Tru = Trd = 15 ps and Tp = 70 ps (solid green line) and
Tru = Trd = 15 ps and Tp = 140 ps (dotted blue line), respectively.

energy roughly corresponds to the temperature T = 1 mK
of a sample of cold atoms in a typical photoassociation
experiment [7,51]. The choice of the initial states is an
important issue as it is shown later on. Here P 0

θ is taken
to be zero, θ0 is chosen randomly in [0,π ], and R0 is
chosen in the interval [Rmin,Rmax] = [6.2319,100] a.u., where
Rmin is the (inner) turning point of the phase trajectory of
Hamiltonian (10) for P 0

θ = 0. First, let us compute the time
evolution of the (unbound) trajectory of energy E0 = 3 × 10−9

a.u. starting at the initial internuclear distance R0 = Rmax and
with the inward initial radial momentum P 0

R ≈ −0.04 a.u.
given by Eq. (10). We consider this orbit until it reaches again
Rmax with PR ≈ 0.04 a.u. When the intermolecular distance
R(t) of this trajectory is mapped at equal time intervals, we
observe that large values of R(t) are rapidly reached. In other
words, the initial conditions with large values of R0 are more
likely than initial conditions with small values of R0. In this
way, in order to mimic more accurately the initial states of
the system, we choose the initial conditions (R0,P

0
R) along the

phase curve (10) for E0 at equal time steps. It is worth noting
that, with these initial conditions uniformly distributed over
time, less than a 1% of the initial conditions have values of
R0 < 25 a.u.

By the numerical integration of the equations of motion
arising from Hamiltonian (1), we propagate the ensemble of
trajectories for the entire pulse duration. If after the pulse
the energy of a given trajectory is negative, a bound state is
then created. Otherwise, the trajectory remains unbounded.
In our numerical experiments we consider laser pulses with
electric field F amplitude between 0 and 4 × 10−3 a.u.,
which corresponds to a laser field of maximal intensity of
1012 W cm−2. The Tru + Tp + Trd total duration of the pulse
is taken between 80 and 170 ns. In Fig. 3 the formation
probability P (F ) as a function of the electric field strength
F for three different laser profiles is represented. Since we
start with a positive initial energy, the formation probability is
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FIG. 4. Evolution of the energy of an ensemble of trajectories
with initial energy E0 = 3 × 10−9 a.u. The amplitude of the laser
field is F = 1.5 × 10−3 a.u. The parameters of the pulse are Tru =
Trd = 15 ps and Tp = 70 ps. The solid red and the dashed blue lines
indicate the dissociation energy (9) and the zero energy, respectively.

zero for F = 0. It then increases sharply with F up to a given
critical value of F which depends of the pulse envelope g(t),
and then it decreases with F . Our objective is to analyze the
reversal behavior observed in the formation curves in order
to assess the role of the different parts of the pulse in the
building up of this curve. To this end, we analyze separately
the role of the ramp-up, the plateau, and the ramp-down in the
dynamics of the system. Special attention is put on the study
of the dynamics during the plateau because this study provides
important information about the phase space structure of the
system and its possible impact in the formation mechanism.
Although results are not being reported here, it is worth noting
that from the computations with ensembles of trajectories with
initial conditions where Pφ and Pθ were not necessarily fixed
to zero, the formation probability has exactly the same shape
observed in Fig. 3. In this way, this reversal behavior seems
to be very robust and not restricted to trajectories with initial
conditions on the invariant manifold Pφ = 0 and with initial
conditions Pθ = 0.

A. Role of the ramp-up of the laser pulse

In Fig. 4 the evolution as a function of time of the energy
of a bunch of representative trajectories with initial energy E0

is represented for an amplitude of the laser field of F = 1.5 ×
10−3 a.u. The parameters of the pulse are Tru = Trd = 15 ps
and Tp = 70 ns. As expected, the role of the ramp-up is to
decrease the energy of the system and to promote the initially
unbounded trajectories in a region where, potentially, they
might be bounded. After the ramp-up, the energy probability
is represented in Fig. 5 (dashed red line).

This energy distribution indicates that, after the ramp-up,
a big amount of trajectories acquire energy values around
a relatively narrow region. This peak structure is easily
understood assuming that the dynamics does not play a major
role. Under this assumption, the energy Ef at the end of the
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FIG. 5. Probability distribution of the energy of an ensemble of
trajectories with an initial energy E0 = 3 × 10−9 a.u. after a ramp-up
of 15 ps (dashed red line). The dotted blue line is the probability
energy distribution of an ensemble given by Eq. (11). The dissociation
energy Ed for this electric field is denoted with the solid green vertical
line. The parameters of the pulse are Tru = Trd = 15 ps and Tp = 70 ps
and the amplitude of the electric laser field is F = 1.5 × 10−3 a.u.

ramp-up is approximately

Ef ≈ ε(R) − F 2

4
[α‖(R) cos2 θ + α⊥(R) sin2 θ ], (11)

In Fig. 5 the dashed blue line is the probability distribution
given by Ef , where θ and R are evaluated in the ensemble of
trajectories after the ramp-up. We notice that this distribution
displays the same peak structure as the distribution of energies
after the ramp-up computed from the equations of motion
associated with Hamiltonian (1). The peak is located around
the maximum of Ef for Rmax, which is the maximum
distance considered in the ensemble of initial conditions. This
maximum of energy almost corresponds to the dissociation
energy Ed ≈ 3.977 × 10−4 a.u. for F = 1.5 × 10−3 a.u. This
value is denoted with the green vertical line in Fig. 5. Around
R = Rmax, the potential ε(R) is negligible. This means that
most of the trajectories have energies as if they were at
R = Rmax. This comes from the fact that the potential is
rather flat for R � 30, which affects more than 75% of the
trajectories. Therefore, the dynamics is very slow for these
trajectories, and θ and R are approximately constant over the
duration of a ramp-up of a few picoseconds.

B. Dynamics during the plateau

During the plateau, Hamiltonian (1) is autonomous and
with two degrees of freedom. We visualize the nonlinear
dynamics using Poincaré surfaces of section. A convenient
Poincaré section is PR = 0 with ṖR > 0, represented in the
plane (θ,Pθ ). Since we would like to gain insight into the
formation probability, we look at bounded trajectories for
which the distance R is oscillating in time. In addition, to
compute the surface of section we select the value of the
most probable energy, i.e., the peak in Fig. 5 which roughly
corresponds to E = −3.98 × 10−4 a.u. For a single value of
(θ,Pθ ) there are two possible values of R, one close to the
inner turning point and another one for a larger value of R

close the outer turning point. The first one corresponds to

-100

-50

 0

 50

 100

 0  0.25  1 0.75 0.5

P
(a

.u
.)

FIG. 6. Poincaré section (PR = 0, ṖR < 0) of Hamiltonian (1)
for an energy E = −3.98 × 10−4 a.u. and for an electric field F =
1.5 × 10−3 a.u.

ṖR > 0 and the second one to ṖR < 0. In order to draw the
Poincaré section, we must allow the trajectory to cross the
section a relatively high number of times, so we consider the
long-term dynamics much larger than the duration of the laser
pulse. A Poincaré section of Hamiltonian (1) is represented on
Fig. 6. Each initial condition is integrated up to 105 ps.

We notice that for a reasonable range of values of Pθ

the dynamics resembles the one of a forced pendulum with
rotational and librational trajectories, and a rotational chaotic
zone around the hyperbolic point at θ = π/2 [30]. We use
the term rotational chaotic zone to indicate the chaotic
trajectories spanning the whole interval [0,π ] for the angle
θ . We observe a different librational chaotic zone around
the elliptic points (located at θ = 0 and θ = π ), which is
apparently disconnected from the rotational chaotic zone, at
least on the duration of the numerical integration we have
performed. The elliptic points at θ = 0,π correspond to two
straight radial oscillations from Ra to Rb. These values Ra and
Rb are the two solutions of ε(R) − F 2α‖(R)/4 = E. We refer
to these radial periodic orbits as IR . In Fig. 7 some sample
trajectories are shown. The initial conditions of these orbits
are taken on the surface of a section of Fig. 6. A rotational
trajectory is depicted in Fig. 7(a); these trajectories live on
two-dimensional invariant tori. The orbit in Fig. 7(b) is an
example of chaotic trajectory in the rotational chaotic zone. We
notice that the interatomic distances of these two trajectories
do not reach large values. Figure 7(c) shows a trajectory
in the librational chaotic zone; indeed, we notice that the
trajectory does not span the whole interval of definition of the
angle θ . Finally, in Fig. 7(d) a trajectory in a regular elliptic
island near the elliptic fixed point around θ = 0 is shown.
We notice that these last two trajectories reach very large
values of R. As expected, all trajectories remain bounded since
the energy E = −3.98 × 10−4 a.u. is below the dissociation
energy Ed ≈ 3.977 × 10−4 for F = 1.5 × 10−3a.u.

What is not apparent in the Poincaré section of Fig. 6 is the
time scales of the dynamics. In order to illustrate this property,
we plot the first recurrence time (the time it takes a trajectory
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FIG. 7. Trajectories in the plane (R sin θ,R cos θ ) of Hamilto-
nian (1) for F = 1.5 × 10−3a.u. and energy E0 = −3.98 × 10−4 a.u.
(a) Rotational trajectory with initial conditions θ = π/2, Pθ = 50,
and PR = 0 (red square in Fig. 6); (b) rotational chaotic trajectory
with initial conditions θ = 1.45, Pθ = 0, and PR = 0 (green dot
in Fig. 6); (c) vibrational chaotic trajectory with initial conditions
θ = 1.1, Pθ = 0, and PR = 0 (blue star in Fig. 6); and (d) vibrational
regular trajectory with initial conditions θ = 0.2, Pθ = 0, and PR = 0
(purple diamond in Fig. 6).

to cross the Poincaré section for the first time after starting on
the Poincaré section) as a function of (θ,Pθ ) on the Poincaré
section. The recurrence time map corresponding to the surface
of section of Fig. 6 is shown in Fig. 8. As we can observe in
this color map, in the rotational zones, the dynamics is rather
fast (of the order of tens of ps), while in the librational zones
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FIG. 8. First recurrence time (in ps) in the Poincaré section (PR =
0,ṖR < 0) in the plane (θ,Pθ ) for F = 1.5 × 10−3a.u. and energy
E = −3.98 × 10−4 a.u. The color axis has been saturated at 1000 ps
for clarity. In the middle region, the recurrence time reaches above
1400 ps. Note that a logarithmic scale is used in the color code.
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FIG. 9. Poincaré section (PR = 0, ṖR < 0) of Hamiltonian (1)
for an energy E = −3.976 × 10−4 a.u. and for an electric field F =
1.5 × 10−3 a.u.

the dynamics is much slower (on the order of a thousand ps).
This is due to the fact that the trajectories in the librational
zones [see Figs. 7(c) and 7(d)] reach rather large values of R

where the potential is extremely flat and hence the dynamics
is potentially extremely slow.

During the plateau of the pulse, for E < Ed [see Eq. (9)],
the trajectories are bounded and the ones which are the most
stretched are around the radial modes IR . As the energy E gets
closer to Ed , the maximum radius Rb of IR increases rapidly.
When the energy crosses the value Ed , the radial trajectories
IR and the quasiperiodic orbits surrounding them are the first
orbits to be unbounded because these orbits are localized along
the dissociation channels at θ = 0,π . This fact is observed in
the Poincaré section of Fig. 9 where the holes in the regions
around θ = 0,π correspond to the unbounded trajectories.

C. Dynamics during the ramp-down

As we observe in Fig. 4, the expected role of the ramp-
down is to increase the energy of the trajectories. Note that
not all the bounded dressed states, i.e., the bounded states
in the presence of the laser field, remain bounded after the
ramp-down. When the energy probability distribution after the
ramp-down is calculated (see Fig. 10), we observe a strong
peak structure which indicates that, after the ramp-down, most
of the trajectories have energies in a narrow region around
zero.

Where are the formed trajectories in phase space? This
is a particularly difficult question to address since, besides
the dependence of the formed trajectories with the initial
conditions, it highly depends on the parameters of the laser
pulse (like the intensity, the duration of the ramp-up, plateau,
and ramp-down). In particular, it is not possible to predict
on the Poincaré section represented in Fig. 6 which initial
conditions lead to formation and which ones to dissociation.
The main reason is that, depending on the duration of the pulse,
the same initial condition can lead to formation or dissociation.
One of the noticeable features is that the formed trajectories
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FIG. 10. Probability distribution of the energy of an ensemble
of trajectories with an initial energy E0 = 3 × 10−9 a.u. after the a
ramp-down of 15 ps. The vertical red line indicates the zero energy
value. The amplitude of the laser field is 1.5 × 10−3 a.u. and the
parameters of the pulse are Tru = Trd = 15 ps and Tp = 70 ps.

have a finite range for the distance, meaning that if the distance
between the two atoms is too large, it will not lead to formation.
For instance, for F = 1.5 × 10−3, this maximum distance is
about 130 a.u. In Fig. 11 we represent the histograms of initial
distances leading to formation compared to the ones which
lead to dissociation, where we notice that after some fixed
initial distance, the formation is no longer possible. We also
notice that the trajectories leading to formation are the ones
with small values of Pθ , especially at the end of the laser pulse.

From the pendulum-like structure of the Poincaré map of
Fig. 6, we know that the phase space is populated with two
main types of trajectories, namely, vibrational and rotational
trajectories. As we illustrate in Fig. 7, the vibrational orbits
reach the largest interatomic distances. Thence, because the
dimer must be formed with trajectories connecting large
and small values of R and most of the orbits have initial
conditions with values of R0 > 25 a.u., we can argue that
vibrational trajectories should play a dominant role in the
formation mechanism. Moreover, because the radial mode
IR is the simplest vibrational orbit, it is expected to find in

C
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2×10

0 50 100 150 200
R0 (a.u.)

-4

1×10-4

FIG. 11. Histogram of the initial conditions leading to formation
(solid red line) and leading to dissociation (shaded blue line). The
parameters of the laser are F = 1.5 × 10−3 a.u., Tru = Trd = 15 ps,
and Tp = 70 ps. The energy of the trajectories is E0 = 3 × 10−9 a.u.

this periodic orbit the same qualitative formation behavior
observed in the full system. In other words, this information
allows one to focus on the formation dynamics arising from
the one-degree-of-freedom Hamiltonian associated with IR ,
e.g., with a Hamiltonian model where the degree of freedom
(θ,Pθ ) is frozen.

IV. ONE-DEGREE-OF-FREEDOM MODEL

The codimension 2 manifolds defined by θ = kπ/2 (k =
0,1,2) and Pθ = 0 are invariant under the dynamics. This
allows us to define essentially two reduced Hamiltonian
systems with 1+1/2 degrees of freedom:

H1(R,PR,t) = P 2
R

2μ
+ ε(R) − g(t)

F 2

4
α‖(R), for θ = 0,π,

(12)

and

H2(R,PR,t) = P 2
R

2μ
+ ε(R) − g(t)

F 2

4
α⊥(R), for θ = π/2.

(13)

The model (12) describes the dynamics of the radial mode
IR and it is structurally stable, in the sense that if we move
slightly away from this model by considering the full model in
a range of values of θ and Pθ close to zero, the dynamics stays
in the vicinity of the ones obtained with the model (12). On
the contrary, the second model described by Hamiltonian (13)
is structurally unstable since trajectories near θ = π/2 and
Pθ = 0 tend to move away from these values in the full model.
In this way, in what follows we focus on Hamiltonian (12).
The corresponding equations of motion are

Ṙ = PR

μ
,

(14)

ṖR = −dε(R)

dR
+ g(t)

F 2

4

dα‖(R)

dR
.

We consider an ensemble of initial conditions (R0,P
0
R) with

energy E0 = 3 × 10−9 a.u. defined as

E0 = P 2
R0

2μ
+ ε(R0),

where the initial values of intermolecular distance R0 are
distributed in the interval [Rmin,Rmax] = [6.2319,100] a.u.
according to the criterion described in Sec. III.

Using this ensemble of initial conditions, we compute
the formation probability as a function of the electric field
parameter F and the results are shown in Fig. 12. We notice
that we find the same qualitative behavior as in the formation
probability for the full Hamiltonian (1), notably the decrease
of the probability for sufficiently large amplitudes.

After a ramp-up of 15 ps, the probability distribution of the
energy is represented in Fig. 13 for the value F = 1.5 × 10−3

a.u. for which a significant formation probability is observed
(see Fig. 12).

From the computation of the probability distribution of the
energy after the ramp-up (red line in Fig. 13), we observe
again a strong peak structure which indicates that, after the
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FIG. 12. Formation probability as a function of F for an initial
energy E0 = 3 × 10−9 a.u. computed using Hamiltonian (12). The
parameters of the pulse are Tru = Trd = 5 ps and Tp = 70 ps (dashed
red line), Tru = Trd = 15 ps and Tp = 70 ps (solid green line), and
Tru = Trd = 15 ps and Tp = 140 ps (dotted blue line), respectively.

ramp-down, most of the trajectories have energies in a narrow
region below the dissociation threshold Ed = −F 2α‖(∞)/4.
This is an expected behavior since the effect of the ramp-up is
to decrease the initial energy E0 of the trajectories and due to
fact that E0 is small, the energies of the trajectories after the
ramp-up are below Ed .

Since the initial distances R0 of our trajectories are in
general large, we assume that, during the ramp-up, the
intermolecular distances R do not change significantly since
Ṙ = PR/μ is small. Under this assumption, an approximation
of the momentum at the end of the ramp-up is obtained by
considering that R is constant. Indeed, using the equations of
motion (14), the variation of the radial momentum induced by
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FIG. 13. Probability distributions of an ensemble of trajectories
with an initial energy E0 = 3 × 10−9 a.u. after a ramp-up of 15 ps
obtained with formula (16) (solid red line) and with Hamiltonian (12)
(dashed blue line). The amplitude of the laser field is F = 1.5 ×
10−3a.u. The dashed green vertical line indicates the dissociation
energy Ed = −F 2α‖(∞)/4 while the dotted purple vertical line
denotes the energy Ed = −F 2α‖(Rmax)/4.

 0

 0.2

 0.4

 0.6

 0.8

 1

 0  1  2  3  4

Pr
ob

ab
ili

ty
 P

(F
)

F  x10-3(a.u.)

FIG. 14. Formation probability for Hamiltonian (12) as a function
of F for an initial energy E0 = 3 × 10−9 a.u. The parameters of the
pulse are Tru = 15 ps, Tp = 70 ps, and no ramp-down.

the ramp-up of the field is approximately given by

�PR(Tru) ≈ F 2

8
Tru

dα‖(R0)

dR
, (15)

where the term of order F 4 is neglected and we assume that
dε(R0)/dR ≈ 0. Since dα‖(R0)/dR is negative (see Fig. 1)
for most of the values of R0, we conclude that, in general,
the momentum decreases as a result of the ramp-up. In order
to have an approximate value of the energy at the end of the
ramp-up of the laser field for large values of R0, we insert
Eq. (15) into Hamiltonian (12). After neglecting the term of
order F 4, we get

Eru ≈ E0 − F 2

4
α‖(R0) + F 2Tru

8μ
P 0

Rα′
‖(R0). (16)

In order to check the validity of the above equation, we
compute the probability distribution of the energy for our set
of initial conditions by using Eq. (16). The result (blue line in
Fig. 13) is rather accurate since the probability distribution
obtained from Eq. (16) is closely peaked below the value
E = −F 2α‖(Rmax)/4.

During the plateau, the Hamiltonian (12) has one degree of
freedom and the energy of the system is conserved. Since
for relevant values of F , all the energies are below the
dissociation threshold Ed = −F 2α‖(∞)/4, all the trajectories
remain bounded during the plateau. This is confirmed in
Fig. 14 where the formation probability, computed from an
energy criterion E < Ed = −F 2α‖(∞)/4, is represented as a
function of F .

It means that at all times, all the dimers remain bounded in
the presence of the laser field for F � 2 × 10−4 a.u., whether
a distance or an energy criterion is used. During the plateau,
all the bounded trajectories are periodic and their periods are
given by

T (E,F ) =
√

2μ

∫ Rb(E,F )

Ra(E,F )

dR√
E − ε(R) + F 2

4 α‖(R)
, (17)
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FIG. 15. Periods of our ensemble of trajectories for F = 1.5 ×
10−3 a.u. using Eq. (17). Note the logarithmic scale in the vertical
axis.

where Ra < Rb are the two turning points given by the
solutions of

ε(R) − F 2

4
α‖(R) = E < Ed.

Since the ramp-up promotes most of the trajectories very
close but below the threshold energy values Ed , we have
computed the periods of our ensemble of trajectories for
F = 1.5 × 10−3 a.u. The results are shown in Fig. 15. As
expected, the motion is very slow in comparison with the
duration of the pulse and it mirrors the observation made in
the first recurrence time map of Fig. 8.

As we have observed, after the ramp-up and for relevant
values of F , most of the trajectories remain bounded during
the plateau. However, not all these bounded dressed states, i.e.,
the bounded states in the presence of the laser field, remain
bounded after the ramp-down. Even for this one-dimensional
model it is cumbersome to untangle the effects of the various
parts of the pulse and to provide insights into the role of the
parameters of the pulse. In order to unravel the dynamics,
we consider the long-range dynamics of the one-degree-of-
freedom Hamiltonian model (12).

V. SIMPLIFIED POTENTIAL

In order to investigate the long-range behavior of Hamilto-
nian (12), we assume that, for R large, the expressions of the
functions defining the potential are [see Eqs. (5) and (8)],

ε(R) ≈ − b6

R6
, (18)

α‖(R) ≈ αRbCs + d2

R2
+ d3

R3
, (19)

and the simplified long-range Hamiltonian becomes

Hs = P 2
R

2μ
− b6

R6
− g(t)

F 2

4

(
αRbCs + d2

R2
+ d3

R3

)
. (20)

The formation probability computed using Hamilto-
nian (20) as a function of F is shown in Fig. 16. This
formation probability (green line in Fig. 16) is in very close
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FIG. 16. Formation probability as a function of F for an initial
energy E0 = 3 × 10−9 a.u. obtained from the long-range Hamilto-
nian (20) (dashed red line) and the full Hamiltonian (12) (solid
green line). The parameters of the pulse are Tru = Trd = 15 ps and
Tp = 70 ps.

agreement with the formation probability obtained with the
full Hamiltonian (12) (red line in Fig. 16), which validates the
approximate expressions (18) and (19) of the potentials.

In order to get some insight into this probability curve, we
compute the momentum transfer during the laser pulse as

�PR = F 2

4

∫ Tru+Tp+Trd

0
g(t)

dα‖(R)

dR
dt. (21)

where we again assume that dε(R)/dR ≈ 0. Initially, the
momentum is given by

P 0
R = ±

√
2μ[E0 − ε(R0)].

For example, for R = 50 a.u. the initial value of the momentum
is P 0

R ≈ 0.3 a.u. and the radial velocity is Ṙ(0) ≈ 3 × 10−6

a.u. As a consequence, Ṙ(0) is small and, therefore, it is
reasonable (at least at the leading order) to assume that R

is approximately constant. Using this assumption, the shape
of the laser pulse given by Eq. (4) and the expression (21), the
momentum transfer induced by the pulse is given by

�PR = F 2(Tru + 2Tp + Trd)

8

dα‖(R)

dR
. (22)

We notice that �PR < 0 since dα‖(R)/dR is always negative.
This small momentum transfer, which is of the same order
as P 0

R , is responsible for the formation, even though this
momentum transfer does not have significantly impact on the
variation of the interatomic distance on the short time scale of
the laser pulse. Furthermore, the dependence of the momentum
transfer on the parameters of the laser pulse is rather simple
since the only involved parameter is Tru + 2Tp + Trd. In fact,
the dependence as a function of F and the parameters of the
laser pulse can be encapsulated in a single effective parameter

f = F

2
√

2

√
Tru + 2Tp + Trd,
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FIG. 17. (a) Evolution as a function of F of the roots R1 and R2 of E(R) given by Eq. (24). (b) Evolution of R2 − R1 as a function of F .
The parameters of the pulse are Tru = 15 ps, Tp = 70 ps, and Trd = 15 ps.

so that for a fixed value of f , the formation probability no
longer depends on the parameters of the laser pulse. Using the
momentum transfer (22), the energy at the end of the laser
pulse is

Ef = E0 + P 0
R�PR

μ
+ (�PR)2

2μ
. (23)

According to Eq. (23), there is formation if Ef < 0. Since
�PR is negative, the final energy Ef can only be negative (i.e.,
resulting in a formation) if P 0

R is positive. This is a necessary
but not a sufficient condition. If F is too small, the final energy
remains positive (and close to E0) since the negative term is
insufficient to compensate for E0, so there is no possibility for
formation. If F is too large, the dominant term in Eq. (23) is
(�PR)2/(2μ) which is positive, therefore resulting in a positive
final energy, and there is no formation. This qualitatively gives
the explanation for the increase of the formation probability
for small F and the decrease for large F .

In order to be more quantitative, we consider Eq. (23) for
P 0

R > 0 as a general function E(R) in the variable R and which
depends on the parameter f ,

E(R) = E0 − f 2

√
2

μ

(
E0 + b6

R6

) (
2d2

R3
+ 3d3

R4

)

+ f 4

2μ

(
2d2

R3
+ 3d3

R4

)2

. (24)

When R → ∞, E(R) tends to E0 and when R → 0, E(R)
tends to +∞. The function E(R) has two roots R1(f ) and
R2(f ) such that R1(f ) < R2(f ). Because the function E(R)
is negative between these two roots, if the interatomic distance
is in the region where E(R) is negative, e.g., between the roots
R1(f ) and R2(f ), then there is formation.

Figure 17 shows the evolutions of R1,2(F ) and R2(F ) −
R1(F ) as a function of F . We notice that the distance
R2 − R1 first increases with F until F ≈ 10−3a.u. and then
decreases. This behavior mirrors the increase and decrease of
the formation probability as a function of F .

In the appendix, we derive some approximate expansions
for the zeros of E(R) and deduce two expansions for R2 − R1,
one for small values of F and one for larger values of F . In a
nutshell, these expansions lead to the following behaviors: For
small F , the formation probability increases as F 2/7, and for

large F , it roughly decreases with F as 1/F . More specifically,
we have

R2(f ) − R1(f ) ≈
(

3d3
√

2b6

E0
√

μ

)1/7

f 2/7 for f 	 1,

(25)

R2(f ) − R1(f ) ≈ b
1/2
6 (2μ)1/4

2
√

3d3E
1/4
0 f

− b
1/2
6 d2(2μ)1/8

4E
3/8
0 (3d3)5/4f 1/2

for f 
 1.

(26)

Naturally, for an ensemble of values of R0 between Rmin

and Rmax, we consider the overlap between the intervals
[Rmin,Rmax] and [R1(f ),R2(f )], so that an approximation of
the formation probability is given by

P (f ) = min[Rmax,R2(f )] − max[Rmin,R1(f )]

2(Rmax − Rmin)
, (27)

if R1(f ) � Rmax and R2(f ) � Rmin; otherwise the probability
is zero since there is no overlap between the available values
of R0 and the values of R leading to a negative energy. The
coefficient 1/2 in the probability expression (27) comes from
the fact that for a given R, there are two possible initial
values for P 0

R , one positive (and possibly leading to formation)
and another one negative (not leading to formation) with the
same energy E0. The blue curve on Fig. 18 is the formation
probability obtained using the numerical computation of the
roots of E(R) and using Eq. (27). The agreement with the
numerical integration of the trajectories for the simplified
Hamiltonian (20) as well as with the full one-dimensional
Hamiltonian (12) is very good, validating the assumptions on
the dynamics of the trajectories leading to the approxima-
tion (27) for the formation probability.

The main reason for the rather good quantitative agreement
is that, in the interval [Rmin,Rmax], a large portion of the initial
values of R are large and the approximations performed to
derive Eq. (27) are valid.

Three parameters emerge as most influential in the for-
mation probability. All of them are related to the long-range
behavior of the dimer. One is related to the dimer potential
(behavior as 1/R6) and two are linked with the parallel
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FIG. 18. Formation probability given by Eq. (27) as a function
of F (dotted blue line). For completeness, the formation probability
as a function of F obtained from the long-range Hamiltonian (20)
(dashed red line) and from the full Hamiltonian (12) (solid green
line) are also shown. The black vertical dashed arrow is located at
the value F ≈ 0.00107 a.u. given by Eq. (28). For this value of F ,
it is expected to find the maximum of the formation probability. The
parameters of the pulse are Tru = 15 ps, Tp = 70 ps, and Trd = 15 ps.
The initial energy of the trajectories is E0 = 3 × 10−9 a.u.

polarizability (behaviors as 1/R2 and 1/R3). It should be
noticed that the term in 1/R6 in the potential ε(R) is absolutely
essential to ensure the existence of the two roots of E(R).

In the appendix we also provide an approximate expression
for the value of the electric field amplitude where a maximum
of formation is expected and it is given by

F ≈ 2
√

2√
Tru + 2Tp + Trd

. (28)

For a laser pulse with parameters Tru = 15 ps, Tp = 70 ps,
and Trd = 15 ps, according to Eq. (28), the maximum of
formation is expected at F ≈ 0.00107 a.u. As we can observe
in Fig. 18, this value lies in the neighborhood of the values of
F where the computed formation probability is maximum.

In addition, we have shown in the appendix the rather small
dependence of the formation probability with respect to the
initial energy of the system (or equivalently, to its temperature).

VI. CONCLUSION

The classical study carried out in this paper shows the
feasibility of using an intense linearly polarized laser field
to drive the association of Rb and Cs cold atoms to create a
dimer in its ground state. Interestingly, from our numerical
calculations of the evolution of the formation probability
as a function of the electric field strength of the laser, we
find that the formation probability first increases and then
decreases with increasing laser field intensity. In order to
explain this surprising behavior of the formation probability,
we use nonlinear dynamics and we show that the main element
responsible for the formation of RbCs is a rather small change
in the radial momentum PR induced by the laser pulse through
its interaction with the molecular polarizability. This change
of radial momentum is so small that it is not sufficient to

induce changes in the positions of the atoms on the short time
scale of the laser pulse. However, it is sufficient to allow the
formation of RbCs dimers. Furthermore, the behavior of the
formation probability reflects the long-range behavior of
the dimer. The deep impact of the long-range behavior of the
molecule in the formation mechanism allows us to reduce
the dynamics to a one-dimensional radial Hamiltonian where
only the long-range terms of the potential are taken into
account. With this simplified Hamiltonian, we explained why
initially positive momentum leads to higher formation and
why an initially too short or too large interatomic distance
[i.e., shorter than R1(f ) or larger than R2(f )] does not
lead to formation. Moreover, from these observations and
using that one-dimensional Hamiltonian, we have derived
the approximate expression (27) for the formation probability
which highlights the role of the relevant parameters of the laser
pulse and of the interaction potential which lead to the shaping
of the formation probability. In particular, such an expression
might be helpful to control the formation probability by
adjusting the parameters of the laser field. Finally, a quantum
extension of our classical approach to the driven formation
of cold dimers is of immediate interest in order to predict
the quantum association rate which could be compared to
experiments. Work along this line is now in progress.
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APPENDIX: APPROXIMATE EXPRESSIONS FOR THE
ZEROS OF THE FUNCTION E(R)

In order to obtain the asymptotic behaviors of the zeros of
Eq. (24) and hence of the formation probability, we rewrite
E(R) as

E(R) = 1

2

[
X −

√
2

(
E0 + b6

R6

)]2

− b6

R6
,

where

X = f 2

√
μ

(
2d2

R3
+ 3d3

R4

)
.

The zeros of E(R) satisfy

X± =
√

2

(
E0 + b6

R6

)
±

√
2b6

R6
. (A1)

The above equation corresponds to two implicit equations for
R1 and R2. The branch with X+ corresponds to R1 and the
one with X− to R2. When f tends to zero, the two solutions
R1 and R2 converge to zero. Using an expansion of Eq. (A1)
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around R = 0, we obtain the asymptotic behaviors

R1(f ) ≈ 3d3

2
√

2μb6
f 2, (A2)

R2(f ) ≈
(

3d3
√

2b6

E0
√

μ

)1/7

f 2/7. (A3)

As a consequence, if [R1,R2] ⊂ [RminRmax], the formation
probability increases as f 2/7. It is worth noticing that there
is a very slight dependence on the initial energy (i.e., on the
temperature T of the gas) since the approximate formation
probability behaves as T −1/7.

For large values of f , the two roots R1(f ) and R2(f ) tend
to infinity with the same asymptotic behavior given by R0(f )
solution of

f 2

√
μ

(
2d2

R3
+ 3d3

R4

)
=

√
2E0.

An explicit solution of R0(f ) can be obtained since it is a
solution of a quartic polynomial. However, this expression is
not very helpful. An expansion of the solution is given by

R0(f ) = 31/4d
1/4
3

√
f

(2μE0)1/8
+ d2

2
√

3d3

f

(2μE0)1/4
+ O(f 5/4).

The two roots R1(f ) and R2(f ) tend to R0(f ) as f in-
creases, and the distance between the two roots decreases

as

R2(f ) − R1(f ) ≈ b
1/2
6 (2μ)1/4

2
√

3d3E
1/4
0 f

− b
1/2
6 d2(2μ)1/8

4E
3/8
0 (3d3)5/4f 1/2

.

(A4)

Given the values of the coefficients, we expect the formation
probability to decrease as f increases. The leading behavior is
proportional to f −1 but the second term is of the same order,
so it needs to be taken into account for a more quantitative
agreement (see Fig. 17). We notice the strong dependence
of the formation probability with one of the parameters of
the potential ε(R), namely b6, as well as the two main
parameters of the parallel polarizability, namely d2 and d3. In
addition, there is a slight dependence of the initial energy (or
equivalently the temperature): It increases as the temperature
decreases. The leading behavior is T −1/4. Using Eqs. (A3)
and (A4), we obtain an approximate value of F for the expected
maximum of R2 − R1:

f∗ = b
1/3
6 μ1/4

223/36(3d3)1/2E
1/12
0

.

In particular we notice the very small dependence of this value
with the initial energy, i.e., the temperature of the gas. As a rule
of thumb, f∗ ≈ 1, so the expected maximum for the formation
probability is approximately obtained for

F∗ ≈ 2
√

2√
Tru + 2Tp + Trd

.
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H.-C. Nägerl, C. R. Le Sueur, J. M. Hutson, P. S. Julienne,
S. Kotochigova, and E. Tiemann, Phys. Rev. A 85, 032506
(2012).
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