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Coupled-square-well model and Fano-phase correspondence
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This paper investigates the Fano-Feshbach resonance with a two-channel coupled-square-well model in both
the frequency and time domains. This system is shown to exhibit Fano line-shape profiles in the energy absorption
spectrum. The associated time-dependent transition moment response has a phase shift that has recently been
understood to be related to the Fano line-shape asymmetric q parameter by ϕ = 2 arg(q − i). The present study
demonstrates that the phase-q correspondence is general for any Fano resonance in the weak-coupling regime,
independent of the transition mechanism.
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I. INTRODUCTION

Understanding time-dependent quantum dynamics has
emerged as one of the fundamental problems in physics [1].
In recent years, with the development of new technologies,
especially with ultrashort light sources and ultrafast optical
techniques, it has become possible to experimentally probe
the real-time electron dynamics in the quantum regime
[2–8,11], e.g., time-domain measurements of the autoioniza-
tion dynamics using attosecond pulses [9–11] and creation and
control of the time-dependent electron wave packet [12,13].
Studying time-domain-resonance physics has been attracting
increasing interest in atomic and molecular physics [6,14–18].

A recent study [19] has both theoretically established and
experimentally verified a general correspondence between the
photon absorption line shape in the frequency domain, which
is characterized by a Fano line-shape asymmetry parameter
q [20], and the phase shift ϕ of its time-dependent dipole
response:

ϕ = 2 arg(q − i). (1)

In a further development, it was shown that by coupling
the system with a short-pulsed laser immediately after the
excitation, the phase ϕ of its dipole response can be externally
controlled. In this way, the q parameter of the system’s
subsequent absorption spectrum can be effectively modified.
In the frequency domain, the Fano q parameter provides a
sensitive test of atomic structure calculations under field-free
conditions [21,22]. The phase-q relation thus provides a
possible way to control aspects of the time-dependent quantum
dynamics.

The above infrared laser-pulse control mechanism of
the phase shift ϕ was explained both by a quasiclassical,
ponderomotive-motion picture [19] and in terms of resonant
coupling dynamics [23]. However, the universal phase-q cor-
respondence equation (1) was demonstrated only as a general
macroscopic property of a dielectric system, although it has
already been faithfully applied to scenarios far beyond the area
of atomic physics, e.g., condensed-matter systems [24,25],
plasma systems [26,27], high-energy processes [28], and op-
tomechanics systems [29]. Thus, it would be more interesting
to have a unified treatment of this phase-q relation for any
Fano resonance.

*chgreene@purdue.edu

In the present work, with all these questions in mind, we
focus on an analytically solvable two-channel square-well
model and study its resonance physics in both the frequency
and time domains. As an extension of a textbook single-
channel square-well scattering problem, the coupled-channel
model captures much of the physics of near-threshold bound
and scattering states [30]. This model has been used to
successfully explain the threshold scattering of cold neutrons
from atomic nuclei [31] and to represent Feshbach resonances
in ultracold atom scattering processes [32–34]. Investigation
of the Fano-phase correspondence with such a model would
then generalize the previous result in the dielectric atomic
systems to a more general class of scenarios and thus extend
its potential applications.

This paper is organized as follows. Section II introduces
the two-channel coupled-square-well model. By adding an
auxiliary ground state belonging to a third channel, we
study the energy absorption spectrum when the system is
excited from the ground state to the two coupled channels.
A standard Fano line shape is observed for the excitation cross
section, with the asymmetry q parameter linearly depending
on the transition moment ratio d2/d1, consistent with Fano’s
configuration interaction theory [20]. In Sec. III, the transition
moment response in the time domain is studied. The phase-q
correspondence equation (1) is revealed numerically in the
present model problem. A general proof of this relation for
any transition mechanism is also presented. Finally, Sec. IV
summarizes our conclusions. Derivation of the eigensolutions
and discussions of the scattering properties of the two-channel
square-well model are given in the Appendixes.

II. COUPLED-SQUARE-WELL MODEL

The two-channel square-well model in the present study
describes two particles with reduced mass m interacting in
three dimensions with the following s-wave Hamiltonian in
the relative coordinate r:

Ĥ = − h̄2

2m
Î

d2

dr2
+ V̂ (r) + Êth. (2)

Here the potential coupling matrix is assumed to vanish at
r > r0, but it is a constant 2 × 2 matrix at r < r0:

V̂ (r) =
[−V1 V12

V12 −V2

]
θ (r − r0). (3)
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We are most interested in the case for which the diagonal
elements are attractive, which is why a negative sign has been
separated out from this equation at the outset, given that V1

and V2 are positive. The matrix Êth containing the real energy
thresholds is diagonal. We choose the lower threshold, channel
|1〉 in our notation, to define the zero of our total energy scale,
whereby

Êth =
[

0 0
0 Eth

2

]
. (4)

This model has a single analytic solution between the two
energy thresholds, which contains both an exponentially
decaying solution in the closed channel |1〉 and a scattering so-
lution in the open channel |2〉. In matrix form the channel bases
read |1〉 = [1

0] and |2〉 = [0
1]. The radial parts of the energy

eigenfunctions are linear combinations of the two channels’
configuration basis functions: |ε〉 = φ1(r; ε)|1〉 + φ2(r; ε)|2〉,
the derivation of which is presented in the Appendix A.

For appropriate potential parameters, there exist one or
more bound states below the lower energy threshold. Up to
this point, external field-excited transition from these bound
states can then be investigated. However, in order to simplify
the model without losing the key features of the problem while
making it extendable to problems involving more than two
channels, we model the ground state with an auxiliary channel
|0〉 independent of channels |1〉 and |2〉. This might correspond
to an independent degree of freedom in realistic systems, such
as the hyperfine spin state in a cold-atom pair.

Suppose the system is initially prepared in the s-wave
ground state |g〉 = f (r)|0〉, where f (r) is the normalized
radial part of the ground-state wave function in the coordinate
representation. In this paper, we consider the ground state to be
strongly localized, and for definiteness we take f (r) = 2e−2r .
At t = 0, a strong δ pulse couples the auxiliary channel |0〉
to the two channels and then consequently excites the system
to channels |1〉 and |2〉. The short pulse is modeled by a δ

interaction,

Ĥδ = γ δ(t)d̂ + H.c., (5)

where γ is a dimensionless interaction strength parameter.
Here d̂ = d1|1〉〈0| + d2|2〉〈0| is the transition moment. Pa-
rameters d1 and d2 control the transition strengths into the
corresponding channels.

The wave function immediately after the excitation pulse is
given by

|ψ(t = 0)〉 = e
−i

∫ 0+
0− dtĤδ t |g〉

= e−iγ d̂ |g〉. (6)

In the perturbative limit, where γ � 1, the evolution operator
is expanded to the first order of γ :

|ψ(t = 0)〉 ≈ |g〉 − iγ d̂ |g〉
= |g〉 − iγ

∫
dε 〈ε|d̂|g〉|ε〉, (7)

where |ε〉 denotes the energy eigenstates. The excitation cross
section can then be calculated as

σ (ε) = |〈ψ |ε〉|2

= γ 2|〈ε|d̂|g〉|2.
(8)

According to Fano’s configuration interaction theory, in the
energy range between the two threshold energies, where the
bound states in the first channel are coupled to the continuum
of the second channel, the resonance profile at each resonance
point is predicted to have a simple form:

σFano(ε) = σ0
(q + ε̄)2

1 + ε̄2
, (9)

where ε̄ = ε−εr


/2 . With the assumption of a flat background near
resonance and constant coupling potential V , the q parameter
is defined by

q ≡ 〈α|d̂|g〉
πV 〈βE |d̂|g〉 , (10)

where |α〉 and |βE〉 are, respectively, the bare closed-
channel bound state and the unperturbed open-channel energy-
normalized continuum eigenstate. In the present model prob-
lem, for fixed system potential parameters, it can be further
deduced that

q ∝ d2

d1
. (11)

In our numerical study, we tune the potential parameters such
that there is exactly one bound state in the first channel and
such that the background cross section is relatively flat near
the position of the resonance. In Fig. 1 the cross sections
for different transition probabilities are plotted. The Fano and
Lorentz line profiles can both be realized by tuning the ratio

FIG. 1. Resonance profiles at various transition moments are
shown as cross sections versus the energy. The solid blue lines
are the numerically calculated excitation cross sections. Dashed red
lines are standard Fano line shapes [Eq. (9)] with a background
cross section σ0 = 1.9 × 10−4, resonance position εr = 1.65 a.u.,
and resonance width 
 = 1.7 × 10−2. Model potential parameters
are fixed at V1 = 75,V2 = 10,V12 = 10,Eth

2 = 2,r0 = 3. The tran-
sition moment parameter d1 is fixed to be 1. The corresponding
Fano line-shape parameters and values of d2 are (a) d2 = −0.137,

q = 0; (b) d2 = −0.130, q = 1; (c) d2 = −0.144, q = −1; and
(d) d2 = 0.600, q = 100.
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FIG. 2. q versus d2/d1. Dots are numerically fitted q parameters,
which exhibit a linear dependence on d2/d1, as expected from
Eq. (11).

between d2 and d1. Figure 2 shows the numerically fitted q

parameters at various values of d2/d1, which matches the linear
relation as predicted by Eq. (11).

III. TRANSITION MOMENT RESPONSE

With the aid of the time-dependent wave function,

|ψ(t)〉 = e−iεg t |g〉 − iγ

∫ ∞

−∞
dε e−iεt 〈ε|d̂|g〉|ε〉θ (t), (12)

where θ (t) is the Heaviside step function, the transition
moment response can be calculated as the quantum average
of the transition operator:

d(t) = 〈ψ(t)|d̂|ψ(t)〉

= 2Re

[
iγ

∫ ∞

−∞
dε 〈g|d̂†|ε〉〈ε|d̂|g〉ei(ε−εg)t θ (t)

]

= 2

γ
Im

[ ∫ ∞

−∞
dε σ (ε)e−i(ε−εg)t θ (t)

]
, (13)

where Re and Im denote the real part and imaginary part,
respectively. In the case of a Fano resonance with cross-section
equation (9), the above shifted Fourier transform can be
evaluated directly:∫ ∞

−∞
dε σFano(ε)e−i(ε−εg)t θ (t)

= 2πσ0δ(t) + πσ0(
/2)e− 

2 t e−i(εr−εg)t (q − i)2θ (t), (14)

giving the transition strength a δ function response, which
comes from the nonzero background cross section σ0, followed
by a decaying single-mode oscillation. A standard Fourier
transform of a Fano resonance cross section similar to Eq. (14)
has been used in Ref. [35] to discuss the structure of Fano
resonance in the time domain in the study of laser-assisted
autoionization. The complex factor (q − i)2 can be cast into
exponential representation, (q − i)2 = (q2 + 1) exp[iφ(q)],
where φ(q) = 2 arg(q − i) induces a phase shift.

We note the following remarks: (1) The above derivation
involves only the physically measurable real quantities d(t)
and σ (ε) and is general for any transition interaction and model

FIG. 3. Time-dependent transition moment response for different
q parameters. The model potential parameters are chosen as in Fig. 1.
The solid blue line, dotted red line, and dashed green line correspond
to q = 0,1,2, respectively.

Hamiltonian, as long as wave-function equation (12) is valid in
the perturbative limit. This generalizes the application of the
phase-q correspondence equation (1), which was originally
developed in Ref. [19] for macroscopic dielectric systems; in
that study, the complex dipole in the energy domain d̃(ε) and
relation σ (ε) ∝ Im[d̃(ε)] [36] were used as the starting point.
(2) The frequency of the transition moment response is, of
course, the transition energy between the ground state and
the resonance energy (neglecting the small resonance level
shift due to discrete-continuum level mixing), in agreement
with Ref. [19], including in regard to the phase shift and q

parameter relationship. In the following numerical study of
the phase shift, we always ignore the ground state energy, i.e.,
setting εg = 0 [37].

The physically measurable response function (14) is under-
stood to be exact when the integral is ranging over the whole
range of the energy spectrum, in which case the transition
moment response would be a complicated superposition
of different frequencies modes. When one is interested in
observing the effect of an isolated resonance at position
εr , namely, the particular frequency mode (εr − εg)/2π of
the response, the integral can be restricted to a finite range
of a few resonance widths near the resonance energy, e.g.,
[εr − �E,εr + �E]. However, in this manner the transition
moment response would be dependent on the choice of �E;
the integral in Eq. (14) does not converge with �E because
of the nonzero background cross section. To eliminate this
dependence without changing the critical phase information,
in the following numerical study we compute the response
function using the shifted cross section σ (ε) − σ0. In Fig. 3,
the time-dependent transition moment responses for different
Fano q-parameters are plotted [38]. The phase shifts are
read out and compared with the phase-q correspondence
equation (1) in Fig. 4.

The above analysis shows the decay of response function
and the change in line shapes corresponding to different
transition parameters, i.e., tuning of the internal system
parameter. On the other hand, it is more interesting to show
that for a system with fixed internal parameters, the resonance
profiles can be controlled through the external field. Like in the
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FIG. 4. Phase shift versus q parameters. Dots are values read
out from the explicit numerical calculation of the time-dependent
transition moments. The solid line is the q-phase relation of Eq. (1).

treatment in Ref. [19], we introduce a subsequent control pulse,
applied to the system immediately after the first excitation
pulse, modeled by the following interaction:

Ĥ2 = βeiφδ(t)D̂, (15)

where D̂ = D1|1〉〈1| + D2|2〉〈2| is the transition operator of
the two channels. The frequency of the second pulse is assumed
to be far from resonance so that excitation of the ground-state
channel by the control pulse would not take place. In the region
where the control pulse is much shorter than the lifetime of
the system, we treat the pulse as a δ function, with two free
parameters left to be tuned: the strength β, characterizing the
overall effect of the intensity and duration of the pulse, and
the phase shift φ, characterizing the phase offset between the
initial time of the system evolution and the control pulse when
interaction is turned on. To see the effect of the second pulse,
we apply the evolution operator to the initial state (6):

|ψ ′(t = 0)〉 = e−iβeiφD̂|ψ(t = 0)〉
≈ (1 − iβeiφD̂)(1 − iγ d̂)|g〉
= |g〉 − iγ (d̂ − iβeiφD̂d̂)|g〉, (16)

which, compared with state (6), has an overall effect of mod-
ifying the original transition operator d̂ . For an appropriately
tuned phase shift, e.g., φ = ±π/2, the effective transition
moment becomes

d̂ → d1(1 ± βd1D1)|1〉〈0| + d2(1 ± βd2D2)|2〉〈0|, (17)

or

d1

d2
→ d1

d2
[1 + β(d1D1 ∓ d2D2)]. (18)

Because the Fano line-shape parameter is proportional to the
ratio between d2 and d1, it is concluded that the control pulse
will lead to an effective change of q parameter, namely, a
modification of the Fano line shape.

IV. CONCLUSION

To summarize, we have investigated the Fano resonance
with an analytic solvable coupled-square-well model in both

the frequency and time domains. The Fano asymmetric param-
eter q and the phase shift φ of the time-dependent transition
moment response were shown to have a simple relation, ψ =
2 arg(q − i), which generalizes the result originally discovered
in Ref. [19] for electric dipoles. This relation was proven to
be valid for any transition mechanism, as long as an isolated
Fano resonance is present in the perturbative limit.
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APPENDIX A: SOLUTION OF THE MODEL

We present here the derivation of the solution of the
energy eigenfunctions and discuss the scattering behavior
of the coupled-square-well model. The time-independent
Schrodinger equation of Hamiltonian (2) would possess four
independent solutions in general, but when we restrict the so-
lutions to obey the regular physical constrains ψ(r = 0) = 0,
only two linearly independent solutions remain. Our solution
strategy will be to begin by solving for these two linearly
independent solutions that are regular at the origin. In a second
step, we will impose long-range boundary conditions, enforc-
ing exponential delay in the closed channel, and determine
the exact S matrix for this model so we can study its poles
in the complex energy plane. Since the coupling potential is
constant within the reaction volume, it can be diagonalized
by an r-independent eigenvector matrix, which reduces the
solution to two uncoupled short-range eigenchannels. First,
we define the matrix

Ŵ =
(

− 2m

h̄2

)
(V̂ + Êth − εÎ )

=
(

2m

h̄2

)(
ε + V1 −V12

−V12 ε − Eth
2 + V2

)
(A1)

and indicate the constant orthogonal eigenvector matrix as
Xiα and the (weakly) energy-dependent diagonal eigenvalue
matrix by wα(ε)2. Thus we have, in matrix notation, Ŵ X̂ =
X̂ŵ2. Next, we replace the solution matrix û(r) by X̂X̂T û(r)
just before the solution matrix û(r) in the time-independent
Schrodinger equation û′′(r) + Ŵ û(r) = 0. Upon left multi-
plying the whole equation by X̂T , we obtain two uncoupled
single-channel equations in the eigenrepresentation. The di-
agonal eigensolution matrix at short range will be denoted
ŷ(r) = X̂T û(r), and the components of this solution obey
the second-order equation, y ′′

α(r) + wα
2yα(r) = 0. The regular

solution at the origin is, of course, sin (wαr).
The next step consists of matching this solution to the

simple trigonometric solutions that apply outside the reaction
volume, at r > r0, and imposing the physically relevant
boundary conditions at r → ∞. The correct physical solution
at all distances r > r0 is, of course, a scattering solution in the
open channel |1〉 and an exponentially decaying solution in the
closed channel |2〉:

�ψphys(r) =
(

eikrS − e−ikr

Ne−qr

)
. (A2)
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Here S is the desired scattering matrix at energy ε, while
N is a closed-channel amplitude, which we organize into a
column vector �s = (S

N). The components of this vector will
be determined by matching this form for the outer-region
solution and derivative to our short-range solution derived
above at r = r0. Note that k2 = 2mε/h̄2, while q2 = 2m(Eth

2 −
ε)/h̄2. Neither of our two short-range eigensolutions will, in
general, smoothly match this desired long-range behavior. We
must superpose the two solutions with constant coefficients
�z = {z1,z2}T in order to accomplish this. This leads to a set of
continuity equations with the structure

�ψphys(r0) = X̂ŷ(r0)�z = −�a(r0) + D̂(r0)�s, (A3)

�ψphys′(r0) = X̂ŷ ′(r0)�z = −�a′(r0) + D̂′(r0)�s. (A4)

Here, for notational convenience, we have defined a vector

�a(r) =
(

e−ikr

0

)
(A5)

and a diagonal matrix

D̂(r) =
(

eikr 0
0 e−qr

)
. (A6)

The next step is to eliminate �z = −ŷ(r0)−1X̂T �a(r0) +
ŷ(r0)−1X̂T D̂(r0)�s and insert it into the derivative continuity
equation, giving

X̂ŷ ′(r0)[−ŷ(r0)−1X̂T �a(r0) + ŷ(r0)−1X̂T D̂(r0)�s]

= −�a′(r0) + D̂′(r0)�s. (A7)

Wigner’s real, symmetric R matrix is now evident in this
equation, and it will simplify our algebra if we denote it
explicitly:

R̂ = X̂ŷ ′(r0)ŷ(r0)−1X̂T

= X̂

(
w1 cot w1r0 0

0 w2 cot w2r0

)
X̂T . (A8)

The above equation now reads −R̂�a(r0) + R̂D̂(r0)�s =
−�a′(r0) + D̂′(r0)�s. Thus we obtain our solution for the
physically important quantities contained in �s:

�s = [D̂′(r0) − R̂D̂(r0)]−1[�a′(r0) − R̂�a(r0)]. (A9)

More explicitly,
(

S

N

)
=

(
(ik − R11)eikr0 −R12e

−qr0

−R21e
ikr0 (−q − R22)e−qr0

)−1

×
(−ik − R11

−R21

)
e−ikr0 . (A10)

Now the scattering matrix S is readily evaluated, but instead
of giving that explicit formula here, we give instead the formula
for the poles of S. These occur at energies for which

(q + R22)(−ik + R11) − R2
12 = 0. (A11)

This equation could now be solved numerically to deter-
mine the pole positions in the complex energy plane. However,
it will be consistent with the other approximations we have
made to this point if we make a linear expansion of q about zero

energy and about the magnetic field point B0 at which a new
bound state appears or disappears. Our approximate treatment
will neglect the energy and field dependences of the R matrix
itself and assume that the closed-channel wave number q

depends on energy, as is evident in its definition above,
and on magnetic field through an assumed variation of the
upper threshold energy with magnetic field, i.e., Eth

2 = Eth
2 (B),

whereby we can write

q(ε,B)  q0 + ζk2 + γ (B − B0). (A12)

Here the two real constants ζ and γ are defined by

ζ ≡ h̄2

2m

[
∂q(ε,B)

∂ε

]
ε=0,B=B0

,

γ ≡
[
∂q(ε,B)

∂B

]
ε=0,B=B0

. (A13)

Three pole locations now emerge as the roots of a cubic
equation in k at any chosen field value B. The fact that the
scattering length at k = 0 is infinite when B = B0 implies
that q0 is fixed to have the value q0 = −(R11R22 − R2

12)/R11,
which brings our final cubic equation to the form

ik
R2

12

ζR11
+ (R11 − ik)

(
γ

ζ
B

′ + k2

)
= 0. (A14)

Interestingly, there are three real parameters that control the
structure of these S-matrix poles in the complex energy plane,
namely, R12, R11, and γ /ζ . Each of these can be assigned
a direct physical interpretation in this problem. First of all,
R11 can be approximately associated with the background
scattering length, i.e., Y ≡ R11  −1/Abg , provided Abg �
r0, as is usually the case for the atom-atom s-wave scattering
in most alkali systems. Notice that Z ≡ h̄2γ

2mζ
is the slope of the

Feshbach resonance, i.e., the variation of the resonance energy
per unit change of the magnetic field. Finally, the parameter
X  R2

12/ζR11 is a measure of the coupling strength between
the channels, giving

ikX + (Y − ik)(ZB
′ + k2) = 0. (A15)

The actual scattering amplitude itself takes the following
form, in terms of the original R-matrix elements:

S = e−2ikr0
R2

12 − R11R22 − qR11 − ik(q + R22)

R2
12 − R11R22 − qR11 + ik(q + R22)

. (A16)

In thinking about the energy dependence of this scattering
matrix, it should be remembered that each element of the
R matrix is, in general, a meromorphic function of the
energy. However, since the scale of short-range interactions
is typically huge compared to the ultracold energy scale, it
will usually be a good approximation to regard each element
of the R matrix as energy independent in applications at
submicrokelvin temperatures. Also, a linear expansion of q

as a function of ε and B can be inserted, as was discussed
above.

It may be interesting to contrast this expression with the
exact single-channel result for a short-range potential. The
most general S matrix for the single channel problem has the
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form

S = e−2ikr0
R(ε) + ik

R(ε) − ik
. (A17)

Here again, the most general energy dependence for R(ε)
is a meromorphic function with poles on the real-energy
axis.

APPENDIX B: PHYSICAL SCATTERING LENGTH

The physical scattering length of the system at zero energy
can be extracted from the low-energy behavior of the scattering
phase shift. First, however, it is useful to define the (weakly)
energy-dependent scattering length in terms of the exact s-
wave scattering phase shift:

a(ε,B) ≡ − tan δ(ε,B)

k
. (B1)

The zero-energy scattering length is typically used in the
context of Bose-Einstein condensates (BECs) and degenerate
Fermi gases (DFGs), which is, of course, just the zero-energy
limit of this last expression, or in terms of the scattering
amplitude derived earlier,

a(0,B) = lim
ε→0

[
− 1

2ik
ln S(ε,B)

]
. (B2)

This gives the following for the zero-energy scattering length
as a function of magnetic field:

a(0,B)  R2
12 + γR11(B − B0)

−γR2
11(B − B0)

+ r0

≡ abg

(
1 − �

B − B0

)
. (B3)

This expression is valid only at zero energy and over the range
of magnetic field values for which q can be expanded linearly
in B ≈ B0. The next important correction term should be
included when B ≈ B0, where the denominator should include
a linear function of energy in order to obtain a more general
and effective parametrization, i.e.,

a(ε,B)  abg

(
1 − �

B − B0 + ζ ε

)
. (B4)

This form for the general phase shift is very accurate, typically
within approximately 1 to 10 μK above and below zero
energy.

APPENDIX C: BOUND-STATE ENERGY-LEVEL
PROPERTIES

The above wave function used to describe low-energy atom-
atom scattering still applies at negative energies, ε = −h̄2κ2

2m
. For

definiteness, I assume that the analytic continuation in going
from positive to negative energies is carried out by setting
k → iκ , with the convention that κ is a real, positive number in
this regime. Then the entire derivation could be repeated from
the beginning, of course, but a shorter route to the desired result
just begins from the above unnormalized wave function, except
we divide it by S(ε,B). The wave function in the “weakly
closed” channel is then

ψ → e−κr − eκrS−1, (C1)

which will be unphysical and diverge exponentially unless
S−1 → 0 for some κ > 0. Referring to the above expression
for S, the condition for a bound state thus becomes

κ = R2
12 − R11R22 − qR11

q + R22
. (C2)

The linear expansion can now be inserted, q  q0 + γ (B −
B0), i.e., neglecting the weak energy dependence of q. When
this result is combined with the fact that the point at which
the scattering length is infinite has been defined to be B0, the
bound-state wave number is seen to be given simply by

κ = −γR2
11(B − B0)

R2
12 + γR11(B − B0)

. (C3)

Since the bound-state energy is ε = −h̄2κ2

2m
(provided the pre-

ceding expression for κ is positive), this proves that the binding
energy of a high-lying bound level always approaches zero
quadratically in the magnetic field, except in the uninteresting
limit where the channels are noninteracting.

Another quantity of physical interest is the probability that
the system resides in the upper (strongly closed) channel. In
the limit of a zero-range potential r0 → 0 and in the limit of
very small binding where κ → 1/A, this probability is given
by

Prob(|2〉)  (1 + AR11)2

(1 + AR11)2 + A3q0R
2
12

, (C4)

which vanishes as 1/A in the limit where the physical
scattering length diverges, i.e., when B → B0 and A → ∞.
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