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Constraints on exotic spin-dependent interactions between electrons from helium
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Agreement between theoretical calculations of atomic structure and spectroscopic measurements is used to
constrain possible contribution of exotic spin-dependent interactions between electrons to the energy differences
between states in helium-4. In particular, constraints on dipole-dipole interactions associated with the exchange of
pseudoscalar bosons (such as axions or axion-like particles) with masses 10−2 � m � 104eV are improved by a
factor of ∼100. The first atomic-scale constraints on several exotic velocity-dependent dipole-dipole interactions
are established as well.
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Heretofore undiscovered spin-dependent interactions [1,2]
naturally arise in theories predicting new bosons such as
axions [3–8], familons [9,10], majorons [11,12], arions [13],
new spin-0 or spin-1 gravitons [14–17], Kaluza-Klein zero
modes in string theory [18,19], paraphotons [20], and new Z′
bosons [21]. Such new bosons are connected to possible expla-
nations of the nature of dark matter [22], dark energy [23,24],
the strong-CP problem [1], and the hierarchy problem [25].

The most commonly employed framework for the purpose
of comparing different experimental searches for exotic
spin-dependent interactions is that introduced in Ref. [1] to
describe long-range spin-dependent potentials associated with
the axion and extended in Ref. [2] to encompass long-range
potentials associated with any generic spin-0 or spin-1 boson.
The spin-dependent potentials enumerated in Ref. [2] are
characterized by dimensionless coupling constants that specify
the strength of the interaction between various particles and
a characteristic range λ for the interaction associated with
the reduced Compton wavelength of the new boson of mass
m0, λ = h̄/(m0c), where h̄ is the reduced Planck constant
and c is the speed of light. Depending on the nature of
the new interaction, different particles will have different
coupling constants. In the present work, we study dipole-dipole
interactions between electrons at the atomic scale through
investigation of the electronic structure of helium-4.

Laboratory searches for exotic spin-dependent interactions
mediated by new bosons are sensitive and broadly inclu-
sive probes for global symmetries broken at high energy
scales [1,2]. For example, the fundamental properties of axions
and the axion-like particles (ALPs) mentioned above [1–19]
are characterized by a symmetry-breaking scale fa and an
interaction scale �. These scales determine, for example, the
mass of the ALP

m0c
2 = �2

fa

, (1)
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and the interaction of an ALP with a standard model fermion
X is proportional to mXc2/fa where mX is the fermion
mass. In particular, this work improves laboratory constraints
on exotic spin-spin forces between electrons mediated by
bosons in the mass range between 10−2 and 104 eV by
two orders of magnitude. Our research is complementary to
experiments searching for an axion-ALP coupling to photons,
such as the Axion Dark Matter eXperiment (ADMX) [26],
the CERN Axion Solar Telescope (CAST) [27], and light-
shining-through-wall experiments such as the Any Light
Particle Search (ALPS) [28], since He spectroscopy probes
the electron-ALP interaction as opposed to the photon-ALP
interaction and is sensitive to a mass range beyond that
probed by experiments such as ADMX, CAST, and ALPS.
Although star cooling rates constrain certain broad classes
of ALPs [29,30], there are a number of loopholes in the
astrophysical arguments (for example, they do not apply to
spin-1 bosons) that permit, in principle, spin-spin interactions
in the parameter space studied in the present work [30,31].

The most stringent constraints on exotic dipole-dipole
interactions between electrons have been established by
torsion-pendulum experiments [32–34] at the laboratory scale
(λ � 1 cm) and by measurements on trapped ions [35] at
the micron scale (10 μm � λ � 1 m). The only existing
constraints on exotic dipole-dipole interactions between elec-
trons at the atomic scale come from positronium spectroscopy
[35–37], which carries a caveat that CPT invariance must
be implicitly assumed in order to translate the constraint to
electrons [35].

Spectroscopic measurements of helium have been a popular
research topic for several decades [38–42]. These investiga-
tions enable determination of energy-level structure of the
element with a good precision. In particular, Feng et al.
recently [38] determined the frequency of the 23P1-23P2 tran-
sition with an uncertainty of 0.36 kHz (1-σ level) while mea-
surements of the 23S1-23P0,1,2 transitions performed by Pastor
et al. measured the frequency with uncertainty of ∼2 kHz [39].

To date, the most precise theoretical calculations of the
helium energy structure have been performed by Pachucki
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TABLE I. Comparison of theoretical (QED-based) and experimental transition energy values between various helium states.

Theoretical Experimental Difference �E

23P1-23P2 2 291 178.9(1.7) kHz [43] 2 291 177.54(24) kHz [49] 1.4(1.7) kHz 3.7 kHz

23P0-23S1 276 764 094.7(3.0) MHz [44] 276 764 094.7073(21) MHz [39] 0.0(3.0) MHz 4.9MHz

23P1-23S1 276 734 477.7(3.0) MHz [44] 276 734 477.7525(20) MHz [39] 0.1(3.0) MHz 5.0MHz

23P2-23S1 276 732 186.1(2.9) MHz [44] 276 732 186.621(15) MHz [39] 0.5(2.9) MHz 5.3MHz

and Yerokhin [43], who used perturbation theory to calculate
the helium fine-structure splittings up to the meα

7 order
(in relativistic units), where me is the electron mass and α

is the fine-structure constant. This enabled calculations of
23P0,1,2 level splittings with uncertainty of ∼2 kHz [43]. At
the same time, the energy differences between the 23S1 and
23P0,1,2 levels were calculated to the meα

6 order, enabling
determination of the transition frequencies with uncertainties
of ∼3.0 MHz [44].

In the context of comparison between experimental results
and theoretical calculations of atomic energies, it is crucial
to note that a subtle systematic effect arising from quantum
interference of a given atomic transition with off-resonant
excitations can affect the resonant frequencies of measured
spectral lines [45–48]. For example, as discussed in detail
in Ref. [48], this effect can cause an apparent shift of the
helium 23P1 → 23P2 transition frequency by ≈10 kHz. These
apparent shifts depend on the experimental technique used,
since different techniques are sensitive to different quantum-
mechanical interference paths [49]. Reference [49] summa-
rizes the corrections and present status of measurements of
the helium 23P1 → 23P2 interval, and we use the weighted
average of the corrected results of Refs. [38,41,50,51] to de-
termine the experimental value for the 23P1 → 23P2 transition
frequency. On the other hand, the theoretical uncertainties of
the 23S1-23P0,1,2 transition frequencies are so large that the
interference effect can be neglected in these cases.

In this work, we determine limits on the coupling constants
for various exotic interactions between electron spins from
their possible effect on transition energies of helium. By
comparing the experimental and theoretical results, we extract
a maximal possible energy contribution �E that may come
from exotic interactions at the 90% confidence level (see
Appendix A for details of how �E is determined). Table I
presents the theoretical and experimental energy values for
various 4He transitions used in our calculations of limits on
exotic spin-dependent interactions. Note that the theoretical
uncertainties are determined from estimates of the next-
order contributions from quantum electrodynamics which are
proportional to meα

8, where α is the fine-structure constant.
In Ref. [2], Dobrescu and Mocioiu studied possible long-

range potentials between fermions generated by exchange of
spin-0 or spin-1 bosons. Given basic assumptions within the
context of quantum field theory (e.g., rotational invariance,
energy-momentum conservation, and locality), interactions
mediated by new bosons can generate 16 independent,
long-range potentials between fermions in the nonrelativistic
limit (small fermion velocity and low momentum transfer).
In the case of one-boson exchange under these assumptions,
all the potentials acquire a dependence ∝ e−r12/λ, where r12 is
the distance between the fermions, which largely determines

the range of the exotic interactions. For example, the coupling
of a pseudoscalar boson of mass m0 to an electron ψ can
arise as either a Yukawa-like coupling described by the
Lagrangian [1]

LYuk = −igpψ̄γ 5ψϕ, (2)

or through a derivative coupling described by the Lagrangian

Lder = gp

2me

ψ̄γμγ 5ψ∂μϕ, (3)

where in Eqs. (2) and (3) we have used the Dirac γ matrices.
In either case, it turns out that the resultant long-range
potential is given by

V3 = ge
3g

e
3

4πh̄c

h̄3

4m2
ec

[
s1 · s2

(
1

λr2
12

+ 1

r3
12

)
− (s1 · e12)(s2 · e12)

×
(

1

λ2r12
+ 3

λr2
12

+ 3

r3
12

)]
e−r12/λ, (4)

where ge
i g

e
i /(4πh̄c) is the dimensionless coupling constant of

the ith interaction between the electrons (this is the notation
of Refs. [1,2,35,52], where ge refers to the coupling of
an electron to the exotic boson), me is the electron mass,
e12 = r12/r12 is the unit vector in the direction from the
first electron to the second electron, ∇1 and ∇2 are vector
differential operators in position space for the first and second
particle, respectively, and s1, s2 are spins of the interacting
electrons. Further details of the derivation of the long-range
spin-dependent potentials are given in Refs. [1,2] and
Appendix B. For studies of exotic spin couplings using 4He,
only those potentials invariant under permutation of identical
fermions, spatial inversion, and time reversal are relevant.
These three conditions allow a nonzero result of calculations
of exotic-field-induced shifts of energy levels in first-order
perturbation theory. There are four potentials that satisfy these
requirements. One of them was introduced in Eq. (4), and the
other three have in the position representation the form

V2 = ge
2g

e
2

4πh̄c
h̄c(s1 · s2)

e−r12/λ

r12
, (5)

V4 = ge
4g

e
4

4πh̄c

ih̄3

4m2
ec

(s1 + s2)

·
[

(∇1 − ∇2) × r12,

(
1

r3
12

+ 1

λr2
12

)
e−r12/λ

]
+
, (6)

V8 = ge
8g

e
8

4πh̄c

h̄3

4m2
ec

[
s1 · (∇1 − ∇2),

[
s2 · (∇1 − ∇2),

e−r12/λ

r12

]
+

]
+
, (7)
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TABLE II. Values of constants in the wave functions and
ionization energies.

Zi Za C εth (Ry) εexpt (Ry)

23S 2.01 1.53 0.43247a
−3/2
0 0.334 0.350

23P 1.99 1.09 0.097969a
−3/2
0 0.262 0.266

where by [·,·]+ we denote an anticommutator. These potentials
are results of the exchange of exotic bosons [2,37,53]: scalar
(V4), pseudoscalar (V3), vector (V3), and axial-vector
(V2,V3,V8).

Note that the velocity-dependent potentials [Eqs. (6)
and (7)] presented here have different forms than in Ref. [2]
and other papers considering nonstatic exotic interactions [54].
This difference comes from the fact that the velocity-dependent
potentials in Refs. [2,54] are in fact presented in a “mixed”
representation (not a position representation, as stated). We
discuss this further in Appendix B.

The strength of any hypothetical exotic spin-dependent
interactions between two electrons is orders of magnitude
smaller than their electromagnetic interaction. Based on this
fact, high precision is not required in calculation of the
perturbation due to the exotic effects and it is enough to
calculate the exotic contributions to first order in perturbation
theory. For these calculations, approximate wave functions of
electrons in helium may be assumed. Here, we use the electron
wave functions of the n = 2 state of orthohelium (S = 1),
obtained with the variational method (see, for example,
Ref. [55]). In Table II, one can find the ionization energies
calculated with these wave functions εth compared with the
experimental values εexpt. The difference between them is
just several percent, which suggests that these functions can
be safely used in our calculations. These approximate wave
functions have reasonable accuracy only for distances on the
order of the Bohr radius a0. Larger distances do not contribute
in our estimates because all potentials decrease faster than 1/r .
Shorter distances r � a0 can be important for singular poten-
tials, but the potentials we consider are not singular for the
boson masses m0 � 1 keV studied here and consequently their
matrix elements mainly depend on the distances r ∼ a0. For
m0 � 1 keV the potentials become singular and the accuracy
of our estimates decrease accordingly, but this is exactly the
regime in which the strength of our constraints decrease. Thus,
these approximate wave functions are adequate for the part of
the parameter space where our constraints are significant.

The spatial electron wave function for the helium 23S0 state
is given by [55]

ψS = CS

[
e−ZS

i r1/a0−ZS
a r2/2a0

(
ZS

a r2

2a0
− 1

)

− e−ZS
i r2/a0−ZS

a r1/2a0

(
ZS

a r1

2a0
− 1

)]
, (8)

where the ZS
a ,ZS

i ,CS values are given in Table II and a0

is the Bohr radius. The spatial electron wave function is
antisymmetric with respect to the 1 ↔ 2 electron exchange,
so the spin wave function must be symmetric (as we may
expect for orthohelium) and the total spin is S = 1. Since the

23S0 state is only used to constrain the V2 potential, where the
electron spins appear in the formula via the s1 · s2 term, we
do not have to consider explicitly the spin part of the wave
function as for orthohelium

s1 · s2|ψS〉 = 1
2

(
S2 − s2

1 − s2
2

)|ψS〉 = 1
4 |ψS〉. (9)

The spatial components of the 23P -state wave functions are
approximated by [55]


P
1 = −CP [F (r1,r2) sin θ1e

iφ1 − F (r2,r1) sin θ2e
iφ2 ],


P
0 =

√
2CP [F (r1,r2) cos θ1 − F (r2,r1) cos θ2],


P
−1 = CP [F (r1,r2) sin θ1e

−iφ1 − F (r2,r1) sin θ2e
−iφ2 ], (10)

where

F (r1,r2) = r1

a0
e−ZP

a r1/2a0−ZP
i r2/a0 , (11)

where the ZP
a ,ZP

i ,CP values are given in Table II. We associate
these antisymmetric wave functions with symmetric spin
functions using the Clebsch-Gordan coefficients coming from
the addition of angular momenta L = 1 and S = 1. In the
following sections, we will be performing calculations using
the wave functions |ψP

J,mJ
〉∣∣
P

2,2

〉 = 
P
1 | ↑↑〉, (12)

∣∣
P
2,1

〉 =
√

1

2

P

0 | ↑↑〉 + 1

2

P

1 (| ↑↓〉 + | ↓↑〉), (13)

where | ↑↓〉 = |ms1 = 1/2; ms2 = −1/2〉 and ms1,2 are the
magnetic quantum numbers of the first and second electrons,
respectively.

For every considered potential Vi we can estimate an
associated energy shift between states |ψa〉 and |ψb〉 using
first-order perturbation theory and the approximate wave
functions listed above

�Uab,i(m0) = 〈ψa|Vi(m0)|ψa〉 − 〈ψb|Vi(m0)|ψb〉, (14)

where Vi(m0) is the potential Vi divided by the dimensionless
constant ge

i g
e
i /(4πh̄c). Values for �Uab,i were calculated

by numerical integration for several m0 values and then an
interpolation was performed in order to obtain a continuous
function �Uab,i(m0). For potentials V3, V4, and V8, curves
describing the constraints on ge

i g
e
i /(4πh̄c) were obtained for

different values of m0 by substituting the appropriate �E (the
one connected with the 23P1-23P2 transition) from Table I
into the relation

ge
i g

e
i

4πh̄c
(m0) � �E

�Uab,i(m0)
. (15)

For m0 � 3000 eV, the Compton wavelength of the medi-
ating boson is shorter than the average interparticle separation
between electrons in the helium atom. Because of that, the
transition frequency becomes less sensitive to the considered
potentials for m0 � 3000 eV as seen in the parameter exclusion
plots.

The results for the V3 potential are presented in Fig. 1. The
other results in this figure come from Ref. [35]. It can be seen
that comparison between theory and experiment for helium
fine structure yields the best constraints in the considered
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FIG. 1. Constraints (at the 90% confidence level) on the dimen-
sionless coupling constant ge

3g
e
3/(4πh̄c) as a function of the boson

mass. The dashed line and dark gray fill shows the constraint for
electrons from Ref. [35]. The dotted line and light gray fill show
the constraint derived from analysis of positronium, also discussed
in [35]. The solid line and medium gray fill shows the constraint
from a comparison between theory and experiment for the 23P2-23P1

transition frequency in He.

mass range (two orders of magnitude more stringent than the
previous limits).

In order to calculate constraints for the V4 potential we use
its reduced form, which is derived in Appendix C. It allows
us to numerically obtain the �Uab,i(m0) function plotted
in Fig. 2.

The results for the V8 potential are presented in Fig. 3.
Constraints for the V8 electron coupling constant were obtained
earlier using geoelectron experiments [54], which consid-
ered boson masses less than 10−10 eV, yielding constraints
ge

8g
e
8/(4πh̄c) � 10−36 in the massless limit.

The analysis for the V2 potential differs somewhat from
that carried out for the other potentials. Spin operators in
the V2 potential are of the form s1 · s2 so for orthohelium
wave functions |ψ〉 we have s1 · s2|ψ〉 = 1

4 |ψ〉. This means
that the analysis for this case is based on evaluation of the
〈ψ | exp(−r12/λ)/r12|ψ〉 matrix elements.

The V2 potential does not split energy levels of different
J and the same L and S, but only shifts such levels by the
same amount. This means that in order to experimentally
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FIG. 2. Constraints (at the 90% confidence level) on the dimen-
sionless coupling constant ge

4g
e
4/(4πh̄c) as a function of the boson

mass coming from a comparison between theory and experiment for
the 23P2-23P1 transition frequency in He.
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FIG. 3. Constraints (at the 90% confidence level) on the dimen-
sionless coupling constant ge

8g
e
8/(4πh̄c) as a function of the boson

mass coming from a comparison between theory and experiment for
the 23P2-23P1 transition frequency in He.

observe the shifts, we need another reference state outside
the fine-structure manifold. For this purpose, based on the
available experimental data and theoretical calculations, a
natural choice is a comparison between the 23S1 and 23P

states. The fact that the V2 potential does not remove J

degeneracy implies that the 23S1-23PJ comparison does not
depend on the particular choice of |JmJ 〉. Therefore, we use all
the values of differences between experimental and theoretical
transition energies between states 23S and 23P from Table I.
Treating these differences as �E from formula (15), we get
a function ge

2g
e
2/(4πh̄c)(m0) for every transition, along with

the uncertainty. We calculate the weighted mean of these with
its uncertainty, and take a sum of this mean and a doubled
uncertainty as the limit. The results are presented in Fig. 4. The
obtained constraints are worse than the ones obtained using
positronium [35], but we note that positronium constrains the
interaction between positrons and electrons which can only be
directly compared with the electron-electron interaction under
the assumption of CPT invariance.
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10�11

10�8

Mass �eV�

g 2e
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4
c

FIG. 4. Constraints (at the 90% confidence level) on the dimen-
sionless coupling constant ge

2g
e
2/(4πh̄c) as a function of the boson

mass. The dashed line and dark gray fill shows the constraint for
electrons from Ref. [35]. The dotted line and light gray fill show
the constraint derived from analysis of positronium, also discussed
in [35]. The solid line and medium gray fill shows the constraint
from a comparison between theory and experiment for the 23S1-23P

transition frequency in He.
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In conclusion, by comparing the results of precision spec-
troscopic measurements in 4He with theoretical calculations
of the corresponding energy intervals, we establish constraints
on possible exotic interactions that could arise due to the
exchange of bosonic fields, as introduced in the theoretical
framework of Refs. [1,2]. We point out an inconsistency of
the operator definitions in Ref. [2] and perform the analysis
with the corrected operators. We improve constraints on the
strength of some of the exotic interactions by two orders of
magnitude and constrain others for the first time. We expect
He spectroscopy to become an even more sensitive probe
of exotic electron-electron interactions as atomic theory and
experimentation become more precise.
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APPENDIX A: ANALYSIS OF THE EXPERIMENTAL
AND THEORETICAL DATA

Determination of the constraints on the exotic spin-
dependent interactions between two electrons in helium-4
requires comparison of experimental and theoretical data.
Particularly, uncertainty of the data needs to be considered to
constrain such interactions at a given acceptance level (here,
90%). In our approach, for fine-structure considerations, where
we use only one transition, the quantity �E is given by

�E = max{|μ + L|,|μ − L|}, (A1)

where μ is the mean difference between theoretical and
experimental transition energies and L is determined in such
a way that

0.9 =
∫ +L

−L

1√
2πσ

e−(x−μ)2/(2σ 2)dx, (A2)

where σ is the resultant uncertainty, originating from theo-
retical (σth) and experimental (σexpt) uncertainties combined
in quadrature, σ 2 = σ 2

th + σ 2
expt. This method was used for the

potentials V3, V4, and V8.
In the case of V2 potential, we use all the values of

differences between experimental and theoretical transition
energies between states 23S and 23P as �E, as described in
the paper. We obtain a function ge

2g
e
2/(4πh̄c)(m0), along with

the uncertainty, separately for every transition. We calculate
the weighted mean of these with its uncertainty, and take a

sum of this mean and a doubled uncertainty as the limit. This
sum is our final constraint ge

2g
e
2/(4πh̄c)(m0).

It should be noted that the method used to determined
constraints for the ge

2g
e
2/(4πh̄c) could be also used to determine

constraints for the potentials V3, V4, and V8. In fact constraints
obtained this way are twice more stringent than the ones plotted
in Figs. 1– 3; however, we do not use them, as they include a
systematic error due to the shifts from a distant neighboring
resonance (see discussion in the article).

APPENDIX B: POTENTIALS IN
POSITION REPRESENTATION

The interaction potentials presented in Eqs. (4)–(7) differ
from their counterparts presented in Ref. [2]. Here, we show
derivation of the potentials used for our calculations and
explain the source of the difference between the ones presented
in Ref. [2].

Let us consider an interaction between two electrons
mediated by a light boson. A corresponding Feynman diagram
is shown in Fig. 5, where p1,i and p1,f are initial and final
momenta of the first electron (p2,i and p2,f are analogously
initial and final momenta of the second electron) and q is the
momentum of the light interacting boson. We may describe this
interaction in the center-of-mass frame using just two vectors

P = 1
2 (p1,f + p1,i), (B1)

q = p1,f − p1,i . (B2)

In their paper [2], Dobrescu and Mocioiu construct 16
independent, rotationally invariant scalars consisting of the
vectors P,q,s1,s2, where s1,s2 are the spins of the first and
second electrons, respectively. These scalars are operators in
momentum representation (momentum operators are multipli-
cation operators). Due to the focus of this paper, we consider
only four of them that are spin dependent, symmetric with
respect to a permutation of identical fermions, and invariant
under spatial inversion and time reversal. In natural units
(c = h̄ = 1), they take the forms

O2 = s1 · s2, (B3)

O3 = 1

m2
e

(s1 · q) (s2 · q), (B4)

O4 = i

2m2
e

(s1 + s2) · (P × q), (B5)

O8 = 1

m2
e

(s1 · P) (s2 · P), (B6)

q
p1,f p2,f

p1,i p2,i

FIG. 5. Feynman diagram of an interaction between two electrons
mediated by a light boson.
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where me is an electron mass. Note that iq, rather than q, is a
Hermitian operator, which is why the O4 operator [Eq. (B5)],
linear in q, is imaginary.

In Sec. 3 of Ref. [2], the operators O2, O3, O4, and O8

are converted into potentials by making a Fourier transform
from q to r12 = r1 − r2 (we introduce here a slightly different
notation than the original one). Note that this is a mixed
representation as the authors still keep v = P/me as a variable,
rather than an operator [see Eq. (3.2) in Ref. [2]]. In the
position representation, all expressions which include v should
be written in terms of an operator v̂, which is related to a
gradient.

Let us consider a potential of the form PV (r12)

〈ψf (r1,r2)|PV (r12)|ψi(r1,r2)〉
= 1

2 〈ψf (r1,r2)|p1,f V (r12) + V (r12)p1,i |ψi(r1,r2)〉
= 1

2 〈ψf (r1,r2)|p̂1V (r12) + V (r12)p̂1|ψi(r1,r2)〉
= 1

2 〈ψf (r1,r2)|[p̂1,V (r12)]+|ψi(r1,r2)〉, (B7)

where |ψi(r1,r2)〉 and |ψf (r1,r2)〉 are the initial and final states
of the considered system, respectively, and p̂1 is the momentum
operator of the first electron. Omitting this step, as in Ref. [2],
results in mixed representation of nonstatic potentials, where
v is a variable rather than an operator.

Having this in mind, we perform the Fourier transform in
order to go from the momentum representation of the potentials
to their position representation:

Ṽi(r12,p12) = −
∫

d3q

(2π )3
eiqr12P(q2)Oi(q,P), (B8)

where P(q2) is a propagator. We are interested in Lorentz
invariant exotic interactions communicated by a single boson
with mass m0, which implies a propagator of the form [2,56]

P(q2) = − 1

q2 + m2
0

. (B9)

Useful formulas for these Fourier transforms may be found in
Appendix B of Ref. [2].

As an example we will derive the position-representation
form of the V4 potential. We begin with the momentum-
representation form in the natural units [Eq. (B5)]. By
performing Fourier transform we obtain

Ṽ4 =
∫

d3q

(2π )3
eiqr12

O4

q2 + m2
0

(B10)

= i

2m2
e

(s1 + s2) ·
(

P ×
∫

d3q

(2π )3
eiqr12

q

q2 + m2
0

)

= − 1

8πm2
e

(s1 + s2) ·
(

P × r12

r3
12

)
(1 + m0r12)e−m0r12 .

Now let us apply similar reasoning as in Eq. (B7), but
for the operator P × r12V (r12). The j th component of this
operator matrix element will be (using the Einstein summation
convention):

[〈ψf (r1,r2)|P × r12V (r12)|ψi(r1,r2)〉]j = {
1
2 〈ψf (r1,r2)|(p1,f + p1,i) × [r12V (r12)]|ψi(r1,r2)〉}

j

= 1
2εjkl〈ψf (r1,r2)|(pk

1,f + pk
1,i

)
rl

12V (r12)|ψi(r1,r2)〉
= 1

2εjkl

〈
ψf (r1,r2)

∣∣[pk
1r

l
12V (r12) + V (r12)rl

12p
k
1

]∣∣ψi(r1,r2)
〉

= 1
2εjkl

〈
ψf (r1,r2)

∣∣[pk
1r

l
12V (r12) + V (r12)pk

1r
l
12

]∣∣ψi(r1,r2)
〉

= 1
2εjkl〈ψf (r1,r2)

∣∣[pk
1r

l
12,V (r12)

]
+
∣∣ψi(r1,r2)〉

= 1
2 〈ψf (r1,r2)|[(p1 × r12)j ,V (r12)]+|ψi(r1,r2)〉,

where we have used the fact that εjklr
kpl = εjklp

lrk +
iεjklδ

kl = εjklp
lrk . These calculations were performed in the

center-of-mass frame of the two particles. We can convert
the obtained equations to the atom center-of-mass frame
by substituting p1 → p1 − 1

2 (p1 + p2) = 1
2 (p1 − p2) = 1

2 p12.
When we insert results of these calculations into Eq. (B10),
we get

Ṽ4 = − 1

16πm2
e

(s1 + s2) ·
[

p12 × r12,
1 + m0r12

r3
12

e−m0r12

]
+
.

This form of the potential is used to calculate the contribution
of the V4 interaction to the helium energy levels. The last
remaining steps are introducing the coupling constant, writing
momenta as a differential operators, and inserting physical
constants c, h̄, me, and the reduced Compton wavelength of

the interaction boson λ = h̄/m0c. These steps result in Eq. (6)
of the paper.

As a final remark, the framework introduced to deal with
exotic potentials by Dobrescu and Mocioiu in Ref. [2] works
only in the low-mass limit of the interacting boson. However,
as we are interested in bosons with atomic-scale Compton
wavelengths, we can safely treat this framework as accurate.

APPENDIX C: REDUCED FORM OF V4 POTENTIAL

Performing numerical calculation of V4 matrix elements
is tedious due to the potential’s complexity. However, we
may greatly simplify the integration by using the reduced
matrix elements. As shown in the previous appendix, this
potential can be written as V4 = S · [p12 × r12,f (r)]+, where
S = s1 + s2 and f (r) is the spatial part of the potential
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with appropriate constants. One can write p12 = −ih̄∇r12 , and then ∇r12f (r12) = e12∂r12f (r12). We see that when a gradient in
the commutator operates on f (r), we get −i(e12 × e12)∂r12f (r12) = 0. We conclude that V4 may be written as

V4 = S · [p12 × r12,f (r12)]+ = 2f (r12)S · (p12 × r12) = −2f (r12)S · (r12 × p12), (C1)

where we have used the fact that (p12 × r12)i = εijkp
j

12r
k
12 = εijkr

k
12p

j

12 = −(r12 × p12)i . The expectation value of this operator,
needed to get �Uab,i(m0), can be obtained using reduced matrix elements. For the state |JMSL〉 = |JM11〉 we have

〈JM11|V4|JM11〉 = −
{
J 1 1
1 1 1

}
〈S‖S‖S〉S=1〈L‖f (r12)r12 × p12‖L〉L=1 = J (J + 1) − 4

2
√

6
〈1‖f (r12)r12 × p12‖1〉, (C2)

where we have introduced the 6j symbols [57,58] and used the fact that 〈S‖S‖S〉 = √
S(S + 1)(2S + 1). Calculating the

remaining reduced matrix element yields

〈JM11|V4|JM11〉 = 1
2 [J (J + 1) − 4]〈L|f (r12)(1 − D12 − D21)|L〉L=1, (C3)

where

Djk = irj sin θj

[
sin(φj − φk)

(
sin θk

∂

∂rk

+ cos θk

rk

∂

∂θk

)
− cos(φj − φk)

1

rk sin θk

∂

∂φk

]
(C4)

and |L = 1〉 is a state represented by the first wave function in Eq. (10). This result was used to plot Fig. 2.
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