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We investigate the long-range, two-body interactions between rubidium and potassium atoms in highly excited
(n = 70) Rydberg states. After establishing properly symmetrized asymptotic basis states, we diagonalize an
interaction Hamiltonian consisting of the standard Coulombic potential expansion and atomic fine structure to
calculate electronic potential energy curves. We find that when both atoms are excited to either the 70s state or
the 70p state, both the � = 0+ symmetry interactions and the � = 0− symmetry interactions demonstrate a deep
potential well capable of supporting many bound levels; the sizes of the corresponding dimer states are of the order
of 2.25 μm. We establish n-scaling relations for the equilibrium separation Re and the dissociation energy De

and find these relations to be consistent with similar calculations involving the homonuclear interactions between
rubidium and cesium. We discuss the specific effects of � mixing and the exact composition of the calculated
potential well via the expansion coefficients of the asymptotic basis states. Finally, we apply a Landau-Zener
treatment to show that the dimer states are stable with respect to predissociation.

DOI: 10.1103/PhysRevA.95.032702

I. INTRODUCTION

With the advent of laser cooling and atomic trapping, the
investigation of Rydberg atoms experienced a renaissance in
the late 20th century, which has led to many experimental
discoveries and theoretical predictions. Exaggerated properties
(long lifetimes, large cross sections, very large polarizabilities,
etc.) [1] make the Rydberg atom especially responsive to
external electric and magnetic fields, as well as to other
Rydberg atoms.

Under ultracold conditions, the dipole-dipole interactions
between two Rydberg atoms is not masked by thermal motion,
and so interactions can occur at very long range [2,3]. These
interactions have manifested in a variety of results includ-
ing molecular resonance excitation spectra [4,5], “exotic”
molecules (trilobite states [6,7] and macrodimer states [8–11]),
and the excitation-blockade effect [12]. All of these works
uniquely illustrate the potential for applications in quantum
information processes (see [13], and more recently [14],
for excellent comprehensive reviews of Rydberg physics
research).

Within the last few years, the focus of study involving
Rydberg systems has moved toward few-body interactions.
For example, there have been proposals for long-range inter-
actions between one Rydberg atom and multiple ground-state
atoms [15–18], as well as for bound states between three
Rydberg atoms [19–21]. Currently, Rydberg states involving
alkaline-earth elements are also being investigated [22–24],
with the goal of forming Rydberg-Rydberg pairs at large
interatomic separations. The inner valence electrons in each
atom of such a dimer would offer an approach to probe and
manipulate Rydberg systems.

The works mentioned here have all been with regard
to homonuclear interactions; to the author’s knowledge,
Rydberg interactions between multiple species have not yet
been considered. Fairly recently, photoassociation between
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different alkali species in the ground state (39K 85Rb) was
achieved [25,26]. In principle, such techniques could be
applied to Rydberg states of these atoms to probe resonance
features; this paper aims to assist in this effort.

We discuss an approach for calculating long-range Rydberg
interactions between two different alkali atoms; although
we specifically discuss calculations involving rubidium and
potassium, the theory can be applied to any heteronuclear
alkali pairing. Such results are relevant to the continuing work
in ultracold physics and chemistry, specifically with regard to
the “exotic” Rydberg dimer states. Please note: Except where
otherwise indicated, atomic units are used throughout.

II. LONG-RANGE INTERACTIONS

Neutral, alkali Rydberg atoms are convenient to explore
because they are well treated using the semiclassical Bohr
model (with the quantum defect correction) [1]. In addition,
the neutrality of the atoms ensures minimal interactions with
the environment while in the ground state [27,28], and the
translational motion of the nuclei can be neglected at ultracold
temperatures [2,3].

When the distance between the two interacting Rydberg
atoms is greater than the Le-Roy radius [29],

RLR = 2 [〈n1�1|r2|n1�1〉1/2 + 〈n2�2|r2|n2�2〉1/2], (1)

the interactions are considered “long range” and there is
no overlap of the two electron clouds. The potential energy
of the interaction is then described by that of two, well-
separated charge distributions. For the case of Rydberg atoms,
each charge distribution is effectively a two particle system:
a +1 nuclear core and a single, highly excited valence
electron.

Figure 1 schematically represents two such interacting
Rydberg atoms: electron 1 is a distance r1 from core A, and
electron 2 is a distance r2 from core B. In the long-range
scenario, the nuclear distance R is much larger than both r1

and r2. When the two nuclear cores are assumed to be fixed in
space (no kinetic energy), then the interaction Hamiltonian is
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FIG. 1. Two Rydberg atoms well separated from each other; each
consists of a +1 nuclear core and a single, highly excited valence
electron ei . Here, the nuclear distance R is greater than the LeRoy
radius (see text) and thus much larger than either electron’s distance
ri from its respective nuclear core.

expressed in atomic units as

Ĥ = ĤA + ĤB + V̂int , (2)

where Ĥi contains the kinetic and potential energies of atom
i and V̂int is the Coulombic potential energy combinations
of the two nuclei and the two electrons, given in atomic
units as

V̂int = 1

R
− 1

| �R + �r2|
− 1

| �R − �r1|
+ 1

| �R + �r2 − �r1|
. (3)

A. Basis states

Given a nonrelativistic Schrödinger equation, the fine-
structure energy splitting is a result of the spin-orbit coupling
between the total spin angular momentum of the dimer �S
and the total orbital angular momentum of the dimer �L. When
nuclear rotation is neglected, Hund’s case (c) is the appropriate
molecular basis where the good quantum numbers are the total
angular momentum of the dimer �J = �L + �S and its projection
� along the internuclear axis.

We adopt a typical approach and assume the dimer wave
function to be a product of two atomic wave functions.
Under the Born-Oppenheimer approximation, each atomic
wave function is solely described by the quantum state of
its valence electron 1 (2) about the respective nucleus A

(B). In the coupled basis representation, each atom possesses
total atomic angular momentum �j i = ��i + �si , where ��i is
the orbital angular momentum of atom i and �si is the spin
angular momentum of atom i. The dimer wave functions
are thus expressed as |1A〉 ≡ |n1,�1,j1,mj1〉A and |2B〉 ≡
|n2,�2,j2,� − mj1〉B . Here ni is the principal quantum number
of atom i, �i is the orbital angular momentum quantum number
of atom i, and mji

is the projection of the total atomic angular
momentum �j i of atom i onto the internuclear axis (chosen in
the z direction for convenience).

For the interactions considered here, the fine-structure
energies are too high for perturbation theory to be applicable.
Thus, we directly diagonalize the interaction Hamiltonian at
successive values of R to compute electronic potential energy
curves, as done in [30] and [31]. This approach has proven
to be more successful at explaining experimental resonance
features [4] because it more accurately describes the intricate
mixing of the electrons’ angular momentum characters (�
mixing).

To facilitate faster computational times, we exploit molec-
ular symmetries to construct symmetrized molecular wave
functions, as done in [9], [10], [30], and [31]. Although the
heteronuclear dimer does not possess the inversion symmetry
of its homonuclear counterpart, the total wave function does
remain antisymmetric with respect to electron exchange.
Therefore, as long as Eq. (1) is satisfied, the properly
symmetrized molecular wave function is given by

|1A,2B; �〉 ∼ 1√
2

(|1A〉|2B〉 − |2B〉|1A〉). (4)

For � = 0, reflection of the dimer through a plane containing
the internuclear axis leads to wave functions that are either
symmetric or antisymmetric with respect to the reflection oper-
ator σ̂ν . Furthermore, these wave functions have nondegenerate
energy values and must be uniquely defined. We distinguish
between the two based on how σ̂ν operates on (4),

|1A,2B; � = 0±〉 =
(

1 ± σ̂ν√
2

)
|1A,2B; � = 0〉 , (5)

where σ̂ν behaves according to the following rules
[32,33]:

σ̂ν |�〉 = (−1)�| − �〉, (6)

σ̂ν |S,MS〉 = (−1)S−MS |S, − MS〉 . (7)

B. Basis sets

In general, any basis set (defined by �) will consist
of molecular states corresponding to those asymptotes with
significant coupling both to the Rydberg-Rydberg asymptotic
level being considered and to other nearby states. We gauge the
relative interaction strengths of local asymptotes based on their
contributions to the the C6 ∼ (〈φ1|r|φ2〉〈φ3|r|φ4〉)2

(E1+E3)−(E2+E4) (dipole-dipole)

and C5 ∼ 〈φ1|r2|φ2〉〈φ3|r2|φ4〉 (quadrupole-quadrupole) co-
efficients of the molecular Rydberg state being considered. In
these expressions, each Ei is the asymptotic energy of atom i

in state φi and 〈φi |rk|φj 〉 is the radial matrix element between
atom i and atom j .

As mentioned before, the Ci coefficients (perturbation
theory) are not sufficient to properly describe the long-
range Rydberg-Rydberg interaction picture detailed in this
work; however, such analysis does accurately assess which
asymptotes provide strong coupling and which do not. For
example, if we consider the 70(K)s + 70(Rb)s Rydberg level,
the largest contribution to the C6 coefficient comes from
the 69(K)p + 70(Rb)p state (8.89317 × 1014), while the largest
contribution to the C5 coefficient comes from the 67(K)d +
69(Rb)d state (3.8039 × 1015) and the 68(K)d + 70(Rb)d state
(2.4682 × 1015). To provide some contrast, the contribution of
the 71(K)p + 71(Rb)p state to the C6 coefficient is 2.51707 ×
109, while the contribution of the 72(K)d + 72(Rb)d state to the
C5 coefficient is 3.80343 × 1011. Since the contributions of
these states are 4 or 5 orders of magnitude smaller, they are
not included in the basis.

To construct a more complete basis set, we examine
asymptotes in the vicinity (∼±20 GHz) of the molecular
Rydberg level being considered and we find in Table I that
the dipole strength between two atomic Rydberg states decays
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TABLE I. Dipole matrix elements for atomic transitions from Rb
70s and (right) K 70s. Values for the two largest elements for each
atomic species are in boldface and note the rapid decrease in coupling
strength as �n = |n1 − n2| increases.

Rubidium Potassium

〈70s|r|74p3/2〉 = 94.064 〈70s|r|74p3/2〉 = 87.093
〈70s|r|73p3/2〉 = −144.19 〈70s|r|73p3/2〉 = −134.41
〈70s|r|72p3/2〉 = 258.08 〈70s|r|72p3/2〉 = 243.23
〈70s|r|71p3/2〉 = −639.57 〈70s|r|71p3/2〉 = −616.30
〈70s|r|70p3/2〉 = 5081.6 〈70s|r|70p3/2〉 = 5353.1
〈70s|r|69p3/2〉 = 4807.8 〈70s|r|69p3/2〉 = 4810.7
〈70s|r|68p3/2〉 = −649.29 〈70s|r|68p3/2〉 = −696.92
〈70s|r|67p3/2〉 = 262.07 〈70s|r|67p3/2〉 = 285.92
〈70s|r|66p3/2〉 = −144.50 〈70s|r|66p3/2〉 = −158.83

rapidly with the relative difference in their principal quantum
numbers: �n ≡ |n1 − n2|. Note: This table details specific
results for transitions from rubidium in the 70s state and from
potassium in the 70s state, but similar behaviors are found for
transitions from any excited n� Rydberg state. Due to the sharp
decline in the coupling strengths, we only consider nearby
asymptotic levels whose two constituent atoms have ni values
in the range (n − 3) � ni � (n + 3), where n is the principal
quantum number of the excited Rydberg state for each atom
(n = 70 for all tabulated results in this paper).

Table II lists the relevant molecular levels near the 70s +
70s asymptote and the 70p + 70p asymptote; the properly
symmetrized states corresponding to these molecular levels
comprise the appropriate basis sets.

C. Interaction Hamiltonian

Under the Born-Oppenheimer approximation, diagonaliza-
tion of the interaction Hamiltonian [Eq. (2)] results in a set of
electronic energies with regard to a fixed nuclear separation R.
A complete set of electronic energy curves can be calculated by

TABLE II. Molecular asymptotes included in the basis sets for
long-range interactions between rubidium and potassium. In the first
column, each atom was excited to the 70s Rydberg state; in the second
column, to the 70p Rydberg state.

K(70s)-Rb(70s) K(70p)-Rb(70p)

68(K)d + 70(Rb)s 67(K)f + 71(Rb)p

69(K)s + 69(Rb)d 68(K)f + 70(Rb)p

68(K)p + 71(Rb)p 68(K)d + 69(Rb)d

69(K)p + 70(Rb)p 69(K)s + 70(Rb)d

69(K)s + 71(Rb)s 67(K)d + 72(Rb)s

70(K)s + 70(Rb)s 69(K)d + 70(Rb)s

68(K)d + 69(Rb)d 68(K)d + 71(Rb)s

69(K)p + 71(Rb)p

70(K)p + 70(Rb)p

69(K)s + 72(Rb)s

70(K)s + 71(Rb)s

67(K)f + 69(Rb)f

68(K)f + 68(Rb)f

diagonalizing a unique Hamiltonian matrix at varying values
of R.

A convenient approach for long-range Rydberg investiga-
tions is to express the Coulombic potential energy expression
[Eq. (3)] as a multipole expansion in inverse powers of
R [34–36]; the expansion is further simplified if we assume
that �R lies along a z axis, common to both Rydberg atoms [37]:

V̂int ≡ VL(R) =
∞∑

L=0

(−1)L
4π

R2L+1(2L + 1)
rL

1 rL
2

×
L∑

m=−L

BL+m
2L Ym

L (r̂1) Y−m
L (r̂2) . (8)

Here, Bk
n ≡ n!

k!(n−k)! is the binomial coefficient, Ym
L (r̂ i) is a

spherical harmonic describing the angular position of electron
i with position �r i from its nuclear center, L labels the (2L)
multipole moment (L = 1 for dipolar, L = 2 for quadrupolar,
etc.), and R is the internuclear distance. The advantage of such
an expansion is that the expression can be truncated such that
only meaningful terms are kept; this significantly reduces the
computation time.

When the Hamiltonian is diagonalized, the expectation
value of each term in the energy expansion is proportional

to 〈rL
1 〉〈rL

2 〉
R2L+1 ; for Rydberg atoms, each radial element scales

as 〈rL〉 ∼ n2L [1]. Thus, dipole-dipole interactions scale as
∼ n4

R3 , quadrupole-quadrupole interactions scale as ∼ n8

R5 and so
on. For the internuclear spacings considered here, R ≈ n5/2,
so the dipole-dipole coupling strength is ∼n−7/2 and the
quadrupole-quadrupole coupling strength is ∼n−9/2.

Typically, dipole-dipole interactions dominate the long-
range Rydberg-Rydberg interactions, but it has been
shown [31,38] that quadrupole-quadrupole couplings can also
be significant to the interaction picture. To date, octupole-
octupole interactions have not been shown to be relevant
in long-range Rydberg interactions, so we do not consider
them here. Based on the scaling relations shown above, such
a term would be a factor of n−1 less than the quadrupole-
quadrupole term and a factor of n−2 less than the dipole-dipole
term.

Because the molecular basis states are linear combinations
of atomic states determined through symmetry considera-
tions [see Eq. (4)], each matrix element in the interaction
Hamiltonian is actually a combination of multiple interaction
terms:

〈1A,2B; �|Ĥ |3A,4B; �〉 ∼ 〈1A,2B|Ĥ |3A,4B〉
− 〈1A,2B|Ĥ |4A,3B〉
− 〈2A,1B|Ĥ |3A; 4B〉
+ 〈2A,1B|Ĥ |4A; 3B〉 . (9)

For the � = 0 case, Eq. (5) is also applied, resulting
in additional terms. Since the normalization factor varies
with state definitions and symmetry considerations, it is
not stated explicitly in (9). Normalization factors are in-
cluded in calculations, however. In this notation, |1A,2B〉 =
|n1,�1,j1,mj1〉A|n2,�2,j2,� − mj1〉B , and so on.
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An analytical expression for any given term in the matrix
element is found to be

〈1A,2B|VL(R)|3A,4B〉

= (−1)L−1−�+jtot

√
�̂1�̂2�̂3�̂4ĵ1ĵ2ĵ3ĵ4

RL
13,A RL

24,B

R2L+1

×
(

�1 L �3

0 0 0

)(
�2 L �4

0 0 0

)

×
{
j1 L j3

�3
1
2 �1

}{
j2 L j4

�4
1
2 �2

}

×
L∑

m=−L

BL+m
2L

(
j1 L j3

−mj1 m mj3

)

×
(

j2 L j4

−mj2 −m mj4

)
, (10)

where jtot = j1 + j2 + j3 + j4, �̂i = 2�i + 1, ĵi = 2ji + 1,
and RL

ij,Q = 〈i|rL|j 〉Q is the radial matrix element of atom
Q. The (·) expressions represent Wigner-3j symbols, and the
{·} expressions represent Wigner-6j symbols.

The diagonal elements, i.e., |1A,2B〉 = |3A,4B〉, are given
by

〈1A,2B; �|Ĥ |1A,2B; �〉 = 〈1A,2B; �|VL(R)|1A,2B; �〉
+E1A + E2B , (11)

where 〈1A,2B; �|VL(R)|1A,2B; �〉 follows (9) and (10), and
each EiQ is the asymptotic energy of the atomic Rydberg state
|ni,�i,ji,mji

〉Q:

EiQ = − 1

2(niQ − δ�iQ)
. (12)

In this expression, niQ is the principal quantum number of
atom Q and δ�iQ is the quantum defect for atom Q (values
given in [1], [39], and [40]).

III. INTERACTION CURVES

After investigating all possible � symmetries for the 70s +
70s and 70p + 70p excitations of rubidium and potassium,
we found that in both cases the � = 0+ and the � = 0−
symmetries resulted in potential wells capable of supporting
bound states. In Fig. 2, we plot the interaction energies for
these four cases against the Bohr radius (a0) and highlight
the resulting potential wells in red; we also label the wells’
corresponding asymptotic energy levels.

For all four of these wells, we explored scaling relations,
composition, and stability. We provide a visual example in
Fig. 3(a), where the potential well corresponding to the
� = 0+ symmetry for both atoms excited to the 70s state
is isolated. This well is ∼600 MHz deep and supports ∼630
bound vibrational states. In Table IV, we list the first few
bound-state vibrational energies (as measured from the bottom
of the well) for all four wells, as well as the classical turning
points, indicating the large size of these dimer states. Given
that the equilibrium separation Re for all four wells is between
41 000a0 and 46 000a0 (∼2.25 μm), these bound states are
very extended, consistent with the macrodimer classification.
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FIG. 2. Long-range potential energy curves corresponding to the
interactions between one rubidium atom and one potassium atom
excited to the same state. (a) Curves correspond to the � = 0+

symmetry with both atoms excited to the 70s state, (b) curves
correspond to the � = 0− symmetry with both atoms excited to the
70s state, (c) curves correspond to the � = 0+ symmetry with both
atoms excited to the 70p state, and (d) curves correspond to the
� = 0− symmetry with both atoms excited to the 70p state. We
highlight the potential energy wells in red and label their respective
asymptotic states.
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FIG. 3. (a) Long-range potential energy curves corresponding to
the � = 0+ symmetry interactions of one potassium Rydberg atom
and one rubidium Rydberg atom; both atoms have been excited to
the 70s state. We note the existence of an ∼600-MHz-deep well
associated with the 69(K)s + 69(Rb)d5/2 asymptotic level, capable of
supporting many bound states. We explicitly label the equilibrium
separation Re and the dissociation energy De. Inset: Zoom-in on
the deepest part of the well, showing the first few bound vibrational
levels; corresponding energies and classical turning points are listed
in Table IV. (b) Scaling relations for the equilibrium separation Re

vs the principal quantum number n: Re ∼ n12/5. (c) Scaling relations
for the dissociation energy De vs the principal quantum number n.
Three results (see text) are shown: De ∼ n−4 (blue line) gives a poor
agreement, De ∼ n−3 (dashed black line) gives a good agreement,
and De ∼ n−3 + n−4 (red line) gives the best agreement.
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TABLE III. n-scaling relations for the equilibrium separation Re

and the dissociation energy De for the four potential wells discussed
in this work (see Fig. 2). Both results are consistent with previous
work regarding homonuclear macrodimers (see text).

Threshold energy (well) Symmetry Re scaling De scaling

69(K)s + 69(Rb)d5/2 � = 0+ n2.4 (n12/5) n−3 + n−4

69(K)s + 69(Rb)d5/2 � = 0− n2.4 (n12/5) n−3 + n−4

69(K)s + 70(Rb)d5/2 � = 0+ n2.3 n−3 + n−4

69(K)s + 70(Rb)d5/2 � = 0− n2.3 n−3 + n−4

The inset in Fig. 3(a) shows that the deepest part of
the wells can be well modeled as a harmonic potential; the
first few bound levels for each well are consistently spaced
(see Table IV). The bound energies and corresponding wave
functions were calculated using the mapped Fourier grid
method [41] for each potential well individually.

A. Scaling relations

The dissociation energy De and the equilibrium separation
Re for the potential wells were calculated for various values
of the principal quantum number n. In Figs. 3(b) and 3(c), we
show the results for the � = 0+ symmetry with both atoms
excited to the 70s state. In Fig. 3(b), we see that the equilibrium
separation scales as n12/5, and in Fig. 3(c), we present different
“best-fit” curves corresponding to different values of n scaling
for the dissociation energy. For pure dipole-dipole coupling,
one would expect the dissociation energy to scale as the energy
difference between energy levels (n−3 for Rydberg atoms [1]).
We see that this result gives a pretty good agreement, but
the results suggest that De actually scales as ∼n−4 + n−3.
Although it gives a poor agreement, we also include the curve
of n−4 for completeness. In Table III, we list the scaling
results for all four of the potential wells identified in Fig. 2.
We note that the scaling results obtained here for Re and De

are consistent with the results for homonuclear macrodimers,
presented in [10]. A thorough derivation for these scaling
relations was also performed in that work; we do not republish
it here.

B. Well composition and stability

Due to the electronic � mixing, each potential energy curve
Uλ(R) is described by an electronic wave function |χλ(R)〉,
which itself is a superposition of the asymptotic molecular
wave functions (4):

|χλ(R)〉 =
∑

j

c
(λ)
j (R)|j 〉 . (13)

The exact amount of mixing varies with R and is completely
described by the c

(λ)
j (R) coefficients: the eigenvectors after

diagonalization. The |j 〉 are the corresponding symmetrized
basis states |1A,2B; �〉 defined earlier, (4). As an example
of the R dependence of the mixing, in Fig. 4(b) we illustrate
the composition of the potential well highlighted in Figs. 3(a)
and 4(a). This potential curve corresponds to the 69(K)s +
69(Rb)d5/2 asymptote.
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FIG. 4. (a) � = 0+ potential energy curves describing the in-
teractions between one potassium Rydberg atom and one rubidium
Rydberg atom: both atoms have been excited to the 70s state. We
highlight curves corresponding to the electronic states that contribute
the most to the formation of the well (see text). Inset: Zoom-in on
the region near the avoided crossing, indicating the relevant features
of the Landau-Zener treatment: � is the energy gap between the
adiabatic energies ε1 and ε2 at closest approach; these adiabatic
energies correspond to the two adiabatic states |χ1〉 and |χ2〉 at the
avoided crossing. (b) Probabilities |cj (R)|2 of the electronic basis
states |j〉 most responsible for the formation of the well (see text).
After ∼60 000a0, the � mixing is negligible: the probability coefficient
corresponding to 69(K)s +(Rb) 70d5/2 approaches 1 (see dashed line)
and all other probability coefficients decay to 0. Inset: Zoom-in on
the region near the avoided crossing. All panels use the same labeling
and/or color scheme.

As would be expected, this well is mainly composed of
the 69(K)s + 69(Rb)d5/2 state. However, in the region of the
actual well, we also see significant contributions from the
69(K)s + 69(Rb)d3/2 directly below the well and even from some
deeper nd + n′d states. In Fig. 4(a), we highlight and label
the four states most relevant to � mixing; the corresponding
probabilities |cj (R)|2 of these states are plotted against R in
Fig. 4(b) to explicitly describe the R dependence. We note that
the effects from � mixing cease when the nuclear separation
is about 60 000a0. This is obvious because the probability
coefficient of the 69(K)s + 69(Rb)d5/2 state approaches 1, while
all other coefficients approach 0. Also of note is the switch in
probabilities of the 69(K)s + 69(Rb)d5/2 and 69(K)s + 69(Rb)d3/2

states between ∼55 000a0 and ∼57 000a0. Although perhaps
not visually obvious in Fig. 4(a), these two curves do appear
to experience an avoided crossing in this general vicinity: one
can observe a slight deviation in the line shapes of these two
curves as they meet. Such a crossing would be consistent with
the behavior of the probabilities.

For potential energy wells formed via some avoided
crossing between curves, predissociation of bound energy
levels can be a concern. In general, avoided crossings can lead
to predissociation if the (meta-)stable state has strong coupling
to the unstable state below it. From the eigenvector plot in
Fig. 4(b), we see that there is significant coupling between the
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TABLE IV. Energies of the deepest bound levels (measured from the bottom of the well), classical turning points (R1, R2), and dimer
lifetimes τ (see text) for the four potential wells identified in Fig. 2.

Excited Rydberg pair Threshold energy (well) Symmetry v Energy (MHz) R1 (a.u.) R2 (a.u.) τ (s)

70(K)s + 70(Rb)s 69(K)s + 69(Rb)d5/2 � = 0+ 0 2.2240 42 175 42 783 ∞
1 6.6490 42 175 42 784 ∞
2 10.9194 42 095 42 891 ∞
3 15.0636 42 031 42 985 ∞
4 19.0879 41 976 43 070 ∞
5 23.0177 41 926 43 149 ∞
...

...
...

...
...

627 591.9279 37 967 226 597 ∞
70(K)s + 70(Rb)s 69(K)s + 69(Rb)d5/2 � = 0− 0 1.7120 41 591 41 983 ∞

1 5.1375 41 456 42 145 ∞
2 8.5053 41 366 42 260 ∞
3 11.8269 41 292 42 360 ∞
4 15.0967 41 232 42 447 ∞
5 18.3146 41 177 42 527 ∞
...

...
...

...
...

608 564.7000 37 067 157 474 ∞
70(K)p + 70(Rb)p 69(K)s + 70(Rb)d5/2 � = 0+ 0 1.3422 45 088 45 535 ∞

1 3.9897 44 937 45 718 ∞
2 6.5859 44 834 45 854 ∞
3 9.1309 44 750 45 970 ∞
4 11.6247 44 681 46 073 ∞
5 14.0752 44 620 46 169 ∞
...

...
...

...
...

470 335.6738 40 716 181 441 ∞
70(K)p + 70(Rb)p 69(K)s + 70(Rb)d5/2 � = 0− 0 1.3682 45 072 45 512 ∞

1 4.0782 44 921 45 696 ∞
2 6.7330 44 821 45 832 ∞
3 9.3245 44 739 45 947 ∞
4 11.8687 44 670 46 050 ∞
5 14.3575 44 608 46 147 ∞
...

...
...

...
...

473 337.7708 40 746 158 929 ∞

potential well and the curves that lie below it. Therefore, the
long-term stability of these wells could be compromised.

For curves that are less intricate, a simple Landau-Zener
(LZ) [42,43] treatment would be desirable. However, such
an approach depends on detailed knowledge of the diabatic
crossing behavior, including which diabatic states actually
correspond to the crossing potential energy curves; for the
complicated curve mixings that we demonstrate, defining
these diabatic states becomes difficult. Instead, we adopt
the approach taken by Clark [44], in which the parameters
defining the Landau-Zener probability are obtained from the
adiabatic P -matrix coupling. Specifically, the P matrix is
defined through the off-diagonal derivative of the interaction
potential between the crossing states:

P12(R) = 〈χ1|(∂/∂R)V (R)|χ2〉
(ε1(R) − ε2(R))

. (14)

Here, εi(R) is the energy value of the adiabatic potential curve
described by state |χi〉, and V (R) is defined by Eq. (8). As
the nuclear separation is varied, the value of the P matrix

peaks when the adiabatic curves are at their closest approach
[corresponding to ε1(R) − ε2(R) being a minimum]. Clark
showed that by fitting the P matrix to a Lorentzian function,
the probability that PLZ will make a nonadiabatic transition
from the electronic state |χ1〉 to the electronic state |χ2〉 is
given by

PLZ = exp

(
−2π

v

�

8 Pmax

)
, (15)

where v is the relative velocity of the two nuclei determined
from the bound levels of the molecule, � is the energy gap
between the two adiabatic curves at closest approach, and Pmax

is the peak value of the P matrix. The inset in Fig. 4(a) shows
a closeup of the avoided crossing between the |χ1〉 ≡ 69(K)s +
69(Rb)d5/2 and the |χ2〉 ≡ 69(K)s + 69(Rb)d3/2 electronic states;
the energy gap � is also indicated.

Since PLZ represents the likelihood of transitioning from
|χ1〉 to |χ2〉 (and thus predissociating into two free atoms),
1 − PLZ is the probability that the macrodimer will remain in
|χ1〉 and not predissociate. We match this probability to an
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exponential decay over the time t for a full oscillation inside
the well, 1 − PLZ = e−t/τ , and find τ , the “lifetime” of the
dimer; the results are summarized in Table IV.

Our calculations show that all of the bound states have
near-zero PLZ values and thus near-infinite lifetimes. Although
there is strong coupling between the well and the states below
it, the energy gap between the well and the lower curves is
too large for dissociation to occur. In addition, the oscillation
speeds of the dimers are too slow for diabatic transitions. We
therefore conclude that these dimers are stable with respect
to predissociation and so their lifetime is limited only by the
Ryberg atoms themselves (tRyd ∼ 700 μs for n = 70) [45].

IV. CONCLUSIONS

In this paper, we investigated the long-range interactions
between rubidium and potassium, where both atoms are
excited to high-n Rydberg states. We explored all possible �

symmetries for both atoms being excited to the 70s state and
the 70p state. Our calculations showed that due to the effects
of electronic � mixing, the potential energy curves describing
these interactions are intricate and complicated, particularly
when the nuclear separations are in the 40 000a0–60 000a0

range. In addition, when both atoms are excited to either
the 70s state or the 70p state, both the � = 0+ symmetry
interactions and the � = 0− symmetry interactions result in
potential wells capable of supporting many bound states.
We analyzed these wells in detail, calculating the bound
vibrational levels, the stability of these levels, and various
n-scaling relations.

Given the interest in photoassociation experiments between
different alkali species, these results could be useful for further
ultracold experiments, quantum chemistry calculations, and/or
quantum information research. Furthermore, it might be
possible to exploit the � mixing for application to “dressed”
Rydberg states [46,47].
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133004 (2002).

[9] N. Samboy, J. Stanojevic, and R. Côté, Phys. Rev. A 83, 050501
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