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Superponderomotive regime of tunneling ionization
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Ultrarelativistic photoelectron spectra exhibit unexpected characteristics in a paraxial laser focus. The
photoelectron energy scales superponderomotively, and the usual parabolic momentum distribution is distorted
into a variety of intricate patterns, depending on the location of the ion. These patterns include discrete contours,
which in some cases can be easily identified with a particular subcycle burst of ionization current. An analytical
formula for the maximum photoelectron energy in a paraxial radiation field is given, and high-resolution
momentum distributions with narrowly peaked features are presented. These narrowly peaked features suggest
application to electron injection into plasma-based accelerators.
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I. INTRODUCTION

As laser technology continues to advance, new regimes of
laser-matter interaction appear. Serious efforts are currently
under way to build multipetawatt laser facilities capable of
delivering a focused irradiance of the order of 1023 W/cm2.
Such facilities open up new experimental possibilities in
high-field physics (see, e.g., Ref. [1]). Relativistic tunneling
ionization is a fundamental process that automatically ac-
companies any such experiment where the target composition
includes atoms heavier than boron [2]. In this paper, a regime
of tunneling ionization, characterized by superponderomotive
energy scaling and accessible to multipetawatt lasers, is
reported. Apart from its significance as a fundamental physical
process, tunneling ionization of electrons in superstrong fields
has applications in plasma-based accelerators [3–6].

The photoelectron distribution due to relativistic tunnel-
ing ionization is most often analyzed in the plane-wave
approximation [7–10]. Finite-spot-size effects are generally
thought to lead to a preference for photoelectron energies
commensurate with the ponderomotive potential [3,4]. Full-
scale three-dimensional ab initio simulations of relativistic
photoionization are just now becoming possible [10], but even
this state of the art does not permit determination of the wave
function far enough from the interaction region to directly
compute observable photoelectron distributions. On the other
hand, the two-step model [11] can be employed to estimate
photoelectron distributions far from the interaction region.
This paper applies the two-step model to the case of tunneling
ionization in a paraxial radiation focus, where the free electron
dynamics are ultrarelativistic [12]. Under these conditions, the
photoelectron distribution is qualitatively different from what
is obtained under either plane-wave illumination or weakly
relativistic paraxial illumination.

In tunneling ionization, the probability current near the
barrier depends only on the instantaneous field [13,14] and
is, therefore, strongly localized in phase. In an extreme field,
it becomes possible for free electrons to remain localized
in phase until they leave the confocal region. Such an
electron is exposed to only a few radiation cycles before
the field is geometrically attenuated and may be said to
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be in phase resonance with the electromagnetic wave (cf.
Landau resonance [15]). This cannot happen in a plane
wave, where there is no geometric attenuation. Important
consequences of phase resonance include superponderomotive
energy scaling and nonparabolic momentum-space contours.
The laser power needed to readily observe these effects falls
in the multipetawatt range.

The existing literature dealing with finite-spot-size effects
in tunneling ionization includes Refs. [3,4], and [16–19],
among others. The analysis, calculations, and experiments
considered in Refs. [3] and [4] are in the ponderomotive
regime and so do not address phase resonance. References [16]
and [17] discuss phase resonance but lack analytical treatment
and discussion of scaling with irradiance. References [16]
and [17] utilize a classical model for the bound states, whereas
the two-step model used here employs a quantum mechanical
ionization rate [9] and includes radiation reaction [12] during
the classical motion. The numerical approach [12] produces a
highly resolved S matrix and momentum distributions which
are, in principle, observable quantities that can be correlated
with subcycle bursts of ionization current and may be useful
for particle acceleration applications.

II. SUPERPONDEROMOTIVE PHOTOELECTRONS

Quantum mechanically, there is a finite probability of
obtaining any photoelectron energy. In contrast, the quasi-
classical two-step model produces a bounded photoelectron
energy spectrum. The maximum energy is meaningful if the
characteristic energy spread in the quasiclassical distribution
is similar to the quantum mechanical energy spread, for then
the probability of obtaining energies beyond the maximum
is exponentially small. We verified that this is the case by
comparing the two-step model with the Coulomb-corrected
strong-field approximation in Ref. [9], in the appropriate limit.

The scaling of the maximum photoelectron energy with
the radiation amplitude is shown in Fig. 1, with the ra-
diation amplitude given in terms of the peak-normalized
vector potential, a0 = eA0/mc2. The parameter a0 char-
acterizes the importance of relativistic effects, i.e., when
a0 � 1 the free electron dynamics are weakly relativistic,
while when a0 � 1 they are ultrarelativistic. Each value
of a0 is paired with a particular ionization potential, Uion,
shown on the upper horizontal axis. The Uion values are
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FIG. 1. Maximum energy in the photoelectron spectrum for an
0.8-μm-wavelength, 30-fs pulse, focused on a 5-μm spot, for a range
of radiation amplitudes and matching ionization potentials. Pulse
metrics are referenced to 1/e of the field.

chosen so that the corresponding a0 is twice the threshold
value for tunneling ionization. The plot shows simulation
results, along with three theoretical curves for comparison
(see derivation below).

Figure 1 illustrates several important points. First, two
regimes of photoelectron generation are clearly suggested, one
for a0 � 10 and one for a0 � 100. The simulation results for
a0 � 10 are well matched by the theoretical curves labeled
“ponderomotive” and “phase resonance.” The ponderomotive
model is just the prediction from Refs. [3] and [4], u0 = 1 +
a2

0/4, where u0 is the time component of the four-velocity. The
phase resonance model is derived below. Results for a0 � 100
are well matched only by the phase resonance model. The

relativistic ponderomotive curve, defined by u0 =
√

1 + a2
0/2,

is wrong everywhere (this model applies in the quasistatic
limit of laser-plasma interactions [20]). In the transition region,
10 � a0 � 100, quantitative accuracy is missing from all the
models, but the correct qualitative behavior is capture by the
phase resonance model. The compelling feature in Fig. 1 is
the superponderomotive scaling of the energy with a0, espe-
cially for 10 < a0 < 30. This scaling should be contrasted with
that of the mass-corrected ponderomotive potential, which
underestimates the energy by two orders of magnitude at the
point where phase resonance sets in.

The simulation points in Fig. 1 alternate between runs that
include and runs that do not include a classical radiation
reaction. Clearly, the radiation reaction is found to have a
minor effect on the maximum photoelectron energy. There
is, however, an effect on the detailed momentum distribution,
which becomes noticeable for a0 > 103 (not shown). It should
be noted that the radiation reaction model used here only
affects the motion in the classical region and that quantum
electrodynamics effects such as pair production are not
accounted for (the highest field used is about 3% of the
Schwinger limit). Ion motion is also neglected.

III. PHASE RESONANCE MODEL

The phase resonance model is based on the expectation that
when an inner-shell electron is tunnel-ionized, it is accelerated
abruptly to the speed of light. In this limit, the motion is nearly
parallel to the wave vector of the radiation, and the phase of the
particle in the radiation field can be regarded as constant. The
primary constraint is that the interaction is limited to regions
where the irradiance is high and the phase velocity is close to
c. This corresponds to the two regions just outside the confocal
region. That is, far from the confocal region the irradiance is
too low, but inside the confocal region the phase velocity is
too high.

Let the four-dimensional coordinate and velocity of an
electron be denoted x and u, respectively. Consider the lowest
order, linearly polarized, Hermite-Gaussian laser mode, with
x1 the polarization direction and x3 the propagation direction.
The equations of motion for a perfectly resonant particle can
be integrated most conveniently in the case x2 = 0, so that the
axial magnetic field vanishes. As shown below, this is the most
interesting case for high-energy photoelectron production. In
matrix form, the equations of motion are dx/ds = cu and
du/ds = �u, where x(s) is the world line of the particle, u(s)
is the four-velocity, and �(s) = a(s)ωF (s). The parameter s is
the proper time, a(s) = qE(s)/mcω, E is the electric field, q is
the charge of the particle, m is the mass, and ω is the frequency
of the radiation. Using the coordinate system described above,
the matrix F is

F (s) =

⎛
⎜⎝

0 1 0 ε(s)
1 0 0 −1
0 0 0 0

ε(s) 1 0 0

⎞
⎟⎠. (1)

Here, ε is the ratio of axial-to-transverse electric field, which
need not be small. Define a phase resonant particle as one
for which � slowly varies on x(s). Such particles have x(s)
confined to the intersection of two regions, one being a
neighborhood about a hypersurface of constant ε and the other
a neighborhood about a hypersurface of constant phase. In
the first approximation, � is constant, and the solution of the
velocity equation is u(s) = �(s)u(0), where

�(s) = e�(s)s . (2)

It can be shown that � is a Lorentz transformation, i.e.,
�T g� = g, where T indicates the transpose, and g =
diag(1,−1,−1,−1). Of particular interest is the initial con-
dition u(0) = (1,0,0,0)T , which, according to most theories,
holds for an electron at the moment of ionization, at least when
the atomic number satisfies Z � 137. In this case,

u(s) = 1

ε2

⎛
⎜⎝

cosh εσ − 1 + ε2 cosh εσ

ε − ε cosh εσ + ε sinh εσ

0
cosh εσ − 1 + ε2 sinh εσ

⎞
⎟⎠, (3)

where σ (s) = a0ωs. In the plane-wave limit (ε → 0) the
particle momentum is

u(s) =

⎛
⎜⎝

1 + σ 2/2
σ

0
σ 2/2

⎞
⎟⎠. (4)
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As expected, taking the plane-wave limit leads to the invariance
of [8,9]

ϒ ≡ u0 − u3. (5)

Moreover, when σ � 1, the momentum is predominantly in
the forward direction, i.e., u3 � u1. Assuming a0 � 1, this
requires that ωs be at least of order unity; i.e., the time elapsed
according to a clock moving with the particle should read
at least one laser period, as measured by a laboratory frame
clock. This does not necessarily violate the assumption that
the particle should stay in phase, since the two clocks may
keep very different time.

In order to estimate the maximum energy gain, values for s

and ε are needed. The value of s is constrained by either phase
slippage or interaction length. The phase change after a proper
time s is

ϕ(s) =
∫

ω(u0 − u3)ds = 1 − cosh εσ + sinh εσ

εa0
, (6)

whereas the distance traversed by the particle is

x3(s) = c

∫
u3(s)ds

= λ

2πε3a0
[sinh εσ − εσ + ε2(cosh εσ − 1)], (7)

where λ = 2πc/ω. The maximum energy gain is u0(s ′), where
s ′ = min {s|ϕ(s) = π/4,s|x3(s) = zR}. Here, zR = πr2

0 /λ is
the Rayleigh length, with r0 the radius of the beam waist. A
characteristic value for ε is obtained by evaluating the field
at the point (r0,0,zR), which gives ε2 = λ/4πzR . The phase
resonance limit corresponds to the case where the energy
gain is limited by the interaction length, i.e., the case where
x3(s ′) = zR .

Closed expressions for u0(s ′) can be obtained by expanding
s ′ to some desired order in ε. More generally, s ′ can be found
numerically. The zero-order analytical solution, in the phase
resonance limit, is

u
(0)
0,max = 1 + 2

(
3πr0

λ

)2/3(
Pre

mc3

)1/3

, (8)

where P is the laser power and re is the classical electron
radius. As an example, a 10-PW laser pulse, with λ = 0.8 μm,
focused to r0 = 5 μm, gives a0 ≈ 100, and u0,maxmc2 ≈
1.5 GeV. The phase resonance curve in Fig. 1 uses the
numerical solution for s ′, which leads to closer agreement with
simulation. Note that in the first approximation, the wavelength
appears only in the combination r0/λ, which is fixed by the
focusing geometry.

An expression for the phase resonance threshold amplitude
is obtained by equating the ponderomotive energy with the
lowest order phase resonance energy and solving for a0 (i.e.,
the threshold is estimated as the point where the two curves
intersect). This results in

athresh
0 = 27/4

√
3
πr0

λ
≈ 6πr0

λ
. (9)

It should be noted that the whole of the foregoing theory
assumes paraxial focusing, i.e., r0 � λ. As a result, it is evident
that a0 must always be large.

The essential element in the foregoing analysis is the
assumption that upon ionization into an extreme field, an
electron can be accelerated to nearly the speed of light in a

fraction of an optical cycle. This requires that the ionization
potential be large enough so that the electron is held in
position by its parent ion until it is exposed to ultrarelativisitic
intensity, but not so large that ionization becomes highly
improbable.

IV. PHOTOELECTRON DISTRIBUTIONS

In order to calculate detailed photoelectron distributions
numerically, a large number of trials of the two-step model are
carried out, using a paraxial model for the vector fields in a laser
focus and an advanced, covariant, particle tracking model [12].
Tracking photoelectrons through this field gives the quasi-
classical S matrix, Sxu, where |Sxu|2 is the probability that a
photoelectron with initial coordinate x has final momentum u.
Here, x0 is the time of ionization, while x = (x1,x2,x3) is the
position of the parent ion. The parameter x0 falls out of the
two-step ionization model and is only defined quasiclassically.
The dependence on x is present in the quantum mechanical
S matrix but is often ignored because it disappears in the
plane-wave limit.

Consider laser parameters a0 = 100, λ = 0.8 μm, r0 =
5 μm, and τ = 30 fs, which are chosen to be achievable by
near-term 10-PW laser systems. Projections of the quasiclas-
sical S matrix for Ar17+, correlating the final energy with the
initial coordinate, are shown in Fig. 2. In any given projection,
there is a large low-energy population and only a small number
of high-energy particles. The highest energy particles originate
roughly from the coordinates x1 ≈ ±r0, x2 ≈ 0, and x3 ≈ 0.
This suggests that a high-quality, high-energy beam might be
obtained by localizing the parent ions to a small neighborhood
about one or both of these two points.

The photoelectron distribution from a single Ar17+ ion,
for two different ion coordinates, is shown in Fig. 3. This
is computed using 106 trials of the two-step model, with
the ion coordinate x = 0 in Fig. 3(a) and the ion coordinate
x = (r0,0,zR) in Fig. 3(b). The case with the ion at the origin
is nearly symmetric in u1, with the slight asymmetry due to the
fact that the first burst of ionization current must occur in a field
with one sign or the other. The case with the ion offset from
the axis is highly asymmetric in u1, as might be expected.
The departure from the parabolic form of the plane-wave
case is obvious [4,21]. Interestingly, the fine structure exhibits
a multiplicity of discrete contours. This structure can be
understood in terms of the S matrix projected into the plane
of the ionization phase, �0 = �(x0,x), and energy [12]. For
example, it is found that the densely packed low-energy
contours in Fig. 3(b) are generated for �0 ≈ π/2 + 2πn,
where n is an integer, while the higher energy contours
are generated for �0 ≈ 3π/2 + 2πn. More importantly, each
of the high-energy contours in the bundle of contours can
be associated with a particular subcycle burst of ionization
current, as shown in Fig. 3(c). This is intriguing because the
temporal structure of the unobservable probability current is
directly mapped to a corresponding observable structure.

V. CONCLUSIONS

Multipetawatt lasers access a new regime of strong-field
physics and free-space acceleration, which appears when the
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FIG. 2. Quasiclassical S-matrix projections for Ar17+. Correla-
tion of the final energy (a) with the initial polarization coordinate, (b)
with the intial cross-polarization coordinate, and (c) with the initial
axial coordinate. Variables not in the subscript of S are integrated out.

normalized vector potential a0 � 10. When ionized electrons
are released into an extreme field, they can be accelerated
to superponderomotive energies due to phase resonance; i.e.,
they stay near the same optical phase throughout a substantial
portion of the confocal region. The resulting photoelectron
momentum distributions have unique features, which depart
significantly from the usual parabolic form expected in the
plane-wave or weakly relativistic limits. Single atoms, or
possibly clusters of atoms, produce discrete contours in
momentum space that can be related to subcycle bursts
of ionization current. The narrow, nonparabolic contours

FIG. 3. Momentum distributions from an Ar17+ ion positioned
(a) at x = 0 and (b) at x = (r0,0,zR). (c) Same as (b), except that
the color scale identifies the average ionization phase associated with
the given final momentum. The monochromaticity of a given contour
illustrates that the entire contour is associated with a particular phase.
Variables not in the subscript of S are integrated out.

in momentum space suggest a potential application in the
area of laser-plasma acceleration of electrons. Although
superponderomotive tunneling ionization cannot compete with
plasma as a primary accelerating structure, it may be useful as
an injection source, i.e., as the front end of a laser-plasma
accelerator. This possibility was considered previously in
Refs. [3] and [4] in the context of parabolic momentum-space
contours. In particular, angular selection was proposed as a
means of controlling the energy spread. The difficulty was the
low charge resulting from the angular selection. The variety
of nonparabolic momentum-space contours that occur in the
superponderomotive regime raises further possibilities, which
may allow for simultaneous extraction of high charge and low
energy spread.
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