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High-order-harmonic generation (HHG) results from the interaction of ultrashort laser pulses with matter. It
configures an invaluable tool to produce attosecond pulses, moreover, to extract electron structural and dynamical
information of the target, i.e., atoms, molecules, and solids. In this contribution, we introduce an analytical
description of atomic and molecular HHG, that extends the well-established theoretical strong-field approximation
(SFA). Our approach involves two innovative aspects: (i) First, the bound-continuum and rescattering matrix
elements can be analytically computed for both atomic and multicenter molecular systems, using a nonlocal short
range model, but separable, potential. When compared with the standard models, these analytical derivations
make possible to directly examine how the HHG spectra depend on the driven media and laser-pulse features.
Furthermore, we can turn on and off contributions having distinct physical origins or corresponding to different
mechanisms. This allows us to quantify their importance in the various regions of the HHG spectra. (ii) Second, as
reported recently [N. Suárez et al., Phys. Rev. A 94, 043423 (2016)], the multicenter matrix elements in our theory
are free from nonphysical gauge- and coordinate-system-dependent terms; this is accomplished by adapting the
coordinate system to the center from which the corresponding time-dependent wave function originates. Our SFA
results are contrasted, when possible, with the direct numerical integration of the time-dependent Schrödinger
equation in reduced and full dimensionality. Very good agreement is found for single and multielectronic atomic
systems, modeled under the single active electron approximation, and for simple diatomic molecular systems.
Interference features, ubiquitously present in every strong-field phenomenon involving a multicenter target, are
also captured by our model.
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I. INTRODUCTION

High-order-harmonic generation (HHG) is a conversion
process resulting from the extremely high nonlinear inter-
action of a short and intense laser pulse with gas atoms
or molecules or, recently, solid targets and nanostructures
[1–6]. Nowadays, the HHG process is the conventional
route for the production of spatially and temporally coherent
extreme-ultraviolet (XUV) light, as well as light pulses in the
subfemtosecond and attosecond regimes [7]. Coherent light
sources in the ultraviolet (UV) to XUV spectral range are
ubiquitously employed in a broad range of subjects, including
basic research, material science, biology, and lithography [3].
Furthermore, the molecular HHG process encodes electronic
orbital structure information and presents, as a consequence, a
reliable method to retrieve molecular intrinsic parameters with
attosecond and sub-Ångström temporal and spatial resolution,
respectively [8–12]. Taking this objective in mind, a large
amount of both theoretical and experimental work have been
conducted in order to optimize, improve, and understand
the molecular HHG process. Furthermore, HHG in atoms is
one of the most studied topics of strong-field physics and
several theoretical models, aside from the solution of the time-
dependent Schrödinger equation (TDSE), have been developed
to describe it. Amongst them, the most successful and widely
used is the strong-field approximation (SFA) [13,14].
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The underlying physics of the HHG process is usually
understood by invoking the so-called “three-step model”:
(i) tunnel ionization, (ii) propagation in the laser field
“continuum,” and (iii) recombination with the parent ion
[14,15]. According to this approach, when a strong laser
pulse interacts with an atomic or molecular target, a bounded
electron is liberated through tunnel ionization (this happens
when the laser electric field is close to its peak during an
optical cycle). This “free” electron is then driven away from
the ionic core and accelerated by the laser electric field,
developing an oscillating trajectory. During this journey, the
electron accumulates kinetic energy, that is released during the
recombination process in the form of a high-energy photon. As
this three-step process usually occurs every half-cycle of the
laser field, the spectrum of the generated coherent radiation
consists of peaks at odd integer multiples of the driven laser
frequency.

On the other hand, for multicenter molecules, much less
experimental [2,16–21] and theoretical [18,22–30] work have
been done. The direct numerical solution of the TDSE for
more complex systems, with more than two centers, is a
quite challenging and formidable task from the numerical
and computational viewpoints. Even for the simplest di-
atomic molecule, one has to solve a three-dimensional TDSE
(3D-TDSE), that typically requires the utilization of a multi-
core CPU and large amount of memory. In addition, the inter-
pretation of the results extracted from the TDSE is a not trivial
subject, in particular if one wants to disentangle the underlying
physical mechanisms contributing to the total HHG spectrum.
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As was mentioned above, the initial interest in the molecular
HHG relies on the fact that it offers additional degrees of
freedom and promising possibilities, such as the alignment
of the molecular axis with respect to the laser field polar-
ization. Specifically, for a diatomic system, the existence
of a distinctive quantum-interference minima pattern in the
spectra and its dependence with the molecular orientation
have been theoretically predicted by Lein et al. [9,31,32].
It is demonstrated that this pattern is due to a destructive
interference from the high-harmonic emission at spatially sep-
arated centers and the internuclear distance can be accurately
obtained scrutinizing the HHG spectra. In addition, the chance
of controlling the phases and improving the phase-matching
condition opens a route to the investigation of this area.
More importantly, research on this field revealed how the
distinctive features of the molecular HHG spectra can be
used to retrieve structural information in simple molecules
[33]. Furthermore, the so-called HHG spectroscopy has shown
the possibility to extract structural and dynamical information
from the molecular HHG spectra in more complex targets (for a
couple of examples see, e.g., [34–36]). Finally, studies in small
molecules have demonstrated that the temporal evolution of the
electronic wave function can be directly recovered [37–39].

In this paper, we use the SFA within the framework of the
Lewenstein’s model to study HHG both from atoms and two-
and three-center molecular systems in the few-cycle infrared
(IR) laser-pulse regime. The derivation for the molecular
systems is constructed as a consecutive extension of the atomic
model. For simplicity, our analytical model is based on a
nonlocal potential which has approximately a short-range (SR)
character. We compute HHG spectra for those three systems
and, for the atomic case, compare the results with the numerical
solution of the 3D-TDSE in the single-active-electron (SAE)
approximation.

Our approach involves two innovative aspects: (i) First, us-
ing a model nonlocal, but separable, potential we analytically
calculate the bound-free dipole and the rescattering transition
matrix elements for both the atomic and molecular multicenter
systems. In comparison with the standard approaches to the
HHG process, this analytic derivation of the different matrix
elements gives us the possibility to study directly how the HHG
spectra depend on the atomic target and laser-pulse features;
we can turn on and off contributions having distinct physical
origins or corresponding to different physical mechanisms.
This allows us to quantify their weights in the various regions
of the HHG spectra. (ii) Second, as in Ref. [40], in our theory
the dipole matrix elements are free from nonphysical gauge-
and coordinate-system-dependent terms; this is achieved by
adapting the coordinate system, in which SFA is performed,
to the center from which the corresponding part of the
time-dependent wave function originates. We compare, when
possible, our SFA results with the numerical solutions of the
TDSE in full dimensionality. Excellent agreement is found
for atomic and molecular systems, including multielectronic
systems modeled under the SAE. Our model captures also the
interference features, ubiquitously present in any multicenter
target.

This article is organized as follows. In Sec. II, we address
the main theory describing the HHG process and, in particular,
the derivation of the time-dependent dipole matrix element

within the SFA. Here, we make use of the results previously
presented in [40,41] to obtain the analytical expressions needed
to compute each of the individual contributions. Particularly
for the three-center molecular system, we develop a new set
of equations to compute the time-dependent dipole matrix
element, making use of the nonlocal SR potential bound states.
In Sec. III, HHG spectra for the atomic and molecular cases
are numerically calculated. Results in hydrogen and argon
atoms are presented, comparing them with those obtained
from the 3D-TDSE. For diatomics, we analyze two systems:
H2

+ and H2. For the H2
+ case, the basic analysis of the

interference minima of the HHG spectra with respect to the
molecular orientation is discussed. In addition, the contribution
of the different processes to the total harmonic radiation is
assessed. A time analysis of the HHG spectra using a Gabor
transformation is performed and the influence of the short and
long trajectories is investigated. In addition, CO2 and H2O
define our three-center molecular systems. For both cases, we
investigate the dependence of the HHG spectra with respect
to the molecular orientation and extract information about the
different mechanisms contributing to the total HHG spectra.
Finally, in Sec. IV, we summarize the main ideas and present
our conclusions. Atomic units will be used throughout the
paper unless otherwise stated.

II. THEORY OF HHG WITHIN THE SFA

In this section, we develop a quantum mechanical approach
of HHG using the generalized SFA model described in
Refs. [13,14]. The source of the additional frequencies that
are generated during the interaction of a strong laser pulse
with an atomic or molecular target is the nonlinear dipole
oscillation of the medium. Therefore, the aim is to calculate
this dipole response by means of the solution of the TDSE.
The time-dependent dipole moment reads as

�μ(t) = −〈�(t)|r|�(t)〉, (1)

where |�(t)〉 is the state describing the time evolution of the
atomic or molecular system under study. In general, within the
SFA statement, we can write the wave function of the whole
system as a superposition of the ground |0〉 and continuum
states |v〉 as |�(t)〉 = eiIp t[a(t)|0〉 + ∫

d3v b(v,t)|v〉], where
the transition amplitude of the continuum states is denoted
by b(v,t). After some algebra with the above equations and
only considering transitions from the bound to the continuum
states, the time-dependent dipole moment reads as

�μ(t) =
∫

d3v b(v,t) d∗(v) + c.c., (2)

where the bound-continuum transition dipole matrix element
is defined as d(v) = −〈v|r|0〉. The radiation emitted by a
single atom is proportional to the time-dependent dipole
moment �μ(t). In this way, the harmonic spectrum I (ω) is
calculated as the modulus squared of the Fourier-transformed
dipole acceleration a(t) related to the defined time-dependent
dipole matrix element [Eq. (2)] by the Ehrenfest theorem as
|ã(ω)| = |ω2 μ̃(ω)|. Finally, we can compute the harmonic
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spectra as

IxN(ω) ∝
∣∣∣∣
∫ ∞

−∞
dt eiωt �μxN(t)

∣∣∣∣
2

. (3)

Here, the subscript x will take the values 1,2, . . . ,n, where
n is the total number of atoms of the molecule. For case of a
diatomic molecule, i.e., constituted by two atoms, the subscript
is set to x = 2, meaning �μ2N(t) and I2N(ω). Notice that both
the atomic and molecular harmonic spectra depend directly on
the time-dependent dipole moment. The latter in turn depends
on the form of the bound-continuum matrix element and the
continuum states transition amplitude, that are different for
each of atomic, diatomic, or multiatomic system under study.

A. Calculation of the time-dependent dipole moment
for atomic systems: �μ1N(t)

In order to have all the ingredients to compute the harmonic
spectrum for an atomic system I1N (ω), using Eqs. (2) and
(3), we need to know the exact dependency of the bound-
continuum matrix element and the transition amplitude for
the continuum states. The method to find these quantities
for an atom under the influence of an intense laser pulse
has been described in our previous work [41]. We therefore
take advantage of those results and only explain here the new
derivations needed to tackle the HHG problem.

The transition amplitude for the continuum states of the
atomic system reads as

b(p,t) = i

∫ t

0
dt′ E(t ′) · d[p + A(t ′)]e−i S(p,t,t ′), (4)

where the exponent phase factor is “the semiclassical action”
S(p,t,t ′) = ∫ t

t ′ dt̃{[p + A(t̃)]2/2 + Ip} defining all the pos-
sible electron trajectories from the “birth” time t ′ until the
“recombination” one t .

The explicit expression for the bound-continuum matrix
element obtained in [41] is

d1N(p0) = i p0

(
p2

0 + �2
) + (p2

0
2 + Ip

)
(
p2

0 + �2
) 3

2
(p2

0
2 + Ip

)2

[
� + √

2Ip

2π (2Ip)−1/4

]
. (5)

Inserting Eqs. (4) and (5) in the time-dependent dipole moment
(2), and changing variables to the canonical momentum
defined by p = v − A(t), we get

�μ1N(t) = i

∫ t

0
dt′

∫
d3p E(t ′) · d1N[p + A(t ′)]

× e−i S(p,t,t ′) d∗
1N[p + A(t)] + c.c. (6)

Equation (6) has to be understood as follows: the electron
is ionized at time t ′ with a certain probability defined by
E(t

′
) · d1N[p + A(t

′
)]. During its excursion in the continuum

the electronic wave function is then propagated until the time
t , acquiring a classical phase S(p,t,t ′), to finally recombine
with the ion core at time t with a rate given by d∗

1N[p + A(t)].
All possible combinations of birth time and momenta must
be considered and therefore a multidimensional integration is
required, where their contributions are added up coherently.
Note that Eq. (6) configures a highly oscillatory integral,
both in the momentum p and t ′ variables. As a consequence,

it is convenient to rewrite the integral over p using the
stationary-phase approximation or saddle-point method. In
order to do that, it is necessary to find the extremal points over
the exponential phase. The extrema p = ps are found from
the solutions of ∇pS(p)|ps

= 0. These saddle-point momenta
ps thus can be written as ps = − 1

τ

∫ t

t ′ A(t̃)dt̃ . Here, τ = t − t ′
denotes the excursion time of the electron in the continuum.
Expanding the function S(p,t,t ′) in a Taylor series around the
roots ps and then applying the standard saddle-point method
to the momentum integral over p, the time-dependent dipole
moment for the atomic system results:

�μ1N(t) = i

∫ t

0
dt′

(
π

ε + i(t−t ′)
2

) 3
2

E(t ′) · d1N[ps + A(t ′)]

× e−i S(ps ,t,t
′) d∗

1N[ps + A(t)] + c.c., (7)

where we have introduced an infinitesimal parameter ε to avoid
the divergence at t = t ′ (for a detailed discussion, see [40,41]).
The harmonic spectrum I1N(ω) is then numerically computed
inserting Eq. (7) in Eq. (3).

B. Calculation of the time-dependent dipole moment
for diatomic molecular systems: �μ2N(t)

In order to calculate the harmonic spectrum generated by a
diatomic molecule, we use the results obtained in Ref. [40]. As
we can extract from that reference, the general wave function
describing the state for a diatomic molecule can be written as

|�(t)〉 = eiIp t

⎡
⎣a(t)|0〉 +

2∑
j=1

∫
d3v bj (v,t)|v〉

⎤
⎦, (8)

from which the molecular time-dependent dipole moment
�μ2N(t) is easily obtained and has the following form:

�μ2N(t) =
2∑

j=1

∫
d3v d∗

2N(v)bj (v,t) + c.c. (9)

In the above equation, we require to insert the explicit
expression for the continuum states transition amplitude
b(p,t):

b(p,t) = b0,1(p,t) + b0,2(p,t)

= i

2∑
j=1

∫ t

0
dt′ E(t ′) · dj [p + A(t ′)]

× e−i{S(p,t,t ′)+Rj ·[A(t)−A(t ′)]} (10)

and the bound-continuum matrix element dj (v).
In the derivation of the length-gauge flavor of the SFA

for HHG in diatomic molecules, and in particular for
the computation of the bound-continuum matrix element
d(v) = −〈v|r|0〉, an unphysical term is neglected, without
giving a consistent reason or argument (see [42–44] for more
details). This term, that is a linear function of the internuclear
distance R, immediately introduces convergence problems as
R → ∞. Clearly, this behavior enters in conflict between the
length and velocity gauge predictions. This controversy is ob-
served in the case of above-threshold ionization (ATI) as well.
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The root of the problem relies in the degree of approximation to
handle the continuum states, considered as a set of plane waves
for the molecular system, without considering the relative
position of each atomic core. This creates an unphysical
treatment and therefore the appearance of such undesired term.
In our approach, we solve this issue by computing dj (v) =
−〈v|(r̂ − Rj )|0j 〉, where the bound-continuum matrix element
is calculated with respect to each atomic center located at Rj .
Note that if no approximations are done, i.e., if we consider
the case where 〈v| is a scattering wave of the field-free
Hamiltonian H0, the above-mentioned problem will not arise:
the scattering waves are orthonormal to the ground states |0j 〉.
However, as the main core of the SFA is to handle the contin-
uum states as Volkov states, i.e., neglecting the influence of the
residual molecular potential once the electron is in the contin-
uum, the convergence problems would remain if we do not cor-
rect the bound-continuum matrix element. The full derivation
of the bound-continuum matrix element for the ATI problem in
a two-center molecular system was introduced in Ref. [40]; this
bound-continuum matrix element is the same used for HHG. In
addition, an extended derivation for a three-center molecular
system is presented in the Appendix of this contribution.

The bound-continuum matrix element is defined by
d2N(p0) = ∑2

j dj (p0), where dj (p0) denotes the bound-
continuum matrix element related to the nucleus located at
the position Rj and is given by

dj (p0) = 2i M
p0

(
3p2

0 + 2Ip + 2�2
)

(
p2

0 + �2
) 3

2
(
p2

0 + 2Ip

)2
e−iRj ·p0 . (11)

Here,M is a normalization constant (for details, see Ref. [40]).
Note that the index j can take the value of 1 (or 2), referring
to the nucleus located at the position R1 on the left (or R2 on
the right).

The time-dependent dipole moment �μ2N(t) thus reads as

�μ2N(t) = i

2∑
j=1

2∑
j ′=1

∫ t

0
dt′

∫
d3p E(t ′) · dj [p + A(t ′)]

× e−i{S(p,t,t ′)+Rj ·[A(t)−A(t ′)]} d∗
j ′ [p + A(t)], (12)

where the subscripts j and j ′ represent the ionization and the
recombination atom positions, respectively.

Equation (12) contains information about all the recom-
bination processes occurring in the entire molecule during
the HHG phenomenon and can then be written as a sum of
components as

�μ2N(t) =
2∑

j=1

2∑
j ′=1

�μjj ′ (t). (13)

The four terms in the above equation encode all the individual
molecular recombination processes. Our physical interpreta-
tion of those contributions is as follows:

(i) An electron is ionized from the atom placed at the left
with respect to the coordinate origin at time t ′ with certain
probability: E(t ′) · d1[p + A(t ′)]. During its excursion in the
continuum, this electron accumulates a phase which depends
on the position from where it was detached, in this case R1.
Finally, because the electric field changes its sign and the

electron returns to the vicinity of the parent ion, the probability
of recombination results d∗

1[p + A(t)]. In this step, the energy
excess acquired from the laser electric field is converted into
a high-energy photon. The whole process is then described by

�μ11(t) = i

∫ t

0
dt′

∫
d3p E(t ′) · d1[p + A(t ′)]

× e−i{S(p,t,t ′)+R1·[A(t)−A(t ′)]} d∗
1[p + A(t)]. (14)

(ii) The second term is understood in a similar way. In this
case, the ionization and recombination processes occur in the
core placed at the right. The equation describing this process,
�μ22(t), is similar to Eq. (14) but now considering the matrix
element d2(v): the electron is detached from and recombines
at the position R2. The two processes described before are
spatially localized (involving only one core placed at a fixed
position R1 or R2) and we then refer to them as local processes.

(iii) The last two terms, �μ21(t) and �μ12(t), describe events
involving two atoms at two different positions R1 and R2.
Here, �μ21 can be understood as follows: the electron is
tunnel ionized from the atom on the right with certain
probability given by E(t ′) · d2[p + A(t ′)]. After this ionization
event the electron starts to move under the laser electric
field influence accumulating energy and acquiring a phase:
e−i{S(p,t,t ′)+R2·[A(t)−A(t ′)]}. Finally, the electron returns back to
the other core (located at the left) at the time t to end up
its journey in a recombination process that has an amplitude
proportional to d∗

1[p + A(t)]. As in previous cases, the energy
excess is converted and emitted in a form of a high-energy
photon. Considering both centers are involved in the HHG
process, we call these terms as cross processes. The expression
describing them reads as

�μjj ′ (t) = i

∫ t

0
dt′

∫
d3p E(t ′) · dj [p + A(t ′)]

× e−i{S(p,t,t ′)+Rj ·[A(t)−A(t ′)]} d∗
j ′ [p + A(t)], (15)

where the subscripts j and j ′ (now j 
= j ′) denote the nucleus
located at the left (j = 1) or right (j = 2).

Note from the above description that we have to account
four different possible processes corresponding to four differ-
ent time-dependent dipole moments. Two of them are local and
the other two cross representing all the possible recombination
scenarios in our diatomic molecule.

Similarly to the atomic case, in order to obtain the
molecular time-dependent dipole moment �μ2N(t), we apply
the saddle-point method in the momentum variable p. In fact,
the phases of the local contributions in Eq. (14), function
on the relative positions R1/2 of the atoms, cancel each
other defining a saddle-point momentum ps equivalent to
the one found for the atomic case (see Sec. II A). On the
other hand, the cross processes present more complex phases,
that directly depend on the position variables. For instance,
in �μ21(t) [ �μ12(t)] the saddle-point momentum is described
by ps+ = − 1

τ
[R + ∫ t

t ′ A(t̃)dt̃]{ps− = − 1
τ

[−R + ∫ t

t ′ A(t̃)dt̃]}.
In all our cases the model is employed to small internuclear
distances, where the condition R < E0/ω

2 is fulfilled, with
E0 and ω0 being the laser electric field peak amplitude and
carrier frequency, respectively. As a consequence, it is not
necessary to consider this saddle-point momentum definition
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(for more details about the validity of this approximation, see
[43]). Thus, we proceed by applying the standard saddle-point
momentum to all the local and cross contributions. The total
time-dependent dipole moment for our diatomic molecule then
reads as

�μ2N(t) = i
∑
j,j ′

∫ t

0
dt′

(
π

ε + i(t−t ′)
2

) 3
2

E(t ′) · dj [ps + A(t ′)]

× e−i{S(ps ,t,t
′)+Rj ·[A(t)−A(t ′)]} d∗

j ′ [ps + A(t)]. (16)

Finally, the total HHG spectrum is calculated using Eq. (3),
similarly to the atomic case, but using the time-dependent
dipole moment obtained in Eq. (16). As it was discussed, four
terms are needed to compute each molecular HHG spectrum.
Each term represents a different process, and this is equivalent
to the split made in the time-dependent dipole moment [see
Eq. (13)]. We label each contribution depending on the position
of the atoms, e.g., from the left-left term we obtain the I2N,11(ω)
spectrum. Similarly, we write the other three terms as I2N,22(ω),
I2N,12(ω), and I2N,21(ω), respectively.

It is convenient to identify two main contributions in the
total HHG spectrum [Eq. (16)], namely, (i) ones generated
for the local processes and (ii) others developed by the cross
processes. In this way, we can write the total HHG spectrum
as

I2N(ω) = I2N-local(ω) + I2N-cross(ω), (17)

where I2N-local(ω) = I2N,11(ω) + I2N,22(ω) and I2N-cross(ω) =
I2N,12(ω) + I2N,21(ω) denote the local and cross terms,
respectively.

C. Calculation of the time-dependent dipole moment
for three-center molecular systems: �μ3N(t)

The computation of the HHG spectrum generated by a
three-center molecule using the definition in Eq. (3) involves
the search of the exact bound states describing the whole
system. In order to do so, we use a method similar to the one
presented in Refs. [40,41]. In short, we consider a three-center
molecule as a set of three atoms placed at R1 = −R

2 , R2 = 0,
and R3 = R

2 , respectively. R is the so-called internuclear
distance, defined as the distance between the atoms placed
at R1 and R3 for the case of linear molecules. The state
describing the time evolution of a three-center molecule can
be written as |�(t)〉 = eiIp t[a(t)|0〉 + ∑3

j=1

∫
d3v bj (v,t)|v〉],

where the subscript j = 1,2,3, refers to the contributions of the
spatially localized nuclei at R1, R2, and R3, respectively. By
employing the TDSE on that state and our basic SFA approach,
the molecular time-dependent dipole moment �μ3N(t) reads as

�μ3N(t) =
∫

d3v d∗
3N(v)b(v,t) + c.c. (18)

�μ3N(t) is defined as a superposition of the bound-continuum
dipole matrix of each atom on the molecule, i.e., d3N(v) =∑3

j=1 dj (v). The exact dependency of the bound-continuum
matrix element is presented in the Appendix [see Eq. (A32)
for more details].

Using the exact definition of the bound-continuum ma-
trix element, the total continuum states transition amplitude

b(v,t) = ∑3
j=1 b0,j(p,t) reads as

b(p,t) = i

3∑
j=1

∫ t

0
dt′ E(t ′) · dj[p + A(t ′)]

× e−i{S(p,t,t ′)+Rj ·[A(t)−A(t ′)]}. (19)

The explicit expression for the molecular time-dependent
dipole moment �μ3N(t) is obtained inserting Eq. (19) in (18). As
in the case of diatomics, it is also possible here to disentangle
each of the recombination processes contributing to the total
HHG spectrum. In order to do so, we write �μ3N(t) as a sum of
nine terms as

�μ3N(t) =
3∑

j=1

3∑
j ′=1

�μjj ′ (t). (20)

The above equation contains information about all the
possible recombination scenarios present in our three-center
molecule. In order to make clearer the interpretation, let us
write the individual time-dependent dipole moments �μjj ′ (t)
explicitly as

�μjj ′ (t) = i

∫ t

0
dt′

(
π

ε + i(t−t ′)
2

) 3
2

E(t ′) · dj [ps + A(t ′)]

× e−i{S(ps ,t,t
′)+Rj ·[A(t)−A(t ′)]} d∗

j ′ [ps + A(t)], (21)

where the subscripts j and j ′ refer to the positions R1, R2,
and R3 of each of the atoms in the three-center molecule. In
Eq. (21), the first subscript j represents the atom from where
the electron is detached and can be j = 1,2,3. In addition, the
second one j ′ labels the atom where the recombination process
occurs, and can also take the values 1, 2, or 3.

Note that, as in the case of atoms and diatomic molecules,
in Eq. (21) we have applied the saddle-point method in the
integral over the momentum p variable. Additionally, we use
the conventional saddle-point momentum ps following the
same criteria as in the diatomic system (see Sec. II B).

As in the case of diatomics, the nine terms of Eq. (20)
represent all the possible local and cross processes. These
different terms should be understood as follows:

(i) The first term, �μ11(t), describes the process where an
electron is laser ionized from the atom placed at R1 at time
t ′ with probability E(t ′) · d1[ps + A(t ′)]. This electron, during
its excursion in the continuum, accumulates a phase which
depends on the position from where it was detached, in this
case R1. Finally, because the change in the sign of the laser
electric field, the electron returns to the vicinity of the parent
ion and has certain probability of recombination given by
d∗

1[ps + A(t)]. As a result of this recombination stage the
energy excess acquired from the laser electric field is converted
into a high-energy photon. As an example, the time-dependent
dipole moment describing this process when j = 1 and j ′ = 1
reads as

�μ11(t) = i

∫ t

0
dt′

(
π

ε + i(t−t ′)
2

) 3
2

E(t ′) · d1[ps + A(t ′)]

× e−i{S(ps ,t,t
′)+R1·[A(t)−A(t ′)]} d∗

1[ps + A(t)]. (22)
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(ii) The second and third terms, �μ22(t) and �μ33(t), describe
the same process as in (i), but for atoms located at R2 and R3,
respectively. These three processes are spatially localized: the
electron starts and ends at the same point, the same ion core.
We then refer to them as local processes.

(iii) From the fourth to the seventh terms we have the cross
processes with the closer neighbor in one and other direction.
In this case, notice that in our reference frame, the second atom
is placed at R2 = 0. These processes are understood as in the
diatomic case.

(iv) The last two terms are also cross processes. For
instance, the eighth term can be understood as follows:
one electron tunnel ionizes from the atom located at R1

with probability E(t ′) · d1[ps + A(t ′)]. This electron starts
to move under the influence of the laser electric field and
acquires a phase e−i{S(ps ,t,t

′)+R1·[A(t)−A(t ′)]}. It then recombines
at time t with the farthest ion core at R3 with an amplitude
d∗

3[ps + A(t)]. The last term is understood in a similar way, but
inverting the tunnel ionization and recombination positions.

For our three-center molecular system, it is also possible to
group the processes as local and cross. As in the diatomic case,
the sum of all these terms represents the total time-dependent
dipole element �μ3N(t) = �μ3N-local(t) + �μ3N-cross(t). In the same
way, we can split the contributions depending on the excursion
of the electron in the continuum before recombination. The
shorter excursions are represented by the local processes where
only one atom is involved. For the cross processes, we have two
possibilities: the recombination with (i) the closest neighbor or
(ii) with the farthest one. Those contributions are denoted by

�μ3N-local(t) = �μ11(t) + �μ22(t) + �μ33(t) (23)

and

�μ3N-cross(t) = �μ3N-cross1 (t) + �μ3N-cross2 (t), (24)

where

�μ3N-cross1 (t) = �μ12(t) + �μ21(t) + �μ23(t) + �μ32(t) (25)

and

�μ3N-cross2 (t) = �μ13(t) + �μ31(t). (26)

In order to describe the local processes, we set j = j ′. For
instance, the local process for the right atom located at R1 is
described by the time-dependent dipole moment �μ11(t). On
the other hand, the cross processes are those where j 
= j ′.

Finally, in order to compute the total time-dependent dipole
moment �μ3N(t) of our three-center molecule, we need to
evaluate each of the contributions defined by Eq. (21). The
HHG spectrum can then be obtained by Fourier transforming
�μ3N(t) [see Eq. (3)]. The separation of the time-dependent
dipole moment allows us to compute the HHG spectrum from
each process separately as we will see in the next sections.

III. RESULTS AND DISCUSSION

In this section, we calculate HHG spectra for different
atomic and molecular systems using the approach presented
above. In addition, we compare the HHG spectra from hy-
drogen and argon atoms computed with our model with those
obtained using the exact numerical solution of the 3D-TDSE.
A scan over different laser wavelengths and peak intensities is

performed in order to verify and validate our approach. In a
second stage, we apply the molecular version of our model to
two prototypical diatomic systems: H2

+ and H2. We display
and study the contributions coming from the local and cross
recombination processes. This analysis helps us to distinguish
which contributions interfere constructively or destructively
to the total HHG spectra. Finally, we present results for more
complex molecules: CO2 and H2O. For these cases, aside from
disentangling the different contributions to the HHG spectra,
we analyze the influence of the angular orientation.

The numerical integration of Eqs. (7), (16), and (21)
has been performed by employing a rectangular rule with
dedicated emphasis on the results convergence. For all the
studied cases, the HHG process is driven by an ultrashort laser
pulse with an electric field of the form

E(t) = E0 f (t) sin(ω0 t + φ0) ez. (27)

The field has a carrier frequency ω0 = 2πc
λ0

, where c is the speed
of light (c ≈ 137 a.u.), and λ0 the central laser wavelength. In
addition, E0 is the field peak amplitude, linearly polarized in
the z axis. f (t) = sin2(ω0t/2Nc) denotes the pulse envelope,
with Nc the total number of cycles, and the parameter φ0 is the
carrier envelope phase (CEP). Under the dipole approximation,
the influence of the magnetic field component of the laser field
is neglected.

A. Atomic systems: Comparison between SFA
and 3D-TDSE models

The HHG spectra of a hydrogen atom is performed
by Fourier transforming the time-dependent dipole moment
presented in Eq. (7). We set � = 1 and γ = 38 a.u. in
our nonlocal SR potential in order to match the hydrogen
ionization potential Ip = 0.5 a.u. The HHG spectra at different
laser wavelengths and using our quasiclassical SFA model are
shown in Fig. 1(a). In addition, in Fig. 1(b) we show the
HHG spectra obtained by using the numerical solution of the
3D-TDSE.

In order to compute the HHG spectra displayed in Fig. 1,
we consider the laser pulse described by Eq. (27), with a laser
peak intensity of I0 = 1.58 × 1014 W cm−2 and different laser
wavelengths (see the panels’ labels for details). Additionally,
we set Nc = 4 and φ0 = 0 rad. A total of 131 072 points in the
time window t ∈ [0,tF], where tF = NcT0 and T0 = 2π/ω0,
are used during the numerical integration. The HHG spectra
of Fig. 1(b) are obtained by numerically solving the 3D-TDSE
in the length gauge. Thus, by Fourier transforming the dipole
acceleration, calculated from the time-propagated electronic
wave function, the HHG spectra are obtained. We have
used our code, which is based on an expansion in spherical
harmonics, Ylm considering only the m = 0 terms due to the
cylindrical symmetry of the problem. The numerical technique
to solve the 3D-TDSE is based on a Crank-Nicolson scheme
implemented on a splitting of the time-evolution operator that
preserves the norm of the electronic wave function.

Both panels of Fig. 1 reveal the typical HHG behavior,
namely, (i) a rapidly decreasing of the harmonic yield for
the lower harmonic orders (<10th), (ii) a plateau with almost
constant yield, and (iii) an abrupt end at the so-called HHG
cutoff. The cutoff energy is one of the most important features
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FIG. 1. HHG spectra I1N(ω) (in logarithmic scale) of hydrogen
driven by a strong few-cycle pulse at different wavelengths. λ1 =
800 nm (red asterisk line), λ2 = 1200 nm (blue square line), and
λ3 = 1400 nm (green circle line). (a) Quasiclassical SFA model;
(b) 3D-TDSE. The arrows in all the panels indicate the position of
the classical HHG cutoff (see the text for details).

of any HHG spectrum. It can be defined as the maximum
photon energy that can be released at recollision. Classically,
it is possible to prove that [14,15]

ωcutoff = Ip + 3.17 Up, (28)

where ωcutoff is the maximum photon energy and Up = I0/4ω2
0

is the ponderomotive energy. As can we see from Fig. 1,
both the SFA and 3D-TDSE calculations show the expected
classical cutoff defined by Eq. (28), noted with an arrow
at ωcutoff 800 = 1.59 a.u. (43.26 eV), ωcutoff 1200 = 2.97 a.u.
(80.8 eV), and ωcutoff 1400 = 3.87 a.u. (105.3 eV), respectively.
From Eq. (28) we should notice that ωcutoff ∝ Iλ2 and this be-
havior can also be observed in Fig. 1. For instance, the spectra
at λ3 = 1400 nm have a cutoff energy about four times higher
than the one calculated using a wavelength of λ1 = 800 nm.

A natural next step would be to test our model with a
more complex atom. In order to do so, in Fig. 2 we show
HHG spectra for an argon atom, calculated both with (i) our
quasiclassical SFA [Fig. 2(a)] and (ii) using the numerical
solution of the 3D-TDSE under the SAE approximation
[Fig. 2(b)]. We employ two different laser peak intensities and

FIG. 2. HHG spectra I1N(ω) (in logarithmic scale) of Ar driven
by a strong few-cycle pulse with λ = 800 nm, at different laser peak
intensities. (a) Our quasiclassical SFA at I1 = 1.58 × 1014 W cm−2

(red square line) and I2 = 2.08 × 1014 W cm−2 (blue cross line);
(b) same as in (a) but solving the 3D-TDSE. Note that in this case the
minimum in the efficiency around the 27th harmonic is the Cooper
minimum in Ar. The arrows in all the panels indicate the position of
the classical HHG cutoff (see the text for details).

using a laser pulse with a central frequency of ω0 = 0.057 a.u.,
that corresponds to a wavelength of about 800 nm. As in the
previous case, we confirm that our model is capable to capture
not only the dependency of the harmonic spectra with the
wavelength, but also with the laser peak intensity. As we can
see, and considering that I2 > I1, a clear cutoff extension in the
HHG spectra for I2 is observed. A remarkable good agreement
between both methods is clearly seen in Fig. 2 and for both
laser peak intensities.

The HHG spectra presented both for a single-electron
system (H, Fig. 1) and a complex target (Ar, Fig. 2) reveal the
very good agreement between our quasiclassical SFA model
and the numerical solution of the 3D-TDSE.

B. Diatomic molecular systems

In this section, we calculate HHG spectra for two prototyp-
ical diatomic molecules: H2

+ and H2.

033415-7
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FIG. 3. Total harmonic spectra I2N(ω) (in logarithmic scale) [Eq. (3)] of an H2
+ molecule driven by a strong few-cycle pulse as a function

of the harmonic order computed using our quasiclassical SFA. (a) HHG for an H2
+ molecule aligned with the laser-pulse polarization axis,

i.e., θ = 0◦; (b) the same as (a) but for θ = 20◦; (c) the same as (a) but for θ = 40◦; (d) the same as (a) but for θ = 45◦. The vertical lines
indicate the position of the interference minima of our quasiclassical SFA model and the arrows in all the panels the position of the classical
HHG cutoff (see the text for details), respectively.

1. H2
+ molecule

Figure 3 shows the numerically computed HHG spectra
for an H2

+ molecule by using the quasiclassical SFA model
presented in Sec. II B. The H2

+ system is modeled by two
identical centers separated by an internuclear distance R =
2.2 a.u. (1.16 Å) and the molecular axis forms a θ angle with
respect to the incident laser electric field polarization, i.e., R =
(0,0,R cos θ ). The parameters of our nonlocal SR potential
are set to � = 1.0 and γ = 0.1 a.u. in order to reproduce
the minimum at the equilibrium internuclear distance, R0 =
2.0 a.u. (1.06 Å), in the potential energy surface (PES). The
total ionization potential extracted from the potential energy
surface in our model yields Ip = 0.68 a.u. (18.50 eV). This
electronic ground-state energy allows us to fix the correct
asymptotic behavior of the H2

+ PES (see Ref. [40] for more
details). Note that this last value differs from the one obtained
with a real Coulomb potential that leads a pure electronic
energy of 1.1 a.u. (30 eV) approximately.

The incident laser field shape is identical to the one used in
the atomic case and has a central frequency ω0 = 0.057 a.u.,
corresponding to a wavelength λ = 800 nm and photon energy
of 1.55 eV. The total number of cycles is Nc = 4 [this defines
a full-width at half-maximum (FWHM) value of 5.2 fs] and

φ0 = 0 rad. The time step is set to δt = 0.032 a.u. and
this corresponds to a total of Nt = 20 000 points for the
numerical integration. The time window is t ∈ [0,tF], where
tF ≈ 11 fs denotes the final time, i.e., the end of the laser
electric field pulse. Finally, the laser peak intensity is set to
I0 = 5 × 1014 W cm−2.

In Fig. 3, we display results for a scan of four different
molecular orientations, namely, Fig. 3(a) θ = 0◦ (this value
corresponds to the so-called parallel alignment), Fig. 3(b)
20◦, Fig. 3(c) 40◦, and Fig. 3(d) 45◦, respectively. As we
can see in all the panels an absolute minimum over the
total HHG spectra is clearly visible and the harmonic order
where these minima are located increases with the orientation
angle. The existence of those minima and their dependency
with the alignment angle can be explained by invoking an
interference phenomenon as we will see below. In the most
simplest picture, the minima appear as a consequence of the
harmonic emission of two radiant points (see, e.g., [9] for more
details).

According to the equation describing the destructive in-
terference of two radiant sources, R cos θ = (2m + 1)λk/2,
where λk is the de Broglie wavelength of the returning
electron and considering the “fundamental” instance m = 0,
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FIG. 4. Harmonic spectra I2N(ω) (in logarithmic scale) of an H2
+ molecule [Eq. (3)] as a function of the harmonic order calculated using

our quasiclassical SFA and for an orientation angle θ = 20◦. (a) Local, cross, and total contributions to the HHG spectrum; (b) contributions
depending on the recombination atom. Green circle line: recombination at R1 and light green line: recombination at R2. The vertical lines
indicate the position of the interference minima (see the text for details).

the minima should be located at the 18th, 20th, 30th, and 36th
harmonic order for θ = 0◦, 20◦, 40◦, and 45◦, respectively.
The positions of the minima in our SFA calculation are ≈35th,
≈37th, ≈45th, and ≈54th, respectively (see the vertical lines
in all the panels of Fig. 3). We speculate that the shifts in
harmonic frequency are related with the kind of potential
used in our calculations; the nonlocal SR potential does not
correctly describe the low-energy part of the HHG spectra,
where the Coulomb potential plays an important role [32].
We note, however, that our SFA calculation for θ = 40◦ is
in excellent agreement with the numerical solution of the
2D-TDSE and 3D-TDSE for the H2

+ molecule [9,31]. Lastly,
we observe that in all the HHG spectra of Fig. 3 the position of
the classical cutoff is in excellent agreement with Eq. (28)
(see the arrows in all the panels of Fig. 3). Particularly,
for our H2

+ molecular system and the laser parameters
used in our simulations, the cutoff frequency is ωcutoff =
4.15 a.u. (112.92 eV), corresponding to the 72th harmonic
order.

Clearly, our quasiclassical molecular SFA model has
drawbacks and advantages. The first advantage is from the
computational viewpoint; the numerical calculations using our
SFA approach are much faster than the numerical solution of
the 3D-TDSE. The computation of one single HHG spectrum
for a set of fixed parameters takes few seconds. The second,
and might be the most important one, is the possibility to
disentangle the different processes contributing to the final
HHG spectra (see Sec. II B). In order to do so, in Fig. 4 we
plot the different contributions for an H2

+ molecule aligned at
θ = 20◦ with respect to the laser field polarization. Figure 4(a)
shows the total I2N(ω) (red circle line), the local I2N-local(ω)
(blue line), and the cross I2N-cross(ω) (dark brown asterisk line)
contributions (for details see Sec. II B). As we can see from this
picture, the two-center destructive interference is not present
either in the local or in the cross contributions. The latter have
a deep minimum but at a different position, about the 60th
harmonic order, while the former remains almost constant in
yield for all the harmonic frequencies. In order to trace out
the origin of the two-center destructive interference present in
the total HHG spectra in Fig. 4(b) we plot the contributions

depending on the recombination atom, calculated as

I2N-R1 (ω) ∝
∣∣∣∣
∫ ∞

−∞
dt eiωt [ �μ11(t) + �μ21(t)]

∣∣∣∣
2

(29)

and

I2N-R2 (ω) ∝
∣∣∣∣
∫ ∞

−∞
dt eiωt [ �μ22(t) + �μ12(t)]

∣∣∣∣
2

. (30)

From this figure we can clearly see that there is a deep
minimum for both terms and it is located at the same position
as for the total HHG spectrum. It means that, for the case of
the recombination on R1 (dark green circle line), the electron
wave packet ionized at R1 interferes with the one coming
from R2 and the other way around. These minima are then
generated by the destructive interference of such electron
wave packets. From the drawbacks side, we have seen that
our nonlocal SR potential is unable to accurately reproduce
the interference minima positions for some of the molecular
orientation angles. We note, however, that these minima are
typically washed out when an average over the molecular
orientation is considered, configuration that is commonly used
in molecular HHG experiments.

2. Time-frequency analysis for H2
+

We have seen in Fig. 4 that the independent processes
�μ11(t)/ �μ22(t) and �μ21(t)/ �μ12(t) are the ones interfering and
creating the deep minimum in the total HHG spectra. In order
to dig deeper about the existence of this distinctive feature,
a Gabor analysis [45,46] over the different contributions is
displayed in Fig. 5. The Gabor transformation was performed
upon the time-dependent dipole moment calculated using our
quasiclassical SFA model. The laser parameters are the same
as in Fig. 4.

This time-frequency analysis allows us to reveal the half-
cycle bursts of radiation from which the HHG spectrum is
formed and the main trajectories contributing. In Figs. 5(a) and
5(b), we show the local and cross processes at R1, �μ11(t), and
�μ21(t), respectively (note that identical plots can be obtained
by changing R1 by R2). As we can observe from these figures,
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FIG. 5. Gabor transformation of the time-dependent dipole moment of an H2
+ diatomic molecule oriented θ = 20◦ with the laser field.

(a) Local processes at R1 using the time-dependent dipole moment �μ11(t); (b) the same as (a) but for the cross processes �μ21(t); (c) the same
as (a) but for all the recombination processes at R1, i.e., �μ11(t) + �μ21(t); (d) Gabor transformation for the total time-dependent dipole moment
�μ2N(t).

they both look almost equal and similar to the atomic case.
In both cases, we have the contribution of the short and long
trajectories. For the earlier cycles, the first and second ones,
the short trajectory contributions dominate while for the latest
cycles both long and short trajectories have the same weight.
The main differences between these two contributions are
in the low-energy region around the end of the laser pulse,
the third optical cycle, where the contribution of the cross
processes �μ21(t) is slightly higher than the local ones.

Finally, we plot in Fig. 5(c) all the recombination processes
contributions at R1, i.e., �μ11(t) + �μ21(t) and in Fig. 5(d) the
total contributions. From these figures is evident the presence
of an interference minimum for the whole temporal window.
This means that the �μ11(t) and �μ21(t) processes, that describe
electrons arriving at the same point R1 from two different
atomic sources R1 and R2, respectively, cancel each other and
an interference zone is seen for an harmonic order of around
35th. These two contributions are dominated by the short
trajectories, therefore, both incoming electron wave packets
arrive at the same time and as a consequence a destructive
interference is observed. This feature is inherited to the total
time-dependent dipole moment [see Fig. 5(d)].

3. H2 molecule

The next simplest diatomic molecule is H2. In order to
investigate the behavior and versatility of our semiclassical
SFA model, we compute HHG spectra using the time-

dependent dipole moment presented in Sec. II. We consider
an H2 molecule in equilibrium where the two H atoms are
separated a distance of R = 1.4 a.u. (0.74 Å). The ionization
potential of the outer electron predicted by our nonlocal SR
potential is Ip = 1.5 a.u. (40.82 eV) and it was calculated
by setting � = 1.0 and γ = 0.12 a.u. With these parameters
our model reproduces the PES of H2 with a minimum at the
equilibrium internuclear distance [8]. The driven laser pulse
has the same parameters as for the case of H2

+.
Figure 6 shows the different contributions to the total

HHG spectrum by considering two different molecular orien-
tations: parallel, θ = 0◦ [Fig. 6(a)] and perpendicular, θ = 90◦
[Fig. 6(b)] with respect to the incident laser-pulse polarization.
The total HHG spectrum (in red) is computed as the sum of all
possible processes (see Sec. II B for details). In both panels, we
have grouped two main contributions: (i) the local and (ii) the
cross ones. The local contributions (blue line) are processes
related with only one atom or position, i.e., they involve the
sum of processes involving only one single atom, meaning ion-
ization from the R1/R2 and recombination at the same atom.
On the other hand, the cross contributions (in dark brown)
include processes involving both of the atoms in the molecule,
i.e., ionization from the atom located at R1 and recombination
on the atom located at R2 and the other way around.

The first observation regarding Fig. 6 is that for the case of
parallel orientation [Fig. 6(a)], the total HHG spectrum starts to
gradually decrease for harmonic orders higher than the ≈30th.
This behavior is due to a destructive interference of the local
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FIG. 6. Different contributions to the molecular HHG spectrum (in logarithmic scale) for an H2 molecule. (a) Total, local, and cross
contributions for a molecule oriented parallel (θ = 0◦) to the laser field polarization; (b) the same as in (a) but for θ = 90◦ (perpendicular
orientation).

and the cross processes. The latter shows a deep minimum
around the ≈40th harmonic order. In the case of the molecule
perpendicularly oriented [Fig. 6(b)], an extended plateau with
a cutoff around the 90th harmonic order is clearly visible.
In both cases, parallel and perpendicular, the molecular HHG
spectra show a deep minimum around the 12th harmonic order.
As in the case of H2

+ previously presented, the utilization of a
nonlocal SR potential restricts our results to the higher-order
harmonics, where the influence of the molecular potential
details is less relevant.

It is interesting to note that for the case of perpendicular
orientation θ = 90◦ [Fig. 6(b)], both the local and cross
processes contribute evenly in the plateau region of the HHG
spectra, while for the parallel orientation θ = 0◦ [Fig. 6(a)],
both present a different behavior. We can then infer that for
the θ = 90◦ case, the total HHG spectrum reaches a maximum
yield at the cutoff region. This is due to the fact that, for this
favorable orientation, the contribution of each of the processes,
local and cross, is comparable.

Finally, in Fig. 7, we show the total HHG spectra for three
different molecular orientations θ = 0◦, 45◦, and 90◦ and an

FIG. 7. Total H2 molecular HHG spectra (in logarithmic scale)
for θ = 0◦, 45◦, 90◦ and averaged over nine different molecular
orientations (see the text for more details).

averaged case over nine values of θ in the range [0◦–360◦]. Our
diatomic molecule is symmetrical with respect to the origin,
i.e., R1 = −R/2 and R2 = R/2 and, consequently, the total
HHG spectra for θ = 0◦ and 180◦ are identical. The same
behavior is observed for the spectra at 45◦, 135◦, 225◦, and
315◦ or for 90◦ and 270◦. We can observe in Fig. 7 how
different molecular configurations contribute to the total HHG
spectra. As we can see, the difference in the total HHG spectra
for different orientation angles is hardly to notice for lower
harmonic orders (<30th). Differences start to be noticeable
in the mid-plateau and cutoff regions. In these zones, the
highest HHG yield is reached for the perpendicular orientation
(θ = 90◦), thus confirming the results presented in Fig. 6. Two
final remarks are in order, namely, (i) the averaged total HHG
spectrum is about one order of magnitude lower than the one
at perpendicular orientation; (ii) the average procedure washes
out any two-slit interference fingerprint.

4. Time-frequency analysis for H2

In Fig. 8, we perform a Gabor transformation upon the
time-dependent dipole moment for both an H atom and our
diatomic H2 molecule. Our aim with this time-energy analysis
is to investigate the influence of the short and long trajectories
for the molecular system and highlight the differences with
the atomic case. In Fig. 8(a), we show the calculation for the
H atom, while in Fig. 8(b) we depict the same analysis for the
molecular system randomly oriented. In both cases we have
considered a laser peak intensity I0 = 5 × 1014 W cm−2.

In general, both figures look quite different. The atomic
system [Fig. 8(a)] is mostly dominated by the short trajectories
while the molecular system [Fig. 8(b)] have a prevailing
contribution from the long ones. This is so because the
orientation average procedure removes every fingerprint of
two-center interferences.

From a detailed comparison between the atomic and
molecular cases we observe that for the former, even when
the short trajectories are dominant at the beginning of the laser
pulse (first two optical cycles), some contribution of the long
ones survives for the later optical cycles, where long and short
trajectories contributions are similar (three optical cycles).
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FIG. 8. Gabor transformation of the time-dependent dipole. (a) H atom driven by a laser pulse with a peak intensity of I0 = 5 × 1014 W cm−2;
(b) same as (a) but for an H2 molecule.

On the contrary, in the molecular system, short and long
trajectories contribute to different optical cycles. For instance,
in the first and second optical cycles the main contribution is
from the short trajectories while for the third and fourth optical
cycles a big contribution of the long trajectories appears. In
the molecular system, the contributions of the long trajectories
start to increase, being paramount for the later optical cycles
where the contribution of the short ones is less significant.

C. Three-center molecular systems

In order to study systems with more degrees of freedom and
describe the different processes contributing to the total HHG
spectra, as we have done for diatomics, we apply the model
described in Sec. II C to both CO2 and H2O molecules.

1. Carbon dioxide (CO2) molecule

The carbon dioxide molecule CO2 is a linear system formed
by three atoms O = C = O, where the two oxygen atoms
are separated by a distance R = 4.38 a.u. (2.31 Å), when
the system is in equilibrium. Here, to model this state, the
parameters of the nonlocal SR potential are set to � = 0.8
and γ = 0.11 a.u. An ionization potential Ip = 0.50 a.u.
(13.6 eV) is obtained. This value is in excellent agreement
with the actual CO2 ionization energy (13.77 eV) [47]. The
incident laser electric field is defined in Eq. (27) and we use a
laser wavelength and peak intensity of λ = 800 nm and I0 =
1 × 1014 W cm−2, respectively. The laser pulse has four total
cycles (11 fs of total duration) and the CEP is set to φ0 = 0◦.

We present HHG spectra, computed by using our quasiclas-
sical SFA model, for the CO2 molecule in Fig. 9. In Fig. 9(a),
we show the different contributions to the HHG spectra: the
total I3N(ω) (solid line with red circles), calculated from the
time-dependent dipole moment presented in Eq. (20), the local
I3N-local(ω) (blue solid line), computed with Eq. (23), and the
cross I3N-cross(ω) (dark brown line with asterisks), extracted
from Eq. (24). These calculations show the well-known HHG
plateau that ends with a cutoff (marked with a red arrow) at
around the 21st harmonic order [this last value is in perfect
agreement with the one predicted by the semiclassical law,
see Eq. (28)]. Both local and cross contributions have almost
the same yield over all the frequency range and only minor
differences are visible.

In Fig. 9(b), we present a split of the local processes,
namely, I3N-11(ω) (solid line with purple circles), I3N-22(ω)
(solid line with light blue squares), and I3N-33(ω) (dashed line).
As we can see the contribution from the O atoms, placed at
the end of the molecule, is equal in amplitude and shape and
different in yield from the I3N-22(ω) (corresponding to the
C atom placed at the origin). This means that the O atoms
contribute a slightly less than the C atom. We notice, however,
that the shapes and positions of the minima are the same for
the three contributions.

In Fig. 9(c), we present each of the contributions that
build up the total cross processes. We have separated them
depending on how long the laser-ionized electron travels in
the continuum before recombination. The cross1 (solid line
with orange circles) [Eq. (25)] and the cross2 (solid brown
line) [Eq. (26)] contributions have similar yields. The main
difference between these two HHG spectra is the yield: the
cross1 contribution has a higher yield than the cross2 one. The
position of the absolute minima around the 19th harmonic
order is present in both contributions: the same can be seen
in the local term. For the calculations in Figs. 9(a)–9(c), we
consider a CO2 molecule aligned perpendicular to the incident
laser-pulse polarization, i.e., the internuclear axis vector is
forming an angle θ = 90◦ with respect to the z axis, being this
one the most favorable configuration [see Fig. 9(d)].

Finally, in Fig. 9(d) we present a set of total HHG spectra
for different molecular orientations, namely, parallel (θ = 0◦),
oblique (θ = 45◦), and perpendicular (θ = 90◦). In addition,
we include an averaged HHG spectrum, obtained coherently
adding four different orientations. We can observe a similar
behavior as for the case of H2 (see Fig. 7), i.e., the difference in
the total spectra for different orientation angles is hardly to see
for lower harmonic orders and starts to be visible in the mid-
plateau and cutoff regions. Furthermore, the perpendicular
orientation appears to be the dominant one. The comparable
behavior between the CO2 and H2 molecules supports the
fact that the former could be considered as a stretched
diatomic O2 molecule for interference minima calculations
[8].

2. Water (H2O) molecule

One of the most important three-center molecules is water
(H2O) since it is an essential part of the blocks that build
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FIG. 9. CO2 molecular HHG spectra I3N(ω) (in logarithmic scale) as a function of the harmonic order calculated by using our quasiclassical
SFA. In panels (a)–(c) the CO2 molecule is oriented perpendicular to the laser polarization, i.e., θ = 90◦ (see text for more details).

biological life. In this section, we theoretically investigate
HHG spectra of the H2O molecule using our semiclassical
SFA approach.

We consider an H2O molecule under the influence of the
strong laser field described by Eq. (27). The H2O molecule is
an angular molecule with two H atoms and one O atom. At
equilibrium, the internuclear distance of the bond H = O is
about R = 1.8 a.u. (0.95 Å) and the angle between the two H
atoms α = 104.5◦. For this configuration, and considering an
ionization potential of Ip = 0.46 a.u. (12.52 eV) [48], we set
the parameters of our nonlocal SR potential to � = 0.8 and
γ = 0.1 a.u.

In Fig. 10, we show HHG spectra for a laser wavelength
and peak intensity of λ = 800 nm and I0 = 1 × 1014 W cm−2,
respectively. The laser pulse has four total cycles (11 fs of
total duration) and the CEP is set to φ0 = 0 rad. In Fig. 10(a),
we show HHG spectra both for five different molecular
orientations θ = 0◦, 20◦, 45◦, 60◦, and 90◦ and an averaged
case. The molecular axis is fixed in space and forms an angle
of α/2 with respect to the vector position R1. Furthermore,
θ defines the angle between this molecular axis and the laser
electric field polarization (see Fig. 12 in the Appendix for more
details).

The dependency of the HHG spectra with respect to the
molecular orientation is quite evident. For lower harmonic
orders, all the orientations appear to be equivalent and the main
differences start to materialize for harmonic orders �12th.

As we can see in Fig. 10(a), the HHG spectrum for θ = 0◦
(solid line with asterisks), 20◦ (solid line with left-pointing
triangle), and 45◦ (dashed line) exhibit a similar structure. The
other two orientations, 60◦ (right-pointing triangle line) and
θ = 90◦ (square line), present an harmonic yield several orders
of magnitude lower in this region. The total HHG spectra
for all the molecular orientations show a slight minimum
around the 17th harmonic order that could be attributed to
interference effects, although it is not an easy task to charac-
terize it using a simple interference formula as in the case of
diatomics.

We have also included in Fig. 10(a) an averaged HHG
spectrum over eight values of θ in the range [0◦–360◦]
(dashed red line). As we can see, the minimum survives the
orientation average. Furthermore, for θ = 90◦ (square line)
the total HHG spectrum rapidly decreases for harmonic orders
>16th. This means that the interference between the local and
cross processes is destructive and function of the molecular
orientation. This behavior introduces a decrease of the total
HHG yield. We note that for H2O, contrarily to the CO2 case,
an enhancement of the total HHG spectrum is observed when
the molecule is oriented parallel, θ = 0◦, to the laser electric
field polarization. As we have done both for diatomics and CO2

in Fig. 10(b) we plot the different terms contributing to the
total HHG averaged spectrum. Contrarily to the oriented case,
here the local and cross processes appear to constructively
contribute to the total HHG spectrum.
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FIG. 10. HHG spectra I3N(ω) (in logarithmic scale) of an H2O molecule, as a function of the harmonic order, computed using our
quasiclassical SFA model. (a) HHG spectra for θ = [0◦,20◦,45◦,60◦,90◦] and averaged over eight orientations in the range θ = [0◦–360◦];
(b) different contributions to the averaged HHG spectra.

In order to study more deeply the underlying physics behind
the enhancement and decrease of the total HHG spectra for 0◦
and 90◦, we plot in Fig. 11 the different contributions for these
two particular cases. For θ = 0◦ [Fig. 11(a)], the decrease of
the HHG yield is evident for harmonic orders higher than the
15th. Around this harmonic order, both contributions, the local
and cross, have a similar yield and the coherent sum develops in
a destructive interference decreasing the total HHG spectrum
in about three orders of magnitude. On the other hand, for
θ = 90◦ [Fig. 11(b)], we observe a steady decrease of the
cross processes, of about two orders of magnitude, in the whole
spectral range. Consequently, we can argue that in this case
the cross contributions are almost negligible (solid brown line
with squares) and the total HHG spectra are mainly dominated
by the local processes (solid blue line).

IV. CONCLUSIONS AND OUTLOOK

We present a quasiclassical approach that deals with molec-
ular HHG within the SAE. Our model could be considered as
a natural extension to the one introduced for ATI in atoms
[41] and molecules [40]. The focus of our study is on diatomic
and triatomic molecular systems, although the extension to

more complex systems appears to be straightforward. First,
we have validated our formalism comparing the atomic HHG
spectra with results extracted from the 3D-TDSE and using
a large set of laser intensities and wavelengths. For the
molecular systems we have shown our approach is able to
capture the interference features, ubiquitously present in every
molecular HHG process. As was already described, the core
of our model are the saddle-point approximation and the linear
combination of atomic orbitals. Thus, the main advantages can
be summarized as follows:

(i) The possibility to disentangle the underlying contribu-
tions to the HHG spectra. In this way, we could isolate local
and cross processes and also treat both fixed and randomly
oriented molecules.

(ii) The low computational cost. By considering our
approach involves only 1D and 2D time integrations, all the
other quantities being analytical, it is clear that we compute
molecular HHG spectra without too much computational
effort.

(iii) The concrete feasibility to model complex molecular
ground states. For all the studied molecular cases we were able
to model reasonably well the initial molecular ground state,
varying the parameters of our nonlocal SR potential.

FIG. 11. Different contributions to the H2O molecular HHG spectra. (a) θ = 0◦; (b) θ = 90◦.
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APPENDIX: STRONG-FIELD APPROXIMATION FOR
THREE-CENTER MOLECULAR SYSTEMS

In this section, we develop an analytical model to obtain the
direct probability transition amplitude, as well as the bound
and scattering states, necessary to calculate the HHG spectra
for three-center molecular systems. This approach can be
considered an extension of the atomic and diatomic models
presented in Refs. [40,41]. Our quasiclassical formalism takes
advantage of both the SAE and dipole approximations. In
addition, we consider the nuclei of the molecule are fixed
in space (the so-called frozen-core approximation).

1. Direct transition probability amplitude

We consider a molecular system of three independent
atoms, as is shown in Fig. 12, under the influence of an intense
and short laser field. In the limit when the wavelength of the
laser λ0 is larger compared with the Bohr radius a0 = 0.0529
nm, the electric field of the laser beam around the interaction
region can be considered as spatially homogeneous. This
means that the interacting atoms do not experience any spatial
dependence of this driving field. Then, only its time variation
is taken into account (the above statements define the so-called
dipole approximation).

Therefore, the laser electric field can be written as

E(t) = E0 f (t) sin(ω0 t + φ0) ez. (A1)

The field has a carrier frequency ω0 = 2πc
λ0

, where c is the
speed of light, E0 the laser electric field peak amplitude, and

FIG. 12. Three-center molecular system aligned a θ an-
gle with respect to the laser electric field polarization. The
red line represents the molecular axis that forms an angle
of α/2 between R1 = [0, R

2 sin( α

2 + θ ), R

2 cos( α

2 + θ )] and R3 =
[0,−R

2 sin( α

2 − θ ), R

2 cos( α

2 − θ )].

we consider the laser field is linearly polarized along the z

direction. In Eq. (A1), f (t) denotes the envelope of the laser
pulse and φ0 defines the CEP (see Sec. III for more details).

The TDSE that describes the whole laser-molecule interac-
tion can be written as

i
∂

∂t
|�(t)〉 = Ĥ |�(t)〉

= [Ĥ0 + V̂int (r,t)]|�(t)〉, (A2)

where Ĥ0 = p̂2

2 + V̂ (r) defines the laser-field free Hamilto-
nian, with p̂ = −i∇ the canonical momentum operator and
V̂ (r) the potential operator that describes the interaction of
the nuclei with the active electron. V̂int (r,t) = −qeÊ(t) · r̂
represents the interaction of the molecular system with the
laser radiation, written in the dipole approximation and
length gauge. qe denotes the electron charge (in atomic units
qe = −1.0 a.u.).

We shall restrict our model to the low ionization regime,
where the SFA is valid [13,14,49–52]. Therefore, we work
in the tunneling regime, where the Keldysh parameter γ =√

Ip/2Up (Ip is the ionization potential of the system and

Up = E2
0

4ω2
0

the ponderomotive energy acquired by the electron

during its incursion in the laser field) is less than one, i.e., γ <1.
In addition, we assume that V (r) does not play an important
role in the electron dynamics once the electron appears in the
continuum.

These observations, and the following three statements,
define the standard SFA, namely, the following:

(i) Only the ground |0〉 and the continuum states |v〉 are
taken into account in the interaction process.

(ii) There is no depletion of the ground state (Up < Usat).
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(iii) The continuum states are approximated by Volkov
states; in the continuum the electron is considered as a free
particle solely moving driven by the laser electric field.

For a more detailed discussion of the validity of the above
statements, see e.g. Refs. [13,14,41].

Based on (i), we propose a state |�(t)〉 = ∑3
j=1 |�j (t)〉

to describe the time evolution of the three-center system,
i.e., a superposition of three atomic states. In turn, each
independent state |�j (t)〉 is a coherent superposition of ground
|0〉 = ∑3

j=1 |0j 〉 and continuum states |v〉 [13,14], i.e.,

|�j (t)〉 = eiIp t

[
a(t)|0j 〉 +

∫
d3v bj (v,t)|v〉

]
, (A3)

where the subscript j = 1,2,3 refers to the position R1, R2,
and R3 of each of the atoms in the three-center molecule,
respectively.

The factor a(t) represents the amplitude of the ground
state and is considered constant in time, i.e., a(t) ≈ 1: this
assumption considers there is no depletion of the ground state
and it follows directly from statement (ii). The prefactor eiIp t

represents the phase oscillations that describe the accumulated
electron energy in the ground state (Ip = −E0 is the ionization
potential of the molecular target, with E0 the ground-state
energy of the three-center molecular system). Furthermore,
the transition amplitudes to the continuum states are denoted
by bj (v,t), with j = 1,2,3, depending on the atomic nuclei.
These amplitudes depend both on the kinetic momentum of the
outgoing electron and the laser pulse. Therefore, our main task
is to derive a general expression for each transition amplitude
bj (v,t). In order to do so, we substitute Eq. (A3) in (A2).
We shall consider that Ĥ0|01,2,3〉 = −Ip|01,2,3〉 and Ĥ0|v〉 =
v2

2 |v〉 hold for the bound and continuum states, respectively.
Consequently, the evolution of the transition amplitude bj (v,t)
becomes

i

∫
d3v ḃj (v,t) |v〉

=
∫

d3v
(

v2

2
+ Ip

)
bj (v,t)|v〉 + E(t) · r|0j 〉

+ E(t) · r
∫

d3v bj (v,t)|v〉. (A4)

Note that we have assumed that the electron-nucleus inter-
action is neglected once the electron appears at the continuum,
i.e., V (r)|v〉 = 0, which corresponds to the statement (iii).
Therefore, by multiplying Eq. (A4) by 〈v′| and after some
algebra, the time variation of the transition amplitude bj (v,t)
reads as

ḃj (v,t) = −i

(
v2

2
+ Ip

)
bj (v,t) − i E(t) · 〈v|r|0j 〉

− i E(t) ·
∫

d3v′ bj (v′,t)〈v|r|v′〉. (A5)

The first term on the right-hand of Eq. (A5) represents the
phase evolution of the electron in the oscillating laser electric
field. In the second term we have defined the bound-continuum
matrix element as

−〈v|r|0j 〉 = dj (v). (A6)

The state |v〉 represents a scattering state constructed as a plane
wave |vp〉 plus corrections on each center position |δvj 〉.

Based on statement (iii), our formulation only considers
the continuum state as a plane wave |vp〉 for the calculation
of the bound-continuum matrix element. We shall pay special
attention to the computation of Eq. (A6). Notice that the plane
waves are not orthogonal to the bound states due to the fact that
the latter are defined depending on the relative position of each
of the atoms Rj with respect to the origin of coordinates (see
[40] for more details). So, for the Rj contribution we introduce
a correction to the bound-continuum matrix element as

dj (v) = −〈vp|r − Rj |0j 〉 = −〈vp|r|0j 〉 + Rj 〈vp|0j 〉.
(A7)

The third term of Eq. (A5) defines the continuum-
continuum matrix element. In our case, we are interested
in describing processes where the electron is ionized and
goes to the continuum, never returning to the vicinity of the
remaining ion core, i.e., the so-called direct processes. As
the direct ionization process should have a larger probability
compared with the continuum-continuum one [13,41], one
might neglect the rescattering factor gm(v,v′) ≈ 0 in the
last term of Eq. (A5) [notice that 〈v|r|v′〉 = i∇vδ(v − v′) −
iRj δ(v − v′) + gm(v,v′)].

This is what we refer as zeroth-order solution:

∂tb0,j (v,t) = −i

[
v2

2
+ Ip − Rj · E(t)

]
b0,j (v,t)

+ i E(t) · dj (v). (A8)

The latter equation is easily solved by conventional integration
methods (see, e.g., [53]) and considering the Keldysh trans-
formation [49,54]. Therefore, the solution can be written as

b0,j (p,t) = i
∫ t

0
dt′ E(t ′) · dj [p + A(t ′)] exp[−iSj (p,t,t ′)].

(A9)

Notice that j = 1,2,3 represents either an atom located
at R1, R2, or R3, respectively. For instance, to obtain the
transition amplitude for the atom placed at R1 we need to
set j = 1 in Eq. (A9). Additionally, Eq. (A9) is written in
terms of the canonical momentum p = v − A(t) [14]. Here,
we have considered that the electron appears in the continuum
with kinetic momentum v(t ′) = v − A(t) + A(t ′) at the time
t ′, where v is the final kinetic momentum (note that in atomic
units p = v), and A(t) = − ∫ t E(t ′)dt ′ is the associated vector
potential.

Equation (A9) has a direct physical interpretation: it can
be understood as the sum of all the ionization events that
occur from the time t ′ to t . Then, the instantaneous transition
probability amplitude of an electron at a time t ′, at which it
appears into the continuum with momentum v(t ′) = p + A(t ′),
is defined by the argument of the [0,t] integral in Eq. (A9).
Furthermore, the argument of the exponential phase factor
Sj (p,t,t ′) in Eq. (A9) denotes the “semiclassical action”, that
defines a possible electron trajectory from the birth time t ′, at
position Rj , until the recombination one t as

Sj (p,t,t ′) =
∫ t

t ′
dt̃{[p + A(t̃)]2/2 + Ip − Rj · E(t̃)}. (A10)
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Note that the transition amplitude equations obtained so far
depend on the position from which the electron is tunnel
ionized to the continuum. The semiclassical action Sj (p,t,t ′)
contains this dependency as well.

Considering we are interested in obtaining the transition
amplitude b0,j (p,t) at the end of the laser pulse, the time t is
set at t = tF. Consequently, we shall define the integration time
window as t ∈ [0,tF]. Furthermore, we set E(0) = E(tF) = 0,
in such a way to make sure that the laser electric field is a time
oscillating wave and does not contain static components [the
same arguments apply to the vector potential A(t)]. Finally, the
total transition amplitude for the direct process taking place in
our three-center molecular system reads as

b0(p,t) =
3∑

j=1

b0,j (p,t). (A11)

2. Bound-states calculation

In this section, we are going to develop analytical expres-
sions to obtain the bound states for our three-center molecular
system. As in the atomic and diatomic cases we have chosen
a nonlocal SR potential to describe the interaction of the
electrons with the nuclei. We consider a molecular system
with three fixed nuclei under the SAE approximation. Our
purpose is to find the analytical dependency of the bound-state
wave functions, that allow us to compute the bound-continuum
matrix element and the direct transition amplitudes (A11).

The Hamiltonian for the molecular system in the momen-
tum representation can be written in a similar way as for the
diatomic case, i.e.,

ĤM(p,p′) = p̂2

2
δ(p − p′) + V̂M(p,p′), (A12)

where the first term on the right-hand side is the kinetic energy
operator and the second one describes the interacting nonlocal
SR potential between the active electron and each molecular
nuclei:

V̂M(p,p′) = −γ ′ φ(p) φ(p′)
3∑

j=1

e−iRj ·(p−p′), (A13)

where φ(p) = 1√
p2+�2

is an auxiliary function and γ ′ = γ

3 is a

parameter related with the shape of the ground state. By using
ĤM(p,p′) from Eq. (A12), we write the stationary Schrödinger
equation as follows:

ĤM(p)�(p) =
∫

d3p′ĤM(p,p′)�(p′) = E0 �(p), (A14)

where E0 denotes the energy of the bound state. Thus, for our
three-center system the Schrödinger equation reads as

(
p2

2
+ Ip

)
�0M(p) = γ ′ φ(p)

3∑
j=1

e−iRj ·p

×
∫

d3p′�0M(p′)φ(p′)eiRj ·p′
. (A15)

Defining new variables ϕ̌j as

ϕ̌j =
∫

d3p′�0M(p′)φ(p′)eiRj ·p′ =
∫

d3p′�0M(p′)eiRj ·p′√
p′2 + �2

,

(A16)

we could analytically obtain the bound states by solving
Eq. (A15) in the momentum representation. Explicitly, we
can write(

p2

2
+ Ip

)
�0M(p) = γ ′ φ(p)

3∑
j=1

e−iRj ·p ϕ̌j , (A17)

where Ip denotes the ionization potential that is related to
the ground-state potential energy by E0 = −Ip. The wave
function �0M(p) for the bound state in momentum space is
defined as

�0M(p) = γ ′√
(p2 + �2)

(
p2

2 + Ip

) 3∑
j=1

ϕ̌j e
−iRj ·p. (A18)

In order to find the value of the constants, we multiply and
divide Eq. (A18) by e−iRj ·p and

√
p2 + �2, respectively. After

some algebra we find that

ϕ̌1I1 = ϕ̌2I2 + ϕ̌3I3,

ϕ̌2I1 = ϕ̌1I2 + ϕ̌3I2, (A19)

ϕ̌3I1 = ϕ̌2I2 + ϕ̌1I3,

where I1, I2, and I3 read as

I1 = 1 − γ ′
∫

d3p φ2(p)(
p2

2 + Ip

) , (A20)

I2 = γ ′
∫

d3p φ2(p)(
p2

2 + Ip

) ei(R1−R2)·p

= γ ′
∫

d3p φ2(p)(
p2

2 + Ip

)ei(R3−R2)·p (A21)

and

I3 = γ ′
∫

d3p φ2(p)(
p2

2 + Ip

)ei(R1−R3)·p

= γ ′
∫

d3p φ2(p)(
p2

2 + Ip

)e−i(R1−R3)·p, (A22)

respectively.
Solving the system of equations (A19) we find the relations

between the ϕ̌j defined by Eqs. (A16) and I1, I2, and I3. Here,
Eq. (A19) is solved with the restriction

I3 = I 2
1 − 2 I 2

2

I1
; I1 
= 0, (A23)

and

ϕ̌1 = ϕ̌3 = I2

I1 − I3
ϕ̌2. (A24)
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I1, I2, and I3 can be written in spherical coordinates as

I1 = 1 − 4π2γ ′

� + √
2Ip

, (A25)

I2 = 8π2γ ′

R

⎧⎨
⎩e− R�

2 − e− R
√

2Ip

2

2Ip − �2

⎫⎬
⎭, (A26)

and

I3 = 4π2γ ′

R sin(α/2)

{
e−R sin(α/2)� − e−R sin(α/2)

√
2Ip

2Ip − �2

}
. (A27)

Finally, Eq. (A18) reads as

�0M(p) = M3N√
(p2 + �2)

(
p2

2 + Ip

)
[(

I2

I1 − I3

)
e−iR1·p + e−iR2·p +

(
I2

I1 − I3

)
e−iR3·p

]
, (A28)

where M3N = γ ′ ϕ̌1 = γ

3 ϕ̌1 is a normalization constant. It can be calculated using the usual normalization condition∫
d3p �0M(p)∗ �0M(p) = 1. (A29)

From the above equation M3N can be written as

1 = M3N
2 I4, (A30)

with I4 defined as

I4 =
( 2 I2

I1 − I3

)2
{

4π2

R(2Ip − �2)2

[
e−R� − e−R

√
2Ip

(
2
√

2Ip + R(2Ip − �2)

2
√

2Ip

)]

+ 4π2

R cos(α/2)(2Ip − �2)2

[
e−R cos(α/2)� − e−R cos(α/2)

√
2Ip

(
2
√

2Ip + R cos(α/2)(2Ip − �2)

2
√

2Ip

)]}

+ 8 I 2
2

I1 − I3

4π2

R
2 (2Ip − �2)2

[
e− R

2 � − e− R
2

√
2Ip

(
2
√

2Ip + R
2 (2Ip − �2)

2
√

2Ip

)]
+ 4π2(

√
2Ip − �)2√

2Ip(2Ip − �2)2
. (A31)

With the exact knowledge of M3N we have now defined the bound state in our three-center molecular system from Eq. (A28).
Notice that the dependency of the system energy with the internuclear distance appears from the solution of the system of
equations (A19).

3. Bound-continuum matrix element

The total bound-continuum matrix element for the three-center molecular system is defined as a sum:

d3N(v) = −
3∑

j=1

(〈vp|r|0j 〉 + Rj 〈vp|0j 〉). (A32)

Equation (A32) can be explicitly written as

d3N(p0) = −2i M3NA(p0)

[
I2

I1 − I3
(e−iR1·p0 + e−iR3·p0 ) + 1

]
, (A33)

where

A(p0) = ∇p

[
1

(p2 + �2)
1
2 (p2 + 2Ip)

]∣∣∣∣
p0

= −p0

(
3p2

0 + 2Ip + 2�2
)

(
p2

0 + �2
) 3

2
(
p2

0 + 2Ip

)2
. (A34)

Finally, notice that we could extract the contributions of each center from Eq. (A33), i.e.,

d1(p0) = −2i M3NA(p0)
( I2

I1 − I3

)
e−iR1·p0 , (A35)

d2(p0) = −2i M3NA(p0), (A36)
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and

d3(p0) = −2i M3NA(p0)

(
I2

I1 − I3

)
e−iR3·p0 . (A37)
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and P. Salières, Attosecond imaging of molecular electronic
wavepackets, Nat. Phys. 6, 200 (2010).

[39] P. M. Kraus, B. Mignolet, D. Baykusheva, A. Rupenyan, L.
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