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Single ionization of helium by 1-MeV protons
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We consider the basic collision dynamics of single ionization of helium by 1-MeV protons using distorted-wave
models and the first Born approximation. A good agreement is found between results of the distorted-wave models
and recent experimental data [H. Gassert, O. Chuluunbaatar, M. Waitz et al., Phys. Rev. Lett. 116, 073201 (2016)]
for electron emission into the azimuthal plane. However, unexpected discrepancies are observed between the
theoretical results and the experimental data for the emission into the collision plane. Our consideration also
shows that even though these collisions belong to the regime of weak perturbations, substantial differences exist
between the results of the distorted-wave models and the first Born approximation.
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I. INTRODUCTION

The studies of helium ionization by fast ions enable one to
explore many interesting features of the dynamical behavior
of few-body quantum systems. During the last 15 years the
exploration of the basic dynamics of single ionization of
helium by fast charged projectiles has been one of the hot
topics in the field of ion-atom collisions [1–12].

In a well-known experiment [2] (see also [1]) the fully
differential cross section (FDCS) for single ionization of
helium by 100-MeV/u C6+ projectiles was measured. Al-
though the projectile was a multiply charged ion (Zp = 6 a.u.),
the collision velocity v was so high (v ≈ 58 a.u.) that
the parameter ηp = Zp/v, which characterizes the effective
strength of the projectile-target interaction, was merely ≈ 0.1
suggesting that even the simplest theoretical approach—the
first Born approximation (FBA)—should yield a reasonably
good description of this process.

Indeed, a good agreement between experiment and the first
Born theory was observed [1,2] for electron emission into
the so-called collision plane which is spanned by the vectors
of the initial and final projectile momenta (and in which the
emission is normally maximal). However, large discrepancies
were found for electron emissions outside this plane.

According to the FBA, the interaction between the projec-
tile and the target nucleus does not contribute to the transition
amplitude (see, e.g., [13]). It was therefore suggested in [2] that
the disagreement between experiment and theory arises from
the influence of this interaction on the collision dynamics.

A number of theoretical approaches, including the second
Born, the Glauber, the continuum-distorted-wave eikonal-
initial-state, and the symmetric-eikonal approximations, were
applied to calculate the fully differential cross sections for
ionization in collisions with fast bare ions [1,3–8,11]. These
approaches, which are superior to the first Born approximation,
predict a nonzero contribution to the transition amplitude from
the interaction between the projectile and the target core (the
target nucleus + the “passive” target electron).

All these approaches, as well as recent coupled-channel
calculations [14], yield quite close results [3] for ionization by
100-MeV/u C6+ projectiles. All of them predicted noticeable
deviations in the electron emission pattern outside the scatter-
ing plane from the FBA results. They, however, did not lead to
any better overall agreement with the experiment but instead

made it even worse. For instance, for electron emission into
the plane, perpendicular to the transverse momentum transfer,
all of them predicted a minimum exactly where—according to
the experiment—a maximum should be [15].

The role of experimental uncertainties in helium ionization
by 100-MeV/u C6+, which are caused by a nonzero tempera-
ture of the target gas and a finite size of the projectile beam, was
studied in [10] where it was concluded they are not sufficient
for a full explanation of the disagreement between theory and
experiment.

The effect of the non-Coulomb part of the interaction
between the projectile and the target core, as a possible reason
for the disagreement, was studied in [11]. However, it was
found there that the deviation of the projectile–target-core
interaction from the purely Coulomb one affects the cross
sections only at relatively large transverse momentum transfers
and, therefore, cannot be the reason for the disagreement.

More recently, the possible role of the coherence properties
of the projectile beam in ionization was discussed in a number
of articles (see, e.g., [16,17] and references therein). The lack
(or a low degree) of coherence in an experimentally prepared
beam could, according to [16,17], be responsible for the
observed discrepancies between experimental results and the
“conventional” theory of ion-atom collisions (which describes
free particles by plane waves with well-defined momenta). A
seemingly different explanation of the differences between the-
ory and experiment was proposed in [18] where it was related
to the degree to which the incident beam was uncollimated.

The present work is motivated by a recent experiment
[12] that explored the basic dynamics of single ionization of
helium by 1-MeV protons. The authors used an experimental
setup which enabled them to reach the highest resolution ever
reported for ionizing ion-atom collisions. Their experimental
results were compared with FBA calculations [12] and no
large qualitative disagreement between experiment and theory,
which would be similar to that observed for ionization by
100-MeV/u C6+, was found.

The main goal of the present article is to explore, while re-
maining within the conventional theory of ion-atom collisions,
how accurately one can reproduce the experimental data of [12]
by using theoretical approaches which are more sophisticated
than the first Born approximation. Taking into account that
the collisions with 1-MeV protons are in the regime of fast
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collisions at (relatively) weak perturbations (ηp = Zp/v ≈
0.16 � 1) one can expect that distorted-wave models represent
a good tool for describing the ionization process. Atomic units
are used throughout except where otherwise stated.

II. THEORETICAL APPROACHES

Typical values of the momentum transfer to the target in
collisions resulting in ionization of helium do not exceed a
few atomic units. Besides, in the target reference frame the
overwhelming majority of the emitted electrons have energies
not exceeding a few tens of electronvolts. Therefore, by
considering the momentum balance in the collision it is not
difficult to conclude that the change in the momentum of the
target nucleus caused by the collision also does not exceed a
few atomic units. Consequently, the recoil velocity urec of the
target nucleus in the collision is of the order of 10−4 a.u.

In experiments aimed at the exploration of the basic
collision dynamics the target is cooled down to very low
temperatures. For instance, in the experiment of [12] the
helium target was cooled to �1 K that corresponds to atomic
velocities u0 of the order of 10−5 a.u. such that the target atoms
may be considered as being initially at rest with respect to each
other. Besides, despite the recoil velocity of the target nucleus
urec ∼ 10−4 a.u. is substantially larger than u0 (as it should be
in order to be able to experimentally explore the basic collision
dynamics), it nevertheless is also negligibly small compared
to the velocities of the other particles (the projectile and the
electron) participating in the collision. Therefore, we shall
suppose, as usual, that the target nucleus rests in the collision
and take its position as the origin of our reference frame.

Further, what has been said in the first paragraph of this
section about the momentum balance also implies that the
change in the momentum of the heavy projectile in the collision
is negligible compared to its initial value. This enables us to
start our consideration with the semiclassical approximation
in which the projectile is supposed to move along a straight-
line classical trajectory Rp(t) = b + vt , where b is the impact
parameter, v is the projectile (collision) velocity, and t is the
time.

It is worth noting that the approximations made assuming
that in the collision the target nucleus remains at rest and
the projectile moves along a straight line by no means imply
that the energy and momentum balance in the collision (and,
in particular, the important role of the target nucleus in the
momentum balance) will not be properly described. In fact
these approximations simply mean that the corrections of
the order of me/M ∼ 10−3–10−4, where me is the electron
mass and M is the mass of the target nucleus (or the
projectile), will be ignored in the energy-momentum balance
and the transition amplitude. This is quite obvious from
simple physical estimates, which were given in the previous
paragraphs of this section, and can also be shown in a
formal way using, for instance, the results of [19] given on
pp. 133–134 of their paper (see also [20], pp. 290–294).

In the semiclassical approximation the corresponding
Schrödinger equation reads

i
∂

∂t
� = Ĥ�, (1)

where the semiclassical Hamiltonian Ĥ , which explicitly
depends on time, is given by

Ĥ = Ĥa − Zp

|r1 − Rp| − Zp

|r2 − Rp| + 2 Zp

Rp

. (2)

Here, Ĥa is the Hamiltonian for a free helium,

Ĥa = p̂2
1

2
− 2

r1
+ p̂2

2

2
− 2

r2
+ 1

r12
, (3)

where rj and p̂j (j = 1,2) are the electron coordinates and
momentum operators, respectively, and r12 = |r1 − r2|. The
last three terms in Eq. (2) describe the interaction of the atomic
electrons and the nucleus with the projectile.

It is customary (see, e.g., [21,22]) to split the electron-
electron interaction according to

1

r12
=

2∑
j=1

wj (rj ) + W, (4)

where wj (rj ) (j = 1,2) are one-electron operators and W is
a nonseparable part of the electron-electron interaction. The
terms wj (rj ) can be combined in Eq. (3) with the interactions
−2/rj to form an average (mean-field) interaction acting on
the electrons and W represents a correlation potential.

It is well known that electron-electron correlations play a
crucial role in double ionization of helium by single photons
and very fast low-charged nuclei. These correlations can also
be of paramount importance for single ionization of helium
provided it involves excitation and decay of autoionizing
states. To our knowledge, however, there is no evidence that
electron-electron correlations have a significant impact on
single ionization of helium in collisions with fast bare ions
when electron emission energy is far from those values which
can be populated via autoionization. The minimum emission
energy, for which autoionizing states could unveil themselves,
lies above 30 eV which is very far from the range of emission
energies (�10 eV) discussed in [12].

Keeping this in mind and following our previous consid-
erations of single ionization of helium by fast bare nuclei
[7,8,11], we shall neglect the correlation interaction Ŵ and
regard ionizing collisions as an effectively three-body process
which involves the projectile, the “active” electron of the
helium target, and the “frozen” target core. The latter consists
of the target nucleus and the “passive” electron, is assumed to
be rigid in the collision, and produces a field which acts on the
active electron in the initial and final collision channels. The
same field acts also on the projectile in the collision.

The field produced by the target core is approximated using
the potential

u(ξ ) = 1

ξ
+ (1 + βξ )

exp(−αξ )

ξ
,

where ξ (|ξ | = ξ ) denotes either the coordinate r of the active
target electron or the coordinate Rp of the projectile. Following
[22] we set α = 3.36 and β = 1.665. With this choice φ(r)
almost coincides with the exact Hartree-Fock potential.

Thus, our treatment of single ionization of helium by fast
projectiles is based on the following effective single-electron
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Schrödinger equation:

i
∂

∂t
ψ(r,t) = Ĥeff ψ(r,t), (5)

with

Ĥeff = Ĥ0 − Zp

|r − Rp| + Zp u(Rp), (6)

where

Ĥ0 = p̂2

2
− u(r) (7)

is the Hamiltonian for the free atom, and r and p̂ are the
coordinates and the momentum operator, respectively, of the
active electron. The fact that helium has two electrons will be
taken into account by multiplying the obtained single-electron
cross sections by a factor of 2.

The post and prior forms of the semiclassical transition
amplitude afi(b) are given by

a
post
fi (b) = −i

∫ +∞

−∞
dt

〈(
Ĥeff − i

∂

∂t

)
χf (t)

∣∣∣∣ψ (+)(t)

〉
(8)

and

a
prior
fi (b) = −i

∫ +∞

−∞
dt

〈
ψ (−)(t)

∣∣∣∣
(

Ĥeff − i
∂

∂t

)
φi(t)

〉
, (9)

respectively. Here ψ (−) (ψ (+)) is the solution of the
Schrödinger equation (5) with the “in” (“out”) boundary
conditions, and φi(t) (χf (t)) is the initial (final) state of the
electron.

A. FBA

In the first-order (or first Born) approximation φi and ψ (−)

(or ψ (+) and χf , respectively) are approximated by

φi = ξ0 exp(−iε0t),

ψ (−) = ξp exp(−iεpt), (10)

where ξ0 and ξp are eigenstates of the Hamiltonian (7), ξ0 is
the initial (ground) state of the electron in the free atom, and
ξp describes the emitted electron moving in the field of the
atom with an asymptotic momentum p. These states as well
as the energy ε0 of the electron initial state are obtained by
a (numerical) solution of the stationary Schrödinger equation
with the Hamiltonian (7).

According to Eqs. (8)–(10) the interaction, which couples
the initial and final states [Eq. (10)] in the FBA transition
amplitude, is given by Ĥeff − Ĥ0 = − Zp

|r−Rp | + Zp u(Rp), thus
it is the “physical” interaction between the projectile and the
target. One of the peculiarities of the FBA is that, since the
initial and final internal states of the target are orthogonal,
the interaction between the projectile and the target nucleus
(the target core) simply drops out from the transition amplitude
thus having no effect on the calculated cross sections.

B. Distorted-wave models

The ionization process will also be considered by applying
two distorted-wave approaches: the continuum-distorted-wave
eikonal-initial-state (CDW-EIS) and the symmetric eikonal

(SEA) models. The former was proposed in [23] for consid-
ering ionization, the latter was initially suggested in [24] for
describing electron capture.

In the distorted-wave models φi and ψ (−) (or ψ (+) and χf )
are approximated by

φi = Li ξ0 exp(−iε0t),

ψ (−) = Lf ξp exp(−iεpt), (11)

where Li and Lf are the so-called distortion factors for the
initial and final atomic states, respectively, which (approxi-
mately) describe the distortion of these states caused by the
interaction with the projectile.

Unlike the FBA approximation, in distorted-wave models
the post and prior forms of the transition amplitude in general
do not coincide. Besides, since in these models the projectile-
target interaction is already partly included in the states (11)
the residual interaction, which causes the transitions, differs
from the physical one of the FBA.

CDW-EIS. In the CDW-EIS model these factors are chosen
according to

Li = Leik
i = exp

(
−iZp

∫ t

−∞
dt ′u(Rp(t ′))

)

× exp

(
iZp

∫ t

−∞
dt ′1/s(t ′)

)

Lf = Lcdw = exp

(
−iZp

∫ t

+∞
dt ′u(Rp(t ′))

)

× exp[(πZp/(2κ)]�(1 + iZp/κ)

×1F1(−iZp/κ; 1; −i κ s − i κ · s), (12)

where s = r − Rp, κ = p − v is the relative velocity of the
emitted electron with respect to the projectile, � is the gamma
function, and 1F1 is the confluent hypergeometric function
(see, e.g., [25]).

SEA. In the SEA model the distortion factors are taken as

Li = Leik
i = exp

(
−iZp

∫ t

−∞
dt ′u(Rp(t ′))

)

× exp

(
iZp

∫ t

−∞
dt ′1/s(t ′)

)
,

Lf = Leik
f = exp

(
−iZp

∫ t

+∞
dt ′u(Rp(t ′))

)

× exp

(
iZp

∫ t

+∞
dt ′1/s(t ′)

)
. (13)

Comparing Eqs. (13) with Eqs. (12) we see that in both models
the distortion factor for the initial state is the same. However,
the full Coulomb distortion factor in the final state of the
CDW-EIS is replaced in the SEA by its asymptotic (eikonal)
form (in which also the relative velocity κ of the emitted
electron is approximated by −v).

The semiclassical transition amplitude depends on the im-
pact parameter which is not an observable quantity. Therefore
the basic quantum dynamics of the collision cannot be treated
with such an amplitude. However, for collisions with small
projectile scattering angles and negligible recoil velocities of
the target nucleus, the quantum transition amplitude Sfi can
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be obtained from the semiclassical one according to (see,
e.g., [7])

Sfi(Q) = 1

2π

∫
d2b exp(iQ · b) afi(b). (14)

Here, Q is the two-dimensional part of the momentum transfer
q to the target, which is perpendicular to the projectile velocity,
Q · v = 0. The total momentum transfer is given by

q = (Q, qmin), (15)

where qmin = (εf − εi)/v is the minimum momentum transfer
and εi and εf are the initial and final energies of the electron.

Since the semiclassical transition amplitude and the am-
plitude of Eq. (14) are related to each other by the Fourier
transformation the following identity holds (Parseval’s theo-
rem): ∫

d2Q |Sfi(Q)|2 =
∫

d2b |afi(b)|2. (16)

The CDW-EIS and SEA models have been successfully
used for calculating such quantities as the total cross sections
and energy-angular distributions of the emitted electrons. As it
follows from Eq. (16) these quantities can be obtained either by
integrating the absolute square of the amplitude [Eq. (14)] over
the transverse momentum transfer or the absolute square of the
semiclassical transition amplitude over the impact parameter.

The factors Li and Lf in Eqs. (12) and (13) include also
the distortion due to the interaction between the projectile
and the target nucleus (target core). However, this distortion
appears there just as a phase factor which is independent
of the electron coordinates. Therefore, after squaring the
semiclassical transition amplitude afi(b) the result already does
not depend on the interaction between the heavy particles.
Consequently this interaction does not influence cross sections
which are obtained by integrating over the impact parameter
(or the transverse momentum transfer). As a result, this
interaction can simply be omitted in the Hamiltonian (6) and
the distortion factors (12)–(13) when such cross sections are
calculated, which greatly simplifies the computation.

The underlying physical reason for this is that in fast ion-
atom collisions the interaction between the projectile and the
target core practically does not change the motion of these
heavy particles in the reaction zone. As a result, any indirect
coupling between the electron and the heavy particles, which
would be caused by the interaction between the latter ones, is
practically absent.

This interaction, however, becomes of great importance
when cross sections differential in the projectile scattering
angle (or in the transverse momentum transfer in the collision)
are studied (see, e.g., [26,27]). Therefore, in our case it is
necessary to take the interaction between the projectile and
the target core into account, keeping in particular, in Eqs. (12)
and (13), the phases which are related to this interaction. In
order to stress this point, in what follows we shall label the
CDW-EIS and the SEA models, in which the internuclear
interaction is not ignored, by the CDW-EIS-NN and the
SEA-NN, respectively.

The CDW-EIS-NN and SEA-NN models amount to taking
into account the first-order terms of corresponding distorted-
wave perturbative expansions. In fast collisions with the

emission of low-energy electrons their expansion parameters
are proportional to Zp/v2. This is to be compared with the
expansion parameter of the standard Born expansion ∼Zp/v.
In the limit of very weak projectile-target interactions the
results of the CDW-EIS-NN and SEA-NN go over into those
of the FBA.

III. RESULTS AND DISCUSSION

Our numerical results, which will be reported in this section,
have been obtained with computer codes developed using the
post version of the CDW-EIS and the prior version of the SEA
(for further details see, e.g., [27] and [7], respectively). In what
follows we suppose that in the rest frame of the target nucleus
(our reference frame) the projectile is incident along the z axis,
v = (0,0,v).

A. Fully differential cross sections

The basic dynamics of single ionization of helium can be
described by the FDCS, dσ (+)

d2Qd3p , where Q is the transverse
part of the total momentum transfer q to the target and p =
(p,ϑp,ϕp) is the momentum of the emitted electron. Following
[12] we choose the x axis to be along Q.

The total momentum transfer is given by Eq. (15) where
qmin = (εp − ε0)/v with ε0 = −24.6 eV and εp being the
energy of the ground state of the Hamiltonian (7) and the
energy of the emitted electron, respectively.

Using the FBA, the CDW-EIS-NN, and the SEA-NN, we
calculated the FDCS for several values of the electron emission
energy εp (1 � εp � 100 eV) and the total momentum transfer
q (0.25 � q � 2 a.u.). The main conclusion which can be
drawn from these calculations is that despite ηp � 1 the
results of the distorted-wave models substantially differ from
those of the FBA. On the other hand, the differences between
results of the CDW-EIS-NN and the SEA-NN models are
comparatively modest and decrease, as expected, when the
electron emission energy decreases, practically vanishing at
low emission energies, where the velocity of the emitted
electron is much smaller than the collision velocity.

In Figs. 1–4 we compare our results for the FDCS [28] with
the experimental data of [12]. Theoretical results shown in
Figs. 1 and 2 are the cross sections calculated at fixed values of
the electron emission energy (6.5 eV) and the total momentum
transfer (0.75 a.u.). In Figs. 3 and 4 the theoretical cross
sections were averaged over 3 � εp � 10 eV and 0.5 � q � 1
a.u. (which corresponds to the experimental bin sizes of [12]).

For these low emission energies the CDW-EIS-NN and the
SEA-NN yield very close results (the results of the SEA-NN
are therefore not shown in the figures). The results of the
CDW-EIS-NN and the FBA are presented on an absolute scale.

In Figs. 1 and 3 the FDCS is given for the collision plane [the
(Q, v) plane] and is plotted as a function of the polar emission
angle ϑp of the electron. In both figures the experimental data
have been normalized to the theoretical results by setting the
maximum of the experimental cross section to be equal to the
maximum of the theoretical one obtained using the CDW-EIS-
NN (we note, however, that these maxima are not located at
the same emission angle).

In Figs. 2 and 4 the FDCS is given for the azimuthal plane
which is perpendicular to the collision velocity (ϑp = 90◦). In
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FIG. 1. FDCS for single ionization of helium by 1-MeV protons
in the collision plane plotted as a function of the polar emission angle.
The electron emission energy is εp = 6.5 eV and the total momentum
transfer q = 0.75 a.u. Symbols: experimental data from [12]. Solid
and dash curves are the results of the CDW-EIS-NN and the FBA,
respectively.

these figures the FDCS is plotted as a function of the azimuthal
emission angle ϕp of the electron. Because of the symmetry
with respect to the vector Q, which the FDCS possesses in the
azimuthal plane, it is sufficient to consider the range 0◦ � ϕp �
180◦. The following main conclusions can be drawn from the
figures.

First, in both planes the CDW-EIS-NN yields substantially
better agreement with the experimental data than the FBA.
Second, in the collision plane the familiar structures in the
emission pattern—the so-called binary and recoil peaks—are
clearly seen both in the experimental data and the theoretical

FIG. 2. Same as in Fig. 1 but for electron emission into the
azimuthal plane (ϑp = 90◦) given as a function of the azimuthal
emission angle ϕp.

FIG. 3. Same as in Fig. 1 but averaged over the interval of the
emission energies 3–10 eV and the momentum transfer 0.5–1 a.u.

results. However, the shapes of the experimental and calculated
spectra are not the same. In particular, compared to the
maximum in the experimental data the maximum in the
calculated binary peak is shifted by about 5◦–6◦ (7.5◦–8.5◦
without the averaging) toward larger ϑp and this shift holds
almost for the whole binary peak. After the averaging the
theory also overestimates the recoil-to-binary-peak ratio by
about 25%. Besides, a close inspection of the recoil peak shows
that there is a shift of about 5◦–10◦ between the theoretical and
experimental data but now toward smaller ϑp.

Third, in the azimuthal plane there is a good agreement
between the CDW-EIS-NN and the experiment except for the
range of large angles (ϕp�135◦) where the theory predicts a
stronger increase of the cross section with increasing ϕp.

Compared to the results which are calculated for fixed
values of the emission energy (εp = 6.5 eV) and the momen-
tum transfer (q = 0.75 a.u.), the theoretical data obtained by

FIG. 4. Same as in Fig. 2 but averaged over the interval of
emission energies 3–10 eV and the momentum transfer 0.5–1 a.u..
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FIG. 5. Proton-to-antiproton cross section ratio given as function
of the electron emission angle in the collision plane. The electron
emission energy is εp = 6.5 eV and the total momentum transfer is
q = 0.75 a.u. The solid curve and dash line are the results of the
CDW-EIS-NN and the FBA, respectively.

averaging over εp = 6.5 ± 3.5 eV and q = 0.75 ± 0.25 a.u.
mainly differ in that the recoil-to-binary-peak ratio somewhat
increases and the position of the binary peak is slightly shifted
to smaller emission angles.

The discrepancy between the positions of the experimental
and calculated binary peaks is rather unexpected because even
for helium ionization by 100-MeV/u C6+ there was a good
agreement between them. Moreover, the character of this
discrepancy does not suggest that the coherence properties
of the projectile beam might be responsible for them.

It was already mentioned that there are substantial differ-
ences between the results of the CDW-EIS-NN and the FBA. In
order to emphasize them, in Figs. 5 and 6 we show the ratio of

FIG. 6. Same as in Fig. 5 but for electron emission into the
azimuthal plane given as a function of ϕp.

the FDCSs in collisions with 1-MeV protons and antiprotons
calculated using the CDW-EIS-NN. This ratio is given in the
collision (Fig. 5) and azimuthal (Fig. 6) planes for electron
emission energy of 6.5 eV and the total momentum transfer of
0.75 a.u.

It is seen in the figures that the CDW-EIS-NN predicts
a strong dependence on the sign of the projectile’s charge
whereas according to the FBA this ratio is always equal to 1.
One should note that in the case under consideration the main
origin of the differences between the results of the distorted-
wave models and the first Born approximation is caused by the
interaction between the projectile and the target nucleus (the
target core). In the first Born approximation this interaction
does not contribute to the transition amplitude but, according
to the distorted-wave models, has an important impact on the
fully differential cross section.

B. Longitudinal momentum spectrum

It is worth mentioning that single ionization of helium by
1-MeV protons and 945-keV antiprotons was studied in [29]
where the longitudinal momentum spectrum of the emitted
electrons was measured and substantial differences between
proton and antiproton impacts had not been observed.

However, according to our CDW-EIS calculations the
proton-to-antiproton ratio of the longitudinal spectra varies
between 0.7 and 1.3 in the interval −1 � plg � 1 and between
0.65 and 1.5 for −2 � plg � 2, where plg = p · v/v is the
longitudinal component of the momentum p of the emitted
electron. The predicted dependence on the sign of the projectile
charge for this spectrum is not weak and the fact that it was
not seen in the experimental data of [29] could perhaps be
attributed to low statistics in collisions with antiprotons that
resulted in relatively large error bars. Besides, just the interval
−1 � plg � 1 was considered in [29].

C. Energy spectrum and the total cross section

We have also performed calculations for the energy spec-
trum of electrons emitted in single ionization of helium by
1-MeV protons and for the total cross section of this process. In
contract to the case with the longitudinal momentum spectrum,
where the interaction between the projectile and the emitted
electron (so-called postcollision interaction, which is absent
in the FBA) plays an important role, there is a little difference
between the energy spectra calculated using the FBA and the
distorted-wave models. Naturally, the same holds true also for
the calculated total cross section. In particular, we obtained for
the total cross section of helium single ionization by 1-MeV
protons ≈2×10−17 cm2.

It is important to note that the total cross sections for
single ionization of helium in fast collisions with relatively low
charged nuclei (Zp � v) calculated by treating this process as
an effectively three-body problem [and using the Hamiltonian
(7) to describe the free atomic states] are in very good
agreement with results of the well-known Bethe-Born formula
(see, e.g., [30]), which is quite accurate in this range of
collision parameters. Moreover, the three-body models yield
an excellent agreement with experiment for the shape of the
energy spectrum of the emitted electrons (see, e.g., [7]).
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IV. CONCLUSIONS

In conclusion, using the first Born approximation and two
distorted-wave models—CDW-EIS-NN and SEA-NN—we
have considered single ionization of helium by 1-MeV protons
and compared our results with the data of the recent experiment
[12]. A good agreement is found between the experimental
data and our distorted-wave calculations for the most of the
azimuthal plane. However, unexpected (although not very
large) discrepancies between the experiment and theory are
observed for the collision plane.

For 1-MeV protons the parameter ηp = Zp/v is much
smaller than 1 and, correspondingly, the collisions under
consideration belong to the regime of weak perturbations. Nev-
ertheless, our distorted-wave calculations for the fully differ-
ential cross section and the longitudinal momentum spectrum

of the emitted electrons predict substantial deviations from
the results of the first Born approximation. In particular, large
differences in the shape of the emission pattern are expected
for helium ionization by 1-MeV protons and antiprotons.

Taking into account the differences between theory and
experiment in the collision plane and a strong dependence
of the emission pattern on the charge of the projectile,
which is predicted by the distorted-wave models, it would
be very desirable to undertake further research, theoretical
and experimental, on the basic collision dynamics of helium
ionization by fast protons and antiprotons.
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