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High-harmonic spectra from time-dependent two-particle reduced-density-matrix theory
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The ab initio description of the nonlinear response of many-electron systems to strong-laser fields remains
a major challenge. In order to address larger systems, alternative methods need to be developed that bypass
the exponential scaling with particle number inherent to conventional wave-function-based approaches. In this
paper we present a fully three-dimensional implementation of the time-dependent two-particle reduced-density-
matrix (TD-2RDM) method for many-electron atoms. We benchmark this approach by a comparison with
multiconfigurational time-dependent Hartree-Fock results for the harmonic spectra of beryllium and neon. We
show that the TD-2RDM is very well suited to describe the nonlinear atomic response and to reveal the influence
of electron-correlation effects.
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I. INTRODUCTION

Solving the time-dependent Schrödinger equation for
driven many-electron systems poses, to date, a major chal-
lenge. The long-range Coulomb interactions induce distant
multiparticle correlations precluding the application of many
approximations relying on short-range interactions from the
outset. Numerically exact solutions have become available
only for small systems, notably two-electron systems such
as helium [1–5] or H2 [6–12]. As the numerical effort
grows factorially with the number of electrons, an analogous
treatment for large systems becomes prohibitive. Therefore,
alternative strategies and approximations, most frequently
the single-active-electron approximation [13,14], are invoked.
For large systems time-dependent density functional theory
(TDDFT) and the time-dependent Hartree-Fock (TDHF) ap-
proximation (e.g. [15,16]) have proven to provide an effective
approach to electron dynamics on the mean-field level. The
efficiency of TDDFT, however, comes with the price of
introducing exchange-correlation functionals, which are only
known approximately and hard to improve systematically.
Moreover, readout functionals for two-particle observables
are still largely unknown [17–19]. Extension to the direct
solution of the N -electron Schrödinger equation beyond
the two-particle problem employs the multiconfigurational
time-dependent Hartree-Fock (MCTDHF) method [20–22]. In
principle, the MCTDHF method converges to the numerically
exact solution if a sufficient number of orbitals is used.
However, the factorial scaling with the number of particles
limits its applicability. A recently proposed variant, the time-
dependent complete active space self-consistent-field method
[23,24], which, in analogy to its ground-state counterpart,
decomposes the state space into frozen, dynamically polarized,
and dynamically active orbitals, can considerably reduce
the numerical effort yet eventually still leads to a factorial
scaling with the number of active electrons N� (N� < N).
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Further reduction of the numerical effort and, consequently,
extension to larger systems appear possible, e.g., by applying
the time-dependent occupation restricted multiple active space
method [25].

The present approach intends to bridge the gap between
full wave-function-based N -electron descriptions such as
the MCTDHF method and the time-dependent reduced one-
particle density ρ(r,t)-based TDDFT. The underlying idea is to
strike a compromise between the accuracy of electron-electron
correlations achieved by wave-function-based methods and
the ease to treat larger and, eventually, extended systems
afforded by density-based approximations [26]. Our working
variable is the time-dependent two-particle reduced density
matrix (2RDM) D(r1,r2; r′

1,r
′
2; t). As a hybrid between the

electron density and the full wave function, the 2RDM contains
the complete information on two-particle correlations but still
scales polynomially with particle number [27–29]. Starting
with the pioneering work in the 1950s [30,31], the stationary
2RDM method for the ground state has matured to accuracies
that often outperform those of coupled-cluster singles and dou-
bles with perturbative triples at similar or smaller numerical
cost (see, e.g., [32–36]). Extensions to the propagation of
time-dependent systems have been pursued since the 1990s
[37–42]. They have been plagued, however, by numerical
instabilities that could be traced back to the approximations
invoked for the three-particle reduced density matrix (3RDM).
In a previous paper [43] we developed a time-dependent
two-particle reduced-density-matrix (TD-2RDM) theory that
is based on a contraction consistent reconstruction of the
3RDM, as required for the proper closure of the equations
of motion for the TD-2RDM. It ensures that all constants
of motion associated with symmetries of the Hamiltonian are
conserved during time propagation. Contraction consistency of
the reconstruction leads to a significant increase in the accuracy
of the reconstruction, thereby achieving an accurate and stable
propagation.

In the present paper we apply the TD-2RDM method
to the nonlinear response of many-electron atoms to strong
few-cycle laser pulses. The four electrons of beryllium and the
ten electrons of neon are treated in their full dimensionality.
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We benchmark the resulting high-harmonic generation (HHG)
against accurate spectra obtained by the MCTDHF method.
High-harmonic generation can be qualitatively well captured
by the so-called three-step model [13,44] in which an electron
is first tunnel ionized by the strong field, then accelerated in the
laser field, and finally radiatively recombines with the parent
ion emitting an energetic photon. For an accurate quantitative
description it is crucial to explore and include correlation
and many-electron effects neglected by such a one-electron
model. In particular, the collective polarization response of
the residual (N − 1)-electron system to the external field and
the ionized electron as well as the relaxation of the excited
electron-hole pair is expected to be sensitive to correlation
effects. We show that the TD-2RDM method is well suited
to account for these subtle many-body effects and is superior
to time-dependent mean-field or effective-field descriptions
such as the TDHF approximation or TDDFT. Going beyond
our previous work [43], we include in the collision operator
diagrammatic corrections of second order in line with the
suggestions by Nakatsuji and Yasuda [45] and Mazziotti [46].
These second-order corrections turn out to be crucial for the
accurate description of correlated HHG.

The paper is organized as follows. In Sec. II we briefly
review key ingredients of the TD-2RDM theory. In Sec. III we
summarize the methodological advances for reconstruction of
the collision operator and purification of the 2RDM, main
ingredients for an accurate and stable propagation of the
TD-2RDM. First applications of the TD-2RDM theory to full
three-dimensional (3D) Be and Ne atoms are presented in
Sec. IV. We show the time-dependent dipole moment and HHG
spectra for the interaction with few-cycle laser pulses with
varying intensities. We also compare to TDHF and TDDFT
calculations. In Sec. V we give a short summary and outlook
to future developments. Additional technical details are given
in Appendixes A–C.

II. BRIEF REVIEW OF THE TD-2RDM METHOD

The p-particle reduced density matrix (pRDM)
D(x1, . . . ,xp; x′

1, . . . ,x
′
p; t) is defined by the trace over

all but p particles of the bilinear form ��� of the N -electron
wave function �,

D(x1, . . . ,xp; x′
1, . . . ,x

′
p; t)

= N !

(N − p)!

∫
�(x1, . . . ,xp,xp+1, . . . ,xN,t)

× �∗(x′
1, . . . ,x

′
p,xp+1, . . . ,xN,t)dxp+1, . . . ,dxN, (1)

where xi = (ri ,σi) comprises the 3D space coordinate ri

and the spin coordinate σi ∈ {↑ , ↓}. With this definition the
pRDM is normalized to N!

(N−p)! , which is a convenient choice
for most calculations. Following [42], we use for the pRDM
the shorthand notation

D1,...,p = D(x1, . . . ,xp; x′
1, . . . ,x

′
p; t), (2)

where also the time dependence in the notation of the RDMs is
dropped for simplicity. The significance of the pRDM is that it
allows the calculation of all joint p-particle observables. The
RDMs thus contain in condensed form the full information
on the p-particle correlations. This reduction of complexity

compared to the N -electron wave function � is the key aspect
making the propagation of the 2RDM attractive and potentially
useful for applications. In particular, the 2RDM carries the
information on electron correlation at the two-particle level and
thus on total energy and two-particle excitation probabilities.
The explicit use of any exchange-correlation functional as in
density-functional theory is avoided. The electron density ρ(r)
and the pair density ρ(r1,r2) are the diagonal elements of the
1RDM D1,

ρ(r1) =
∑

σ

D(r1σ ; r1σ ), (3)

and of the 2RDM D12,

ρ(r1,r2) =
∑
σ,σ ′

D(r1σr2σ
′; r1σr2σ

′), (4)

measuring the probability to find simultaneously one of the
particles at r1 and another one at r2.

The equations of motion of the RDMs belong to the
Bogoliubov-Born-Green-Kirkwood-Yvon (BBGKY) hierar-
chy frequently invoked in classical and quantum statistical
mechanics. The first two equations of the hierarchy read

i∂tD1 = [h1,D1] + Tr2[W12,D12], (5)

i∂tD12 = [H12,D12] + Tr3[W13 + W23,D123], (6)

where H12 is the reduced two-particle Hamiltonian

H12 = h1 + h2 + W12, (7)

consisting of the one-particle part hi containing the kinetic
energy, the ionic and the external potential V (r,t), and the
electron-electron interaction W12. The time derivative of the
pRDM depends on the next higher (p + 1)RDM via the
p-particle collision operator C1...p. The lowest two members
of the hierarchy are

C1{D12} = Tr2[W12,D12], (8)

C12{D123} = Tr3[W13 + W23,D123]. (9)

The coupling to higher-order members of the hierarchy
makes the complete solution of the equations of motion
as prohibitively complicated as the original time-dependent
Schrödinger equation for the N -particle problem. Therefore,
any useful application invokes closure, i.e., approximating
higher-order members of the pRDM hierarchy through func-
tionals of lower-order members. In this work we close the
equations by approximating the 3RDM in terms of the 2RDM

D123 ≈ DR
123{D12}. (10)

We will refer to this approximation as the reconstruction
functional of the 3RDM. The equation of motion to be solved
is thus

i∂tD12 = [H12,D12] + C12
{
DR

123

}
. (11)

Recently, we have shown [43] that contraction consistency

D12 = 1

N − 2
Tr3D

R
123{D12} (12)
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of such a reconstruction DR
123, i.e., that the 2RDM used as the

input to the reconstruction must be recovered after tracing out
the coordinate of the third particle [Eq. (12)], is of central
importance for an accurate and consistent closure of the
equation of motion for the 2RDM. It ensures that constants
of motion originating from symmetries of the Hamiltonian
are conserved during propagation. Important examples are
energy conservation for a time-independent Hamiltonian and
spin conservation for a spin-independent Hamiltonian. In fact,
proper spin conservation requires further contraction relations
given in Appendix A. Equation (12) ensures the contraction
consistency of the first two members of the BBGKY hierarchy,
Eqs. (5) and (11), i.e., the second equation in the BBGKY
hierarchy, Eq. (11), reduces to the first equation, Eq. (5), when
taking the trace over the second particle.

III. METHODICAL DEVELOPMENTS

A. Reconstruction

For uncorrelated particles the 3RDM is given by the
antisymmetrized tensor product of the 1RDM:

DHF
123 = 6ÂD1D2D3, (13)

where Â is the antisymmetrization operator normalized to be
idempotent and the factor 6 originates from the number of
distinct contributions. Here and in the following Di denotes
the one-particle density matrix of the i th particle. Equation (13)
is referred to as the Hartree-Fock approximation to the
3RDM, DHF

123. For correlated particles, corrections to Eq. (13)
are crucial. We introduce the corrections in terms of the
cumulants �1,...,p, starting with the 2RDM. Accordingly, D12

is analogously expanded into an uncorrelated tensor product
DHF

12 = 2ÂD1D2 describing independent identical particles
and a proper correlation term �12 originating solely from the
Coulomb interaction between the electrons

D12 = 2ÂD1D2 + �12 = DHF
12 + �12. (14)

Explicitly, the Hartree-Fock approximation to D12 is given by

DHF
12 = 2ÂD1D2

= D(x1; x′
1)D(x2; x′

2) − D(x2; x′
1)D(x1; x′

2). (15)

The term �12, referred to as the two-particle cumulant, is a
sensitive measure for electron correlation and vanishes if and
only if the particles are uncorrelated. It should be noted that the
so-called Pauli correlation resulting from antisymmetrization,
i.e., exchange, is already contained in the Hartree-Fock term
DHF

12 and is thus not part of �12. This decomposition applied
to the diagonal elements of D12 allows the identification of
the proper correlation contributions to the pair density. For
independent and distinguishable particles the pair density is
a simple product of two individual one-particle probabilities
ρ(r1)ρ(r2). For identical fermions the Pauli principle prohibits
the coalescence of two particles with the same spin giving rise
to the exchange hole ρx (see Fig. 1) and a deviation from a
simple product

ρHF(r1,r2) = ρ(r1)ρ(r2) + ρx(r1,r2)

= ρ(r1)ρ(r2) −
∑

σ

|D(r1σ ; r2σ )|2. (16)
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FIG. 1. Exchange hole ρx(r,r0) (left) [Eq. (16)] and Coulomb
correlation hole ρc(r,r0) (right) [Eq. (17)] in the ground state of Be
created by an electron located at the fixed position r0 = (0,1.5,0)
(black dot). For a pure Slater determinant the exchange hole would
be identical to the 2s orbital of the same spin. The asymmetry of
the exchange hole originates from contributions beyond the single
Slater determinant. The Coulomb correlation hole accounting for the
electron repulsion is given by the two-particle cumulant [Eq. (18)]
and reduces the probability of finding the second electron near the
first one pushing the second electron to the other side of the atom.

The Coulomb interactions lead to the appearance of additional
Coulomb correlation ρc in the pair density,

ρ(r1,r2) = ρHF(r1,r2) + ρc(r1,r2). (17)

This contribution to the pair density (see Fig. 1) is directly
given by the two-particle cumulant

ρc(r1,r2) =
∑
σ,σ ′

�(r1σr2σ
′; r1σr2σ

′). (18)

Using the decomposition, Eqs. (16) and (17), the exact total
electron-electron interaction energy

Eee =
∫

ρ(r1,r2)

|r1 − r2|dr1dr2 (19)

follows as a sum of Hartree, exchange, and correlation ener-
gies. With the help of the cumulant expansion [Eq. (14)] the
correlation contribution to other observables can be identified
analogously.

The two-particle cumulant �12 can now be used to improve
the reconstruction of D123 beyond the Hartree-Fock level.
Inclusion of corrections to first order yields

DV
123 = DHF

123 + 9Â�12D3, (20)

referred to as the Valdemoro (V) reconstruction, which has
been derived using a variety of different techniques [47].
Going beyond first order by including second- or higher-order
corrections has remained a challenge. Currently, no technique
appears to be available that allows one to calculate the

033414-3



FABIAN LACKNER et al. PHYSICAL REVIEW A 95, 033414 (2017)

FIG. 2. Diagrammatic representation of the Nakatsuji-Yasuda
reconstruction for the 3RDM, Eq. (21), in analogy to the diagram-
matic expansion of many-body Green’s functions [48] (lower line);
diagrammatic representation of D12, Eq. (14) (upper line). Green
arrows correspond to one-particle propagators and blue parts describe
connected diagrams accounting for particle-particle interactions. The
brackets represent all topologically distinct permutations of a given
diagram ensuring antisymmetry of the 3RDM.

second-order correction for all elements of the 3RDM in terms
of the lower-order RDMs. However, for specific elements,
second-order contributions can be calculated by following two
different approaches developed by Nakatsuji and Yasuda [45]
and Mazziotti [46].

The Nakatsuji-Yasuda approach is based on the diagram-
matic expansion of the 3RDM in analogy to many-body
Green’s functions (Fig. 2). Their result for the second-order
correction can be written as

DNY
123 = DHF

123 + 9Â�12D3 + 9Â�12P2�23

= DV
123 + 9Â�12P2�23, (21)

where the operator Pi acting on the ith particle is given by

Pi = 2DHF
i − Ii, (22)

with the one-particle identity matrix Ii and the reference
Hartree-Fock 1RDM

DHF(x1; x′
1) =

N∑
i

fi(x1)f ∗
i (x′

1) (23)

constructed from the eigenfunctions of the 1RDM fi , i.e.,
the natural orbitals. This present formulation differs from the
original work by Nakatsuji and Yasuda, who chose fi as the
Hartree-Fock orbitals rather than the natural orbitals [45].
The leading error in the Nakatsuji-Yasuda reconstruction is
the neglect of second-order corrections for triple excitation
amplitudes �uuu

ooo , where o denotes occupied and u denotes
unoccupied orbitals in the Hartree-Fock reference.

An alternative approach to second-order corrections intro-
duced by Mazziotti [46] yields an implicit equation for the
second-order correction

�M
123 = ÂD1�

M
123 + Â�M

123D1 + 3Â�12�23, (24)

entering the reconstruction of the 3RDM

DM
123 = DV

123 + �M
123. (25)

By transforming into the eigenbasis of the 1RDM, Eq. (24) can
be explicitly solved except for elements �ooo

xxx and �oox
oxx , which

remain undetermined and are chosen to be zero, as suggested
by Mazziotti [49].

All reconstruction functionals DR
123 as introduced above are

not contraction consistent, i.e., do not fulfill Eq. (12). Previ-
ously, we developed a generic method to enforce contraction
consistency for an arbitrary reconstruction functional. This
allows us to extend the reconstruction functionals DV

123, DNY
123,

and DM
123 to contraction consistent form. Our method is based

on the unitary decomposition of the 3RDM [43]

D123 = D123;⊥{D12} + D123;K, (26)

where the kernel D123;K is defined as the component of
D123 whose contractions vanish, Tr3D123;K = 0. Because the
component perpendicular to the kernel D123;⊥{D12} is a
known functional of the 2RDM, only the kernel component
needs to be approximated. To make a given reconstruction
functional contraction consistent we use Eq. (26) and replace
the unknown exact kernel component D123;K by the kernel
component of the chosen approximate reconstruction DR

123;K.
In the following, we will apply this contraction consistency
constraint to DV

123, DNY
123, and DM

123.

B. N representability and purification

The realization of the goal to replace the propagation of
the N -particle wave function by that of the 2RDM faces,
in addition to the reconstruction (or closure) problem, a
second and closely intertwined conceptual hurdle, known
as the N -representability problem. While �(t) itself is not
needed at any time during the propagation of the equations of
motion [Eq. (11)], the solution of D12(t) must, at all times,
satisfy Eq. (1), i.e., it must be representable as a partial trace
over the bilinear form �∗(t)�(t) of an (unknown) N -particle
wave function. If the exact form of D123 were to be used in
Eq. (11), this would be trivially the case. However, as soon as
approximations to D123 are employed, the time-evolved D12(t)
may leave the subspace of N -representable 2RDMs. While an
explicit complete set of conditions for N representability is still
unknown, several necessary conditions are well established.
Among those the D condition and the Q condition are the most
important. They guarantee that the 2RDM and the two-hole
reduced density matrix (2HRDM)

Q12 = 2ÂI1I2 − 4ÂI1D2 + D12 (27)

remain positive semidefinite (i.e., have non-negative eigenval-
ues) denoted by

D12 � 0, (28)

Q12 � 0. (29)

The positive semidefiniteness of these matrices represents
mutually independent conditions, although the matrices are
interconvertible by Eq. (27). The 2HRDM describes the pair
distribution of holes rather than of particles and its positivity
in combination with the positivity of the 2RDM ensures that
the occupation number of a particle pair or a hole pair in
any two-body state is always non-negative. Violation of the
positive semidefiniteness obviously causes instabilities in the
propagation that in turn are consequences of the approximation
error in DR

123. To avoid such instabilities we enforce the D and
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Q conditions during propagation by a purification process.
Additional N -representability conditions, in particular the G

condition, were found to remain well satisfied if the D and Q

conditions are simultaneously enforced.
We briefly describe the present purification scheme which

improves the numerical efficiency compared to its predecessor
[50]. To isolate the defective part of the 2RDM we decompose
the Hermitian 2RDM D12 = D<

12 + D>
12 into components with

negative eigenvalues D<
12 and non-negative eigenvalues D>

12,

D<
12 =

∑
gi<0

gi |gi〉〈gi |, (30)

D>
12 =

∑
gi�0

gi |gi〉〈gi |, (31)

where gi are the eigenvalues and |gi〉 are the eigenfunctions
(called geminals) of the 2RDM. Simply neglecting D<

12 in
the decomposition of the 2RDM is not a viable option as it
would lead to uncontrolled errors in the normalization as well
as in the associated 1RDM. Instead, we employ the unitary
decomposition of the 2RDM in analogy to Eq. (26),

D<
12 = D<

12;⊥{D12} + D<
12;K. (32)

As above, the kernel D<
12;K is by definition fully contraction

free. Therefore, subtracting the kernel component from the
2RDM,

D′
12 = D12 − D<

12;K, (33)

leaves the norm and the 1RDM invariant. After a single
purification step D′

12 has a significantly reduced negative
eigenvalue. The same unitary decomposition can be applied
to simultaneously enforce the approximate positivity of the
2HRDM

D′
12 = D12 − D<

12;K − Q<
12;K. (34)

Since the negative eigenvalues of the 2HRDM have dominant
contributions in the high occupation numbers of the 2RDM,
the two matrices D<

12;K and Q<
12;K act on different subspaces

and therefore do not destroy the purifying effect of the other but
lead to a simultaneous enforcement of the D and Q conditions.
The effectiveness of the purification can be further improved
by applying it iteratively.

C. Probing for the reconstruction error

We test now different reconstruction functionals introduced
in Sec. III A since choosing the most accurate reconstruction is
key to obtaining highly accurate HHG spectra. Note that in this
section we do not solve the closed equation of motion of the
2RDM [Eq. (11)]. Instead we use the exact 2RDM and 3RDM
from an MCTDHF calculation to compare DR

123 [Eq. (10)]
reconstructed from the exact 2RDM with the exact 3RDM at
each time step. This allows for a direct measurement of the pure
reconstruction error without admixture of any propagation
error. We measure the distance between the reconstructed
3RDM DR

123 and the exact 3RDM D123 by the square of the
Hilbert-Schmidt norm for matrices,∥∥D123 − DR

123

∥∥2 = Tr123
(
D123 − DR

123

)2
. (35)
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FIG. 3. Comparison of the distance [Hilbert-Schmidt norm (35)]
between the exact and reconstructed 3RDM for different reconstruc-
tion functionals proposed by Valdemoro (V) [Eq. (20)], Nakatsuji
and Yasuda (NY) [Eq. (21)], and Mazziotti (M) [Eq. (24)] with and
without including contraction consistency denoted by CC [Eq. (12)].
The simulation is performed for Be subject to a two-cycle laser
pulse with I = 0.5 × 1014 W/cm2 and λ = 800 nm (for details see
Sec. IV). The input 2RDM for the reconstruction is taken from
an MCTDHF calculation to avoid the accumulation of propagation
errors.

We find (Fig. 3) that, as expected, the largest error occurs
for the Valdemoro reconstruction, which takes into account
correlations only up to first order [Eq. (20)]. Improvements can
be obtained by including second-order contributions. While
the Mazziotti reconstruction DM

123 considerably improves
upon the Valdemoro reconstruction, the Nakatsuji-Yasuda
reconstruction DNY

123 [Eq. (21)] provides the most accurate
results for the present atomic systems under investigation
(Fig. 3). Irrespective of the perturbative order included,
we consistently find for all three reconstructions additional
significant improvement in the accuracy of the reconstruction
when enforcing contraction consistency [Eq. (12)]. Contrac-
tion consistency is thus not only essential for preserving
fundamental symmetries during propagation, but also leads to
a significantly better reconstruction. As an aside we note that
this observation suggests that contraction consistency should
improve also the solution of the anti-Hermitian contracted
stationary Schrödinger equation used to calculate the ground
state of molecules (see, e.g., [51]) for which the basic approxi-
mation is also the reconstruction of the 3RDM. The remaining
error in the reconstruction functional comes from additional
second-order contributions not included in the Nakatsuji-
Yasuda or Mazziotti approximation. The systematic inclusion
of all second-order and possibly higher-order corrections is
left for future work. In the following simulations we will
apply the contraction-consistent Nakatsuji-Yasuda (NY–CC)
approximation.

IV. HIGH-HARMONIC GENERATION

In this section we present the results of the TD-2RDM
method as applied to full 3D multielectron atoms. To bench-
mark the TD-2RDM theory we use a state-of-the-art MCTDHF
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implementation [24] as well as TDDFT within the local-
density approximation with an exchange functional [52] and
a correlation functional [53] computed via the LIBXC library
[54]. We simulate the nonlinear many-electron response of Be
and Ne subject to ultrashort few-cycle laser pulses of the form

F (t) = F0 cos(ωt) sin2

(
ω

2Nc

t

)
, 0 � t � Nc

2π

ω
, (36)

where F0 is the amplitude of the electric field, ω is the mean
angular frequency, and Nc is the number of cycles. We use from
now on the scaled time τ = t ω

2π
with 0 � τ � Nc, counting

the fractional number of cycles that have passed.
The gauge invariance of the exact 2RDM equation of

motion [Eq. (6)] is guaranteed by that of the underlying time-
dependent Schrödinger equation. The approximate equation
of motion [Eq. (11)] retains it if the employed reconstruction
is invariant under unitary transformations of orbitals, which is
the case for all the reconstructions discussed here. However,
a specific numerical implementation is not necessarily gauge
invariant. While the present implementation (see Appendix B)
is gauge invariant, those with a finite number of time-
independent spin orbitals are in general not. Due to the
favorable numerical behavior [24], we employ the velocity
gauge in all our simulations.

We particularly focus on the time-dependent dipole moment
and the HHG spectrum that depends sensitively on the electron
dynamics and is therefore well suited to test the capabilities
of the TD-2RDM method. In our simulations we consider a
near-IR pulse with wavelength λ = 800 nm (ω = 0.057 a.u.),
which is the central wavelength of the Ti:sapphire laser. We
investigate the response of the Be atom for two laser pulses
differing in intensity and in the number of cycles. One pulse
has an intensity of I = 0.5 × 1014 W/cm2 (F0 = 0.038) and
a length of four cycles Nc = 4 showing a moderate amount
of ionization. The second pulse with I = 4.0 × 1014 W/cm2

(F0 = 0.107) and two cycles leads to significant ionization
[see the insets of Figs. 4(a) and 4(c) for the pulse shape].
Because of the much larger ionization potential (Ip = 21.6 eV)
we employ in our simulation for neon a stronger pulse with
I = 1015 W/cm2 (F0 = 0.169).

The HHG spectrum IHHG(ω) is determined using the
classical Larmor formula

IHHG(ω) = 2

3c

∣∣∣∣
∫

d̈(t)eiωtdt

∣∣∣∣
2

, (37)

where the expectation value of the dipole acceleration operator
is calculated via

d̈(t) = −〈�(t)|∂V (r)

∂r
|�(t)〉

= −
∫

∂V (r)

∂r
ρ(r,t)dr. (38)

As the HHG spectrum is a functional of the reduced one-
particle density ρ(r,t), the TDDFT method can be directly
applied without invoking any approximate readout functional.

The numerical implementation of the TD-2RDM method
requires the simultaneous solution of the orbital equations of
motion (B2) in Appendix B together with the equation of
motion for the 2RDM matrix elements (B5). We solve the

angular part of the orbital equations of motion by expanding the
orbitals in spherical harmonics with a maximum angular mo-
mentum of Lmax = 47. The radial part of the orbital equations
of motion is numerically solved by employing a finite-element
discrete-variable representation in radial direction with 50
finite elements and 20 basis points each. We use a total
radial box size of 200 atomic units and absorbing boundary
conditions implemented by a cos1/4 mask function starting at a
radius of 160 atomic units with a transition length of 40 atomic
units. To obtain converged results for the time-dependent
dipole moment in the presence of electrons absorbed by the
absorbing boundary we calculate the dipole moment by a
double integral over time of the dipole acceleration.

The time propagation of the orbitals is performed using
a second-order split-step method treating the one-body part
ĥ and the part containing the electron-electron interaction in
Eq. (B2) separately. Further details on the propagation of the
orbitals can be found in Ref. [24]. We apply this propagation in
real and imaginary time, the latter for the determination of the
MCTDHF ground state, which also serves as the initial state for
the TD-2RDM propagation. It should be noted that the “exact”
MCTDHF ground state is, in general, not a stationary solution
of the approximate equation of motion of D12 [Eq. (11)]
when a reconstruction approximation has been applied in the
collision operator C12{DR

123} [Eq. (10)]. However, provided
the reconstruction approximation is sufficiently accurate, the
stationary solution of Eq. (11) is close to that of the MCTDHF
solution and can be further improved upon by projecting
out the residual excitations via time averaging over a field-
free propagation (see Appendix C). We emphasize that the
propagation of the TD-2RDM method is performed fully self-
consistently using Eq. (11) without invoking the many-body
wave function at any time.

A. Beryllium

As the first application we study the nonlinear dipole
response and HHG of Be for a laser pulse with I = 0.5 ×
1014 W/cm2. Due to the spherical symmetry of the ground
state, the initial dipole moment is zero. In the presence of
the laser pulse the atom gets polarized and the dipole moment
starts to oscillate [Fig. 4(a)]. Initially, the dipole moment nearly
adiabatically follows the electric field of the external laser
pulse, but soon after the first cycle nonlinear effects manifest
themselves through the appearance of multiple frequencies.
The near-perfect agreement between the TD-2RDM method
and the MCTDHF method shows that the TD-2RDM method
is capable of accurately describing excitation processes in
strong laser fields. In clear contrast, the mean-field TDDFT
and TDHF methods show marked deviations during the
entire pulse duration. In particular, the overshoot of the first
oscillations shows that the binding energy is underestimated
within the TDHF approximation and TDDFT compared to the
MCTDHF method. The TD-2RDM method, on the other hand,
is capable of reproducing the initial oscillations, i.e., linear
polarizability and binding energy, with high accuracy. The
high-harmonic spectrum that probes the frequency-dependent
electronic response yields excellent agreement between the
TD-2RDM and MCTDHF methods [Fig. 4(b)]. The TDHF
and TDDFT methods reproduce the overall structure of the
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FIG. 4. Electronic response of Be subject to a four-cycle laser pulse with I = 0.5 × 1014 W/cm2 [(a) and (b)] and a two-cycle laser pulse
with I = 4.0 × 1014 W/cm2 [(c) and (d)] monitored by the induced dipole moment [(a) and (c)] and the high-harmonic spectrum obtained
from the dipole acceleration [Eq. (37)] [(b) and (d)]. The wavelength of the pulse is λ = 800 nm. The TD-2RDM result calculated with the
contraction consistent Nakatsuji-Yasuda reconstruction is compared to the MCTDHF, TDHF, and TDDFT methods within the local-density
approximation. The inset shows the electric field [Eq. (36)] of the applied laser pulse with (a) four and (c) two cycles. The inset of (c) shows
three representative electron trajectories, two with recollision energies contributing to the 30th harmonic and one (in the center) contributing
to the high-energy cutoff within the three-step model. The vertical lines mark the four instances in time at which snapshots are taken in Fig. 7.
The TD-2RDM result for the stronger two-cycle laser pulse [(c) and (d)] used a total number of 40 iterations per purification step whereas no
purification was employed for the weaker pulse [(a) and (b)].

spectrum well but show deviations mostly in the plateau region
[Fig. 4(b)].

The stronger pulse (I = 4.0 × 1014 W/cm2) features al-
ready significant ionization reflected in the pronounced slope
of the dipole moment caused by the contribution of ionizing
electrons [Fig. 4(c)]. Unlike for lower intensities where the
high-harmonic spectra of the TDHF and MCTDHF methods
differ only in the detailed structure [Fig. 4(b)], for this intensity
we find a strong overestimate of the high-harmonic intensity
predicted by the TDHF method [Fig. 4(d)] previously reported
in [24]. This overestimate originates from the inability of
mean-field theories such as the TDHF approximation or
TDDFT to describe pure single-electron ionization as the
TDHF approximation and TDDFT inevitably introduce artifi-
cially enhanced double ionization whenever single ionization
occurs [4]. The, at first glance, somewhat counterintuitive con-
sequence of the coupling between single and double ionization

is that the overall probability for ionization occurring at all is
reduced. This follows from the “contamination” of pure single
ionization by ionization of the second, more deeply bound
electron with binding energy of the second ionization potential.
In turn, the lower probability for ionization leads to a larger
bound-state component in the wave function of the residual
ion enhancing the probability for coherent recombination of
the returning electron prominently visible near the cutoff
[Fig. 4(d)]. To trace back the overestimate of the HHG yield
predicted by the TDHF approximation to the underestimated
ionization probability we approximate the intensity of the
high-harmonic radiation following the three-step model as

IHHG(trec) ∝ −Ṅion(tion)Prec(trec), (39)

where Ṅion(tion) is the number of electrons ionized per time
interval at ionization time tion and Prec(trec) is the recombination
probability at the recombination time trec. In this classical
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FIG. 5. Time-frequency spectrum of the high-harmonic radiation
of Be subject to a two-cycle laser pulse with I = 4.0 × 1014 W/cm2

and λ = 800 nm predicted by the three-step model [Eq. (39)] using
the ionization probabilities from (a) the MCTDHF or (b) the TDHF
calculation as input. The absolute scale of the intensity has been
adjusted for direct comparison to the result of the quantum mechanical
calculation (Fig. 6).

model the electron is ionized from the atom at time tion and
then accelerates in the external laser field before it recombines
with the parent ion at time trec. The recombination probability
Prec can be approximated by the survival probability, i.e.,
by the probability of the electron not being ionized. Using
both quantities Ṅ ion(ti) and P rec(tr ) from either a MCTDHF
or TDHF calculation shows that, indeed, the overestimate of
HHG radiation near the cutoff can be reproduced (Fig. 5).

The MCTDHF and TD-2RDM methods allow for variable
occupation numbers of the orbitals permitting the decoupling
of single and double ionization. In fact, for the process depicted
in Figs. 4(c) and 4(d) the occupation numbers of the natural
orbitals change significantly. The accurate reconstruction in
combination with the stabilization by purification results in
the very good agreement between the TD-2RDM method
and the MCTDHF method for the dipole oscillation as well
as the high-harmonic spectrum [Figs. 4(c) and 4(d)]. To
further investigate the structure of the high-harmonic radiation
we perform a time-frequency analysis [55] by applying a
short-time Fourier transformation with a Blackman window
function [56] using the scaling parameter α = 0.16, which
features a continuous first derivative allowing a high temporal
and spectral resolution. The time-frequency analysis shows
at which time high-harmonic radiation of a given frequency
is created (Fig. 6). In agreement with the results for the
high-harmonic spectrum, we find that the TD-2RDM method
is capable of almost perfectly reproducing the MCTDHF time-
frequency distribution, whereas the TDHF approximation
predicts a significantly stronger intensity at the high-energy
cutoff.

The structure of the time-frequency behavior of the HHG
radiation shows clear signatures of the three-step model
[13,44]. Plotting the recombination energy given by the sum of
ionization potential plus kinetic energy as a function of time
shows two subsequent excursions giving rise to maximum
energies ≈55h̄ω and ≈17h̄ω at the moment of recollision.
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FIG. 6. Time-frequency spectrum of the emitted high-harmonic
radiation from a Be atom subject to a two-cycle laser pulse
with I = 4.0 × 1014 W/cm2 and λ = 800 nm calculated within (a)
the TD-2RDM method, (b) the MCTDHF method, and (c) the
TDHF method. The time-frequency spectrum has been obtained by
performing a short-time Fourier transformation using a Blackman
window function. The intensity of the high-harmonic radiation is
shown on a logarithmic scale. The four white lines mark times
τ = 0.2, 0.5, 1.0, and 1.8 at which snapshots of the particle-hole
distribution are taken in Fig. 7.

Below the maximum energy each excursion gives rise to two
branches corresponding to the short and long trajectories.
The first excursion corresponds to electrons that have been
accelerated in the strong center peak of the two-cycle laser
pulse and the second excursion by electrons accelerated
in the subsequent smaller peak. Obviously, high-harmonic
radiation with energy near the cutoff at ≈55h̄ω is generated
by recollisions after the first excursion. Comparison with the
quantum mechanical calculation (Figs. 6 and 5) reveals a
small shift to slightly higher cutoff energies in the quantum
calculation. This shift is accounted for by the modified cutoff
formula predicted by the Lewenstein model [57].

The present TD-2RDM method allows us to explore subtle
many-body effects in the HHG process not visible in single-
particle or mean-field descriptions. To this end, we analyze the
time evolution of the joint particle-hole distribution function

G̃(zp,zh) = 〈zp,zh|K2G12K2|zp,zh〉, (40)

where

G12 = D1δ2 − D12 (41)

is the particle-hole reduced density matrix [28] and

Ki =
∑

j

∣∣φg

j

〉〈
φ

g

j

∣∣ (42)
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FIG. 7. Laser-field-induced deviation from the initial-state
particle-hole distribution function G̃ph(zp,zh,t) − G̃ph(zp,zh,0)
[Eq. (40)] along the laser polarization axis (ẑ) of beryllium for the
same laser parameters as in Fig. 4(c). The times of the snapshots
shown are marked in Fig. 6 and in the inset of Fig. 4(c) (note the
logarithmic color scale). (a) τ = 0.2, (b) τ = 0.5, (c) τ = 1.0, and
(d) τ = 1.8.

is the projection operator onto the initial ground-state orbitals
φ

g

j acting on the i th particle. The distribution function G̃(zp,zh)
measures the probability of finding a particle at the coordinate
zp while leaving a hole of opposite spin in the ground state with
the coordinate zh. We show the laser-induced particle-hole
dynamics by snapshots of the deviation from the initial-state
particle-hole distribution (Fig. 7) at times marked in Fig. 6(a)
and in the inset of Fig. 4(c). The snapshot at τ = 0.2 shows the
polarization of the atom under the influence of the first weak
peak of the two-cycle laser pulse [see the inset of Fig. 4(c)].
Since the negatively charged particles and the positive holes
move under the influence of the electric field in opposite
directions, the polarized joint particle-hole distribution is
displaced to negative (positive) zp and positive (negative) zh.
The subsequent peak of the laser pulse at τ = 0.5 coincides

with the onset of ionization, eventually leading to the creation
of high-harmonic radiation upon recollision with the parent ion
around the time τ = 1.0. While the dependence of the joint
particle-hole distribution on the particle coordinate closely
mirrors the excursion from and return to the core as predicted
by the (one-particle) three-step model, the residual hole does
not remain frozen but dynamically responds to the motion of
the ionized particle and the external field. The hole coordinate
performs oscillations phase shifted by π with respect to the
particle coordinate, thereby enhancing the nonlinear dipole
response of the atom [Figs. 7(b) and 7(c)]. Near the end
of the laser pulse at τ = 1.8 the particle-hole distribution
deviates from its initial state predominantly due to ionized
electrons missing in the outer shell with |zp| > 1. Conversely,
these ionized electrons have created holes that enhance the
particle-hole distribution near the core (|zp| < 1).

B. Neon

High-harmonic generation in neon is of great importance
as it is used as the workhorse for the generation of attosecond
pulses [58]. Compared to Be, the Ne atom has a much larger
ionization energy, requiring larger laser intensities to obtain a
similar amount of ionization and high-harmonic radiation. At
the same time, the harmonic cutoff is shifted to much higher
frequencies, allowing for generation of extreme ultraviolet
pulses with energies of up to 100 eV [58]. Ab initio descriptions
of this process are considerably more challenging as up to ten
active electrons need to be treated. To simulate HHG in Ne we
use a two-cycle laser pulse with I = 1015 W/cm2 leading to a
survival probability of about 90%, which is significantly larger
than 1% for beryllium with I = 4 × 1014 W/cm2 [Fig. 4(c)].
The small ionization yield for Ne is also reflected in the occupa-
tion numbers of the natural orbitals that do not strongly change
over time. This allows the present TD-2RDM simulation to be
performed even without purification. The shape of the laser
pulse is the same as depicted in the inset of Fig. 4(c).

The dipole moment we obtain within the TD-2RDM
method is in excellent agreement with the MCTDHF calcu-
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FIG. 8. (a) Time evolution of the dipole moment and (b) high-harmonic spectrum of Ne subject to a two-cycle laser pulse with I =
1015 W/cm2 and λ = 800 nm. The form of the laser pulse is depicted in the inset of Fig. 4(c). The TD-2RDM method employing the
contraction consistent Nakatsuji-Yasuda reconstruction is compared to the MCTDHF and TDHF methods as well as TDDFT using the local
density approximation.
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FIG. 9. Time-frequency spectrum of the emitted high-harmonic
radiation of Ne subject to a two-cycle laser pulse with I =
1015 W/cm2 and λ = 800 nm calculated within (a) the TD-2RDM
method and (b) the MCTDHF method. The spectrogram has been
calculated employing the same method as in Fig. 6.

lation [Fig. 8(a)]. Qualitatively, the response of the dipole
moment of Ne shows a similar slope starting at τ ≈ 1 as
for the Be atom [Fig. 4(c)]. This slope signifies the large
excursion of the ionized electron driven by the peak electric
field near τ ≈ 1. The slope in the dipole response and therefore
ionization is larger for TDDFT and smaller for the TDHF
approximation as compared to the MCTDHF result [Fig. 8(a)].
This is reflected also in the high-harmonic spectrum [Fig. 8(b)].
The higher ionization rate of TDDFT leads to a stronger HHG
signal compared to the MCTDHF and TDHF methods. In
principle, the high-harmonic yield [Eq. (39)] also depends on
the recombination probability. However, since in the present
case ionization is small, the dependence on the recombination
probability is less important.

We find almost perfect agreement between the TD-2RDM
method and the MCTDHF method for the total high-harmonic
spectrum [Fig. 8(b)] as well as the time-frequency spectrum
(Fig. 9). Again, the peak structure of the laser pulse is reflected
in the two excursions clearly visible in the time-frequency
spectrum. Whereas recollisions following the first excursion
are high in energy, their intensity is modest due to the small
amount of ionization taking place during the first oscillation of
the laser pulse. Recollisions following the second excursion,
while lower in energy, feature a higher intensity due to the
strong ionization during the strong central peak of the laser
pulse.

V. CONCLUSION AND OUTLOOK

In this work we have presented a full 3D simulation
of the electronic response of Be and Ne atoms in strong
laser pulses using the TD-2RDM method. In particular we
have focused on the high-harmonic spectrum obtained from
state-of-the-art MCTDHF calculations as an observable to
stringently benchmark the accuracy of the TD-2RDM method.
The successful application of the TD-2RDM method relies
strongly on the reconstruction of the 3RDM entering the
closure of the equations of motion for the 2RDM. We
compared several reconstructions, including second-order

reconstructions such as the Nakatsuji-Yasuda [45] and the
Mazziotti reconstruction [46]. We found that the Nakatsuji-
Yasuda reconstruction in combination with the enforcement
of contraction consistency gives the most accurate results
for the systems under investigation. In general, we found
that contraction consistency of the reconstructed 3RDM not
only is necessary for the conservation of symmetries in the
propagation of the 2RDM but also improves the accuracy of
the reconstruction significantly. The results obtained within the
TD-2RDM method for the time-dependent atomic polarization
as well as for the high-harmonic spectra of Be and Ne are
in excellent agreement with MCTDHF reference calculations
for a variety of different laser durations and intensities. We
have used the present TD-2RDM description to identify the
influence of electronic correlations on the HHG process. We
investigated the two-particle correlation functions describing
the particle-hole dynamics controlling the harmonic emission.
These two-point observables are, unlike in mean-field descrip-
tions such as the TDHF approximation and TDDFT, directly
accessible. The influence of correlation also manifests itself
by the significant differences to the HHG spectra calculated
by the TDHF approximation and TDDFT. In particular, the
HHG spectrum of Be in a strongly ionizing laser pulse shows
a pronounced overestimation of the HHG yield in the cutoff
region if correlation is neglected. This effect can be accurately
accounted for within the TD-2RDM method. Furthermore, we
have calculated the time-frequency spectrum of the emitted
high-harmonic radiation. By comparing it to predictions of
the three-step model, the origin of the correlation-induced
suppression of the high-harmonic intensity can be delineated.
Extensions to larger systems as well as further improvement
of the 3RDM reconstruction by including second-order cor-
rections in all elements are left for future investigation.
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APPENDIX A: SPIN-BLOCK CONTRACTIONS
OF THE 3RDM

The formulation of contraction consistency introduced in
Sec. III A [Eq. (12)] is sufficient to ensure energy conservation.
For the proper conservation of spin symmetries (S2|�〉 =
Sz|�〉 = 0), contraction consistency must be extended to
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relations for the individual 3RDM spin blocks. In detail, the
necessary relations are given by

∑
m

D
i1↑m↑i2↓
j1↑j2↑m↓ = D

i1↑i2↑
j1↑j2↑, (A1)

∑
m

D
i1↑i2↑m↓
j1↑m↑j2↓ = D

i1↑i2↑
j1↑j2↑, (A2)∑

m

D
i1↑m↑i2↓
j1↑m↑j2↓ =

(
N

2
− 1

)
D

i1↑i2↓
j1↑j2↓, (A3)

∑
m

D
i1↑i2↑m↓
j1↑j2↑m↓ = N

2
D

i1↑i2↑
j1↑j2↑. (A4)

These relations can be derived by using S2|�〉 = Sz|�〉 = 0
(see [43] for further details).

APPENDIX B: ORBITAL EXPANSION

The numerical implementation of the TD-2RDM method
for strong-field processes requires the expansion of the 2RDM
within a suitable set of 2r time-dependent spin orbitals
φiσ (x,t) = φi(r,t) ⊗ |σ 〉,

D(x1x2; x′
1x′

2; t) =
∑

i1,i2,j1,j2

D
i1i2
j1j2

(t)φi1 (x1,t)φi2 (x2,t)

× φ∗
j1

(x′
1,t)φ

∗
j2

(x′
2,t), (B1)

where we merge the spin σ ∈ {↑ , ↓} and orbital indices
i ∈ {1, . . . ,r}. Such an expansion is essential to cover the
large simulation box necessary to describe electrons with
large excursion radii. For simplicity, we drop here and in
the following the labels for the pRDM when using the spin-
orbital representation, i.e., D

i1i2
j1j2

= [D12]i1i2
j1j2

and D
i1i2i3
j1j2j3

=
[D123]i1i2i3

j1j2j3
, since the order p is already uniquely characterized

by the orbital-index set. A convenient choice for the description
of the orbital dynamics is the orbital equation of motion of the
MCTDHF method

i∂tφi(r,t) = h(r)φi(r,t) + Q̂

(∑
u

�̂u(r,t)[D−1]ui

)
, (B2)

where

Q̂ = 1 −
2r∑

i=1

|φi〉〈φi | (B3)

is the orbital projection operator ensuring unitary time evolu-
tion of the basis orbitals, [D−1]ui is the inverse of the 1RDM
in the orbital representation, and

�̂u(r,t) =
∑
vwt

Dvw
ut φv(r,t)

∫
φw(r′,t)φ∗

t (r′,t)
|r − r′| dr′ (B4)

represents electron-electron interactions. This last term cou-
ples the time evolution of the orbitals to the time evolution
of the 2RDM. In this work we focus on closed-shell systems
(Be and Ne atoms). For these systems the ground-state wave
function is a singlet state and remains, in the absence of spin-
orbit interactions, a spin singlet state during propagation. In
this case the (↑↓) block of the 2RDM contains all information
on the full 2RDM [43] and the corresponding equation of

motion reduces to

i∂tD
i1↑i2↓
j1↑j2↓ =

∑
k1,k2

(
H

k1k2
j1j2

D
i1↑i2↓
k1↑k2↓ − D

k1↑k2↓
j1↑j2↓H

i1i2
k1k2

) + C
i1↑i2↓
j1↑j2↓,

(B5)

where H
k1k2
j1j2

are the matrix elements of the Hamiltonian
[Eq. (7)] in the basis of spatial orbitals. Having to propagate
only the (↑↓) block of the 2RDM significantly reduces the
numerical effort because the (↑↓) block of the collision
operator can be written solely in terms of the (↑↑↓) block
of the 3RDM

C
i1↑i2↓
j1↑j2↓ = I

i1↑i2↓
j1↑j2↓ + I

i2↑i1↓
j2↑j1↓ − (

I
j1↑j2↓
i1↑i2↓ + I

j2↑j1↓
i2↑i1↓

)∗
, (B6)

with

I
i1↑i2↓
j1↑j2↓ =

∑
k1,k2,k3

W
k2k3
j1k1

(
D

i1↑k1↑i2↓
k2↑k3↑j2↓ + D

i2↑k1↑i1↓
j2↑k3↑k2↓

)
. (B7)

APPENDIX C: APPROXIMATING THE TD-2RDM
GROUND STATE

The ground states of the MCTDHF method and of the TD-
2RDM method, which serve as initial states of the propagation,
are identical only if the exact collision kernel C12{D123} is used
in the equation of motion for the 2RDM [Eq. (6)]. When the
equation of motion is closed by employing an approximate
collision kernel C12{DR

123} based on the reconstruction DR
123

[Eq. (11)], the exact initial state D12(t = 0) is, in general, not
a stationary solution of Eq. (11). Consequently, the admixture
of excitations relative to the ground state of Eq. (11) leads to
oscillations and additional artificial “harmonic components”
(Fig. 10). For accurate reconstruction functionals such as used
here, the deviations from the true ground state and thus the
admixture of excitations are small (note the logarithmic scale).
The approximation can be further improved by projecting
out the small admixtures of excitations to the ground state
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FIG. 10. Time-frequency spectrum of the emitted high-harmonic
radiation of Ne subject to a two-cycle laser pulse with I =
1015 W/cm2 and λ = 800 nm calculated within (a) the TD-2RDM
method using the MCTDHF ground state as the initial state and (b)
the MCTDHF method. The noise contribution present near the 50th
harmonic arises from unphysical excitations present in the “wrong”
ground state. The spectrogram has been calculated employing the
same method as in Fig. 9.

033414-11



FABIAN LACKNER et al. PHYSICAL REVIEW A 95, 033414 (2017)

prior to the propagation in the laser field. This is most
easily accomplished by field-free propagation [Eq. (11)] of
the MCTDHF ground state and performing the time average

D̄12 = 1

T

∫ T

0
D12(t)dt (C1)

over a period T sufficiently long compared to the dominant
inverse excitation frequencies T  2π/ωexcitation. This leads to

an improved approximation to the proper ground state of the
TD-2RDM method and to removal of the residual unphysical
oscillations [compare Fig. 9(a) with Fig. 10(a)]. In the present
case we perform the time average over a time interval of
T = 40 atomic units. Alternatively, one could employ well-
established algorithms to directly solve the anti-Hermitian
contracted Schrödinger equation [51] to obtain the proper
ground state of the TD-2RDM method.
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[47] F. Colmenero, C. Pérez del Valle, and C. Valdemoro, Phys. Rev.

A 47, 971 (1993).
[48] R. Mattuck, A Guide to Feynman Diagrams in the Many-Body

Problem (Dover, New York, 1976).
[49] D. A. Mazziotti, Phys. Rev. A 60, 3618 (1999).
[50] D. A. Mazziotti, Phys. Rev. E 65, 026704 (2002).
[51] D. A. Mazziotti, Phys. Rev. Lett. 97, 143002 (2006).
[52] P. A. M. Dirac, Math. Proc. Cambridge Philos. Soc. 26, 376

(1930).

033414-12

https://doi.org/10.1088/0953-4075/31/14/001
https://doi.org/10.1088/0953-4075/31/14/001
https://doi.org/10.1088/0953-4075/31/14/001
https://doi.org/10.1088/0953-4075/31/14/001
https://doi.org/10.1103/PhysRevA.77.032716
https://doi.org/10.1103/PhysRevA.77.032716
https://doi.org/10.1103/PhysRevA.77.032716
https://doi.org/10.1103/PhysRevA.77.032716
https://doi.org/10.1103/PhysRevA.77.043420
https://doi.org/10.1103/PhysRevA.77.043420
https://doi.org/10.1103/PhysRevA.77.043420
https://doi.org/10.1103/PhysRevA.77.043420
https://doi.org/10.1063/1.3553176
https://doi.org/10.1063/1.3553176
https://doi.org/10.1063/1.3553176
https://doi.org/10.1063/1.3553176
https://doi.org/10.1103/PhysRevLett.108.163001
https://doi.org/10.1103/PhysRevLett.108.163001
https://doi.org/10.1103/PhysRevLett.108.163001
https://doi.org/10.1103/PhysRevLett.108.163001
https://doi.org/10.1088/0953-4075/38/22/005
https://doi.org/10.1088/0953-4075/38/22/005
https://doi.org/10.1088/0953-4075/38/22/005
https://doi.org/10.1088/0953-4075/38/22/005
https://doi.org/10.1103/PhysRevA.66.043403
https://doi.org/10.1103/PhysRevA.66.043403
https://doi.org/10.1103/PhysRevA.66.043403
https://doi.org/10.1103/PhysRevA.66.043403
https://doi.org/10.1103/PhysRevA.74.052702
https://doi.org/10.1103/PhysRevA.74.052702
https://doi.org/10.1103/PhysRevA.74.052702
https://doi.org/10.1103/PhysRevA.74.052702
https://doi.org/10.1016/j.elspec.2007.02.011
https://doi.org/10.1016/j.elspec.2007.02.011
https://doi.org/10.1016/j.elspec.2007.02.011
https://doi.org/10.1016/j.elspec.2007.02.011
https://doi.org/10.1103/PhysRevA.75.013408
https://doi.org/10.1103/PhysRevA.75.013408
https://doi.org/10.1103/PhysRevA.75.013408
https://doi.org/10.1103/PhysRevA.75.013408
https://doi.org/10.1103/PhysRevA.82.041404
https://doi.org/10.1103/PhysRevA.82.041404
https://doi.org/10.1103/PhysRevA.82.041404
https://doi.org/10.1103/PhysRevA.82.041404
https://doi.org/10.1103/PhysRevA.81.061403
https://doi.org/10.1103/PhysRevA.81.061403
https://doi.org/10.1103/PhysRevA.81.061403
https://doi.org/10.1103/PhysRevA.81.061403
https://doi.org/10.1103/PhysRevLett.68.3535
https://doi.org/10.1103/PhysRevLett.68.3535
https://doi.org/10.1103/PhysRevLett.68.3535
https://doi.org/10.1103/PhysRevLett.68.3535
https://doi.org/10.1103/PhysRevA.36.2726
https://doi.org/10.1103/PhysRevA.36.2726
https://doi.org/10.1103/PhysRevA.36.2726
https://doi.org/10.1103/PhysRevA.36.2726
https://doi.org/10.1088/0953-4075/31/6/001
https://doi.org/10.1088/0953-4075/31/6/001
https://doi.org/10.1088/0953-4075/31/6/001
https://doi.org/10.1088/0953-4075/31/6/001
https://doi.org/10.1103/PhysRevA.74.042512
https://doi.org/10.1103/PhysRevA.74.042512
https://doi.org/10.1103/PhysRevA.74.042512
https://doi.org/10.1103/PhysRevA.74.042512
https://doi.org/10.1103/PhysRevA.76.023409
https://doi.org/10.1103/PhysRevA.76.023409
https://doi.org/10.1103/PhysRevA.76.023409
https://doi.org/10.1103/PhysRevA.76.023409
https://doi.org/10.1103/PhysRevA.71.012712
https://doi.org/10.1103/PhysRevA.71.012712
https://doi.org/10.1103/PhysRevA.71.012712
https://doi.org/10.1103/PhysRevA.71.012712
https://doi.org/10.1063/1.2771159
https://doi.org/10.1063/1.2771159
https://doi.org/10.1063/1.2771159
https://doi.org/10.1063/1.2771159
https://doi.org/10.1140/epjst/e2014-02092-3
https://doi.org/10.1140/epjst/e2014-02092-3
https://doi.org/10.1140/epjst/e2014-02092-3
https://doi.org/10.1140/epjst/e2014-02092-3
https://doi.org/10.1103/PhysRevA.88.023402
https://doi.org/10.1103/PhysRevA.88.023402
https://doi.org/10.1103/PhysRevA.88.023402
https://doi.org/10.1103/PhysRevA.88.023402
https://doi.org/10.1103/PhysRevA.94.023405
https://doi.org/10.1103/PhysRevA.94.023405
https://doi.org/10.1103/PhysRevA.94.023405
https://doi.org/10.1103/PhysRevA.94.023405
https://doi.org/10.1103/PhysRevA.91.023417
https://doi.org/10.1103/PhysRevA.91.023417
https://doi.org/10.1103/PhysRevA.91.023417
https://doi.org/10.1103/PhysRevA.91.023417
https://doi.org/10.1038/nphys1511
https://doi.org/10.1038/nphys1511
https://doi.org/10.1038/nphys1511
https://doi.org/10.1038/nphys1511
https://doi.org/10.1103/PhysRev.97.1474
https://doi.org/10.1103/PhysRev.97.1474
https://doi.org/10.1103/PhysRev.97.1474
https://doi.org/10.1103/PhysRev.97.1474
https://doi.org/10.1007/BF01461233
https://doi.org/10.1007/BF01461233
https://doi.org/10.1007/BF01461233
https://doi.org/10.1007/BF01461233
https://doi.org/10.1063/1.1360199
https://doi.org/10.1063/1.1360199
https://doi.org/10.1063/1.1360199
https://doi.org/10.1063/1.1360199
https://doi.org/10.1063/1.1453961
https://doi.org/10.1063/1.1453961
https://doi.org/10.1063/1.1453961
https://doi.org/10.1063/1.1453961
https://doi.org/10.1063/1.1636721
https://doi.org/10.1063/1.1636721
https://doi.org/10.1063/1.1636721
https://doi.org/10.1063/1.1636721
https://doi.org/10.1103/PhysRevLett.93.213001
https://doi.org/10.1103/PhysRevLett.93.213001
https://doi.org/10.1103/PhysRevLett.93.213001
https://doi.org/10.1103/PhysRevLett.93.213001
https://doi.org/10.1021/ar050029d
https://doi.org/10.1021/ar050029d
https://doi.org/10.1021/ar050029d
https://doi.org/10.1021/ar050029d
https://doi.org/10.1007/BF01290612
https://doi.org/10.1007/BF01290612
https://doi.org/10.1007/BF01290612
https://doi.org/10.1007/BF01290612
https://doi.org/10.1016/0375-9474(93)90090-K
https://doi.org/10.1016/0375-9474(93)90090-K
https://doi.org/10.1016/0375-9474(93)90090-K
https://doi.org/10.1016/0375-9474(93)90090-K
https://doi.org/10.1140/epja/i2014-14077-x
https://doi.org/10.1140/epja/i2014-14077-x
https://doi.org/10.1140/epja/i2014-14077-x
https://doi.org/10.1140/epja/i2014-14077-x
https://doi.org/10.1103/PhysRevA.78.012512
https://doi.org/10.1103/PhysRevA.78.012512
https://doi.org/10.1103/PhysRevA.78.012512
https://doi.org/10.1103/PhysRevA.78.012512
https://doi.org/10.1103/PhysRevB.85.235121
https://doi.org/10.1103/PhysRevB.85.235121
https://doi.org/10.1103/PhysRevB.85.235121
https://doi.org/10.1103/PhysRevB.85.235121
https://doi.org/10.1103/PhysRevA.91.023412
https://doi.org/10.1103/PhysRevA.91.023412
https://doi.org/10.1103/PhysRevA.91.023412
https://doi.org/10.1103/PhysRevA.91.023412
https://doi.org/10.1103/PhysRevLett.71.1994
https://doi.org/10.1103/PhysRevLett.71.1994
https://doi.org/10.1103/PhysRevLett.71.1994
https://doi.org/10.1103/PhysRevLett.71.1994
https://doi.org/10.1103/PhysRevLett.76.1039
https://doi.org/10.1103/PhysRevLett.76.1039
https://doi.org/10.1103/PhysRevLett.76.1039
https://doi.org/10.1103/PhysRevLett.76.1039
https://doi.org/10.1016/S0009-2614(00)00773-9
https://doi.org/10.1016/S0009-2614(00)00773-9
https://doi.org/10.1016/S0009-2614(00)00773-9
https://doi.org/10.1016/S0009-2614(00)00773-9
https://doi.org/10.1103/PhysRevA.47.971
https://doi.org/10.1103/PhysRevA.47.971
https://doi.org/10.1103/PhysRevA.47.971
https://doi.org/10.1103/PhysRevA.47.971
https://doi.org/10.1103/PhysRevA.60.3618
https://doi.org/10.1103/PhysRevA.60.3618
https://doi.org/10.1103/PhysRevA.60.3618
https://doi.org/10.1103/PhysRevA.60.3618
https://doi.org/10.1103/PhysRevE.65.026704
https://doi.org/10.1103/PhysRevE.65.026704
https://doi.org/10.1103/PhysRevE.65.026704
https://doi.org/10.1103/PhysRevE.65.026704
https://doi.org/10.1103/PhysRevLett.97.143002
https://doi.org/10.1103/PhysRevLett.97.143002
https://doi.org/10.1103/PhysRevLett.97.143002
https://doi.org/10.1103/PhysRevLett.97.143002
https://doi.org/10.1017/S0305004100016108
https://doi.org/10.1017/S0305004100016108
https://doi.org/10.1017/S0305004100016108
https://doi.org/10.1017/S0305004100016108


HIGH-HARMONIC SPECTRA FROM TIME- . . . PHYSICAL REVIEW A 95, 033414 (2017)

[53] S. H. Vosko, L. Wilk, and M. Nusair, Can. J. Phys. 58, 1200
(1980).

[54] M. A. Marques, M. J. Oliveira, and T. Burnus, Comput. Phys.
Commun. 183, 2272 (2012).

[55] V. S. Yakovlev and A. Scrinzi, Phys. Rev. Lett. 91, 153901
(2003).

[56] R. Blackman and J. Tukey, The Measurement of Power Spectra,
From the Point of View of Communications Engineering (Dover,
New York, 1958).

[57] M. Lewenstein, P. Balcou, M. Y. Ivanov, A. L’Huillier, and
P. B. Corkum, Phys. Rev. A 49, 2117 (1994).

[58] F. Krausz and M. Ivanov, Rev. Mod. Phys. 81, 163 (2009).

033414-13

https://doi.org/10.1139/p80-159
https://doi.org/10.1139/p80-159
https://doi.org/10.1139/p80-159
https://doi.org/10.1139/p80-159
https://doi.org/10.1016/j.cpc.2012.05.007
https://doi.org/10.1016/j.cpc.2012.05.007
https://doi.org/10.1016/j.cpc.2012.05.007
https://doi.org/10.1016/j.cpc.2012.05.007
https://doi.org/10.1103/PhysRevLett.91.153901
https://doi.org/10.1103/PhysRevLett.91.153901
https://doi.org/10.1103/PhysRevLett.91.153901
https://doi.org/10.1103/PhysRevLett.91.153901
https://doi.org/10.1103/PhysRevA.49.2117
https://doi.org/10.1103/PhysRevA.49.2117
https://doi.org/10.1103/PhysRevA.49.2117
https://doi.org/10.1103/PhysRevA.49.2117
https://doi.org/10.1103/RevModPhys.81.163
https://doi.org/10.1103/RevModPhys.81.163
https://doi.org/10.1103/RevModPhys.81.163
https://doi.org/10.1103/RevModPhys.81.163



