
PHYSICAL REVIEW A 95, 032504 (2017)

Isotope shifts and transition frequencies for the S and P states of lithium:
Bethe logarithms and second-order relativistic recoil

L. M. Wang,1 Chun Li,2 Z.-C. Yan,3,4 and G. W. F. Drake5

1Department of Physics, Henan Normal University, Xinxiang, Henan 453007, People’s Republic of China
2Department of Mathematics, Nanjing University, Nanjing 210093, China

3Department of Physics, University of New Brunswick, Fredericton, New Brunswick, Canada E3B 5A3
4State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, Wuhan Institute of Physics and Mathematics,

Chinese Academy of Sciences, Wuhan 430071, China
and Center for Cold Atom Physics, Chinese Academy of Sciences, Wuhan 430071, China

5Department of Physics, University of Windsor, Windsor, Ontario, Canada N9B 3P4
(Received 30 January 2017; published 17 March 2017)

Isotope shifts and total transition frequencies are calculated for the 2 2S -3 2S transition of the lithium isotopes
6Li, 7Li, 8Li, 9Li, and the halo nucleus 11Li. The accuracy is improved for previously calculated relativistic and
quantum electrodynamic corrections, and in particular a disagreement for the Bethe logarithm is resolved for the
ground 2S state. Our previous result is confirmed for the 2 2

P state. We use the pseudostate expansion method
to perform the sum over virtual intermediate states. Results for the second-order relativistic recoil term of order
α2(μ/M)2 Ry are shown to make a significant contribution relative to the theoretical uncertainty, but because of
accidental cancellations the final result for the isotope shift is nearly unchanged. However, the spin-orbit term
makes an unexpectedly large contribution to the splitting isotope shift (SIS) for the 2 2

P1/2 -2 2
P3/2 fine structure,

increasing the theoretical value for the 6Li -7Li isotopes to 0.556 31(7) ± 0.001 MHz. A comparison is made with
high-precision measurements and other calculations for the SIS and for the total 2 2S -3 2S transition frequency.

DOI: 10.1103/PhysRevA.95.032504

I. INTRODUCTION

The isotope shift method is well established as an effective
method for the accurate determination of relative nuclear sizes
for different isotopes of light atomic systems such as helium
and lithium [1]. The method was proposed by Drake [2], and
early applications were made to isotope shifts in 3He -4He [3]
and 6Li -7Li [4] (see also Ref. [5] for a recent review). The
method relies upon accurate and reliable calculations of the
mass-dependent parts of the isotope shift so that the rms
nuclear radius can be determined from the residual difference
between theory and experiment. The method has been made
possible by recent advances in calculations for two- and
three-electron atomic systems such as helium and lithium.
Essentially exact calculations are now possible for all practical
purposes for the nonrelativistic energies and leading relativistic
and quantum electrodynamic corrections. As a consequence,
for example, comparisons with experiment for the hyperfine
structure and isotope shift can be used to probe the properties
of the nucleus and provide constraints on models for nuclear
structure.

One of the most difficult quantities to calculate is the
Bethe logarithm part of the quantum electrodynamic (QED)
shift (Lamb shift) arising from the emission and reabsorption
of virtual photons. Previous work resulted in a significant
disagreement in value of the Bethe logarithm for the ground
2S state of lithium [6,7]. The purpose of the present paper
is to provide results of improved accuracy for this quantity
in order to resolve the discrepancy. We also provide results
for the second-order relativistic recoil corrections of order
α2(μ/M)2 Ry, where α is the fine-structure constant, and
μ/M = me/(M + me) is the ratio of the reduced electron
mass to the nuclear mass. The result significantly changes the
theoretical isotope shift. A theoretical value is also obtained

for the 2 2S -3 2S transition frequency of lithium and compared
with high-precision experiments.

The remainder of the paper is organized as follows. In
Secs. II and III we briefly outline the calculation of the
nonrelativistic energies, leading-order relativistic corrections,
and the correlated Hylleraas wave functions used. This section
includes the calculation of both the first- and second-order
relativistic recoil corrections of order α2μ/M and α2(μ/M)2

Ry. This part has been extensively discussed in previous
publications, and so the reader is referred to previous work
for further details. Section IV then describes in greater detail
the calculation of the leading-order QED corrections, and in
particular the Bethe logarithm. The results demonstrate that
the variational pseudostate expansion method is capable of
high accuracy for the summation over virtual intermediate
states. The results are presented in Sec. V for both the isotope
shifts and the total transition frequencies. It is shown here that
the second-order relativistic recoil term makes a significant
contribution relative to the theoretical uncertainty, but for the
2 2S -3 2S transition the final result is nearly unchanged due to
accidental cancellation. However, there is no such cancellation
for the 2 2

P1/2 -2 2
P3/2 fine-structure splitting, resulting in a

substantial change in the splitting isotope shift (SIS). Finally,
Sec. VI provides some concluding remarks on the significance
of the results and the need for future work on the QED terms
to reduce the theoretical uncertainties.

II. NONRELATIVISTIC WAVE
FUNCTIONS AND ENERGIES

Our aim throughout is to extract expansion coefficients for
the energy in terms of powers of λ = −μ/M . We begin with
the Schrödinger equation for lithium H�J = EJ �J with the
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TABLE I. Nonrelativistic energy coefficients ε0, ε1, ε2, and ε3 due to mass polarization (specific isotope shift) for 1s22s 2S, 1s23s 2S, and
1s22p 2

P states of lithium. The coefficients ε̃0, ε̃1, ε̃2, and ε̃3 include the additional mass scaling contribution (normal isotope shift) such that
the total energy is E = ε̃0 + λε̃1 + λ2ε̃2 + λ3ε̃3 + · · · in atomic units e2/a0, and λ = −μ/M .

Coefficient 1s22s 2S 1s23s 2S 1s22p 2
P

ε0 −7.478 060 323 910 150(5) −7.354 098 421 444 367(3) −7.410 156 532 652 41(3)
ε1 −0.301 842 780 680 0(1) −0.292 039 841 237 6(5) −0.246 738 645 80(2)
ε2 −1.499 788 835 879(6) −1.385 931 956 9(3) −1.559 764(2)
ε3 −0.381 960 7(3) −0.309 688(4) −0.261 77(3)
ε̃0 −7.478 060 323 910 150(5) −7.354 098 421 444 367(3) −7.410 156 532 652 41(3)
ε̃1 −7.779 903 104 590 2(1) −7.646 138 262 682 0(5) −7.656 895 178 45(2)
ε̃2 −1.801 631 616 559(6) −1.677 971 798 1(3) −1.806 503(2)
ε̃3 −1.881 749 6(3) −1.695 620(4) −1.821 54(3)

nonrelativistic Hamiltonian

H = −1

2

3∑
i=1

∇2
i + λ

3∑
i>j

∇i · ∇j −
3∑

i=1

Z

ri

+
3∑

i>j

1

rij

(1)

in reduced mass atomic units (μ/me)e2/a0 = (1 + λ)e2/a0,
and Z is the nuclear charge. The factor (1 + λ) accounts for
the normal isotope shift. The solution �J is expressed as linear
combinations of antisymmetrized products of the form [8]

φ(r1,r2,r3) = Ar
j1
1 r

j2
2 r

j3
3 r

j12
12 r

j23
23 r

j31
31 e−αr1−βr2−γ r3

×YLM
(	1	2)	12,	3

(r1,r2,r3)χ1, (2)

where YLM
(	1	2)	12,	3

(r1,r2,r3) is a vector-coupled product of
spherical harmonics to form a state of total angular momentum
L and z component M and

χ1 = α(1)β(2)α(3) − β(1)α(2)α(3) (3)

is the spin function with the total spin 1/2, and

A = (1) − (12) − (13) − (23) + (123) + (132) (4)

is the three-particle antisymmetrizer. The quantities ri , i =
1,2,3 are the radial coordinates for the three electrons, and the
rij = |ri − rj | are the interparticle coordinates. As described
previously [9], all terms in Eq. (2) are nominally included such
that

j1 + j2 + j3 + j12 + j23 + j31 � � (5)

and the convergence studied as the integer � is progressively
increased up to � = 15. In addition, the basis set is expanded
into six sectors for S states and seven sectors for P states
with different values of the nonlinear parameters α, β, and
γ in each sector (see [8] for further details), resulting in
basis sets with up to 33 600 terms for the 2 2

P state. We also
performed several calculations with basis sets that included
the second spin function (i.e., with intermediate coupling to
form a triplet state), and found no significant differences in
the final results. All calculations were performed with octuple
precision (approximately 64 decimal digit) arithmetic.

For convenience in extracting the isotope shift for different
isotopes, the nonrelativistic energies were expanded in the
form

E = ε0 + λε1 + λ2ε2 + λ3ε3 + · · · , (6)

where ε0 is the energy for infinite nuclear mass (λ = 0), and
the εi, i = 1,2,3 are calculated by perturbation theory with the
mass polarization operator λ

∑3
i>j ∇i · ∇j as the perturbation.

The calculated εi coefficients are listed in Table I. The ε̃i =
εi + εi−1, i = 1,2,3 include the additional overall multiplying
factor of 1 + λ due to the normal isotope shift, and ε̃0 = ε0.

III. LEADING-ORDER RELATIVISTIC CORRECTIONS

The leading-order relativistic corrections of order α2 Ry,
including the relativistic recoil correction of order (me/M)α2

Ry, are calculated by first-order perturbation theory,

�Erel = 〈�J |Hrel|�J 〉, (7)

where �J is an eigenfunction of the nonrelativistic Hamil-
tonian (1) and Hrel is the relativistic correction operator
defined by

Hrel = B1 + B2 + B4 + B3Z + B3e + Bss + me

M
(�̃2 + �̃3Z)

+ γ

(
2B3Z + 4

3
B3e + 2

3
B3eγ + 2Bss

)
+ γ

me

M
�̃3Z,

(8)

with γ = α/(2π ) − 0.328 47(α/π )2 + · · · . The terms con-
taining γ are the corrections due to the electron anomalous
magnetic moment. In the above equation,

B1 = −α2

8

(∇4
1 + ∇4

2 + ∇4
3

)
, (9)

B2 = α2

2

3∑
i>j

[
1

rij

∇i · ∇j + 1

r3
ij

rij · (rij · ∇i)∇j

]
, (10)

B4 = πα2

⎡
⎣Z

2

3∑
i=1

δ(ri) −
3∑

i>j

(
1 + 8

3
si · sj

)
δ(rij )

⎤
⎦, (11)

B3Z = Zα2

2

3∑
i=1

1

r3
i

ri × pi · si , (12)

B3e = α2

2

3∑
i �=j

1

r3
ij

rji × pi · (si + 2sj ), (13)
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Bss = α2
3∑

i>j

[
1

r3
ij

(si · sj ) − 3

r5
ij

(rij · si)(rij · sj )

]
, (14)

�̃2 = iZα2

2

3∑
j=1

[
1

rj

p · ∇j + 1

r3
j

rj · (rj · p)∇j

]
, (15)

�̃3z = Zα2
3∑

i=1

1

r3
i

ri × p · si , (16)

B3eγ = α2

2

3∑
i �=j

1

r3
ij

rji × pi · (si − sj ), (17)

with p = p1 + p2 + p3. These operators can be interpreted
as follows. B1 is the correction due to the variation of
mass with velocity, B2 is the correction to the interaction
between electrons due to retardation effect, B4 is the contact
interactions between the electron and the nucleus and between
the electrons, which is also named the Darwin term, B3Z,
B3e, and Bss are, respectively, the spin-orbit, spin-other-orbit,
and spin-spin interactions due to magnetic dipole moments.
Bss does not contribute for spin-1/2 states. The operators
�̃2 and �̃3Z associated with me/M in (8) are relativistic
recoil effects coming from the transformation of the Breit
interaction from inertial coordinates to center-of-mass plus
relative coordinates [10].

The expectation values of the leading-order relativistic
correction operators (Breit operators) are calculated with high
precision nonrelativistic wave functions as described in our
previous work [8,11]. Since the basis sets for these wave
functions contain up to 30 000 terms, it was necessary to invoke
programs with parallel processing to calculate the expectation
values of the various relativistic correction operators. The
computational methods to evaluate the matrix elements of
these operators are described by Yan and Drake [9] and
Yan [12]. With careful programming, the matrix elements can
be calculated to enough accuracy by using these methods,
especially for singular cases such as 〈r−2

ij 〉, 〈r−3
ij 〉, and 〈r−3

i 〉.
Additionally, to improve the convergence of the expectation
values of the operators δ(ri) and δ(rij ), we used Drachman’s
global operator method [13] in the calculations of the matrix
elements. The main idea of Drachman’s method is the use of
the two identities

〈ψ |δ(ri)|ψ〉 = − 1

π
〈ψ | 1

ri

(Vd − E)|ψ〉

− 1

2π

N∑
s=1

〈∇sψ | 1

ri

|∇sψ〉, (18)

〈ψ |δ(rij )|ψ〉 = − 1

2π
〈ψ | 1

rij

(Vd − E)|ψ〉

− 1

4π

N∑
s=1

〈∇sψ | 1

rij

|∇sψ〉, (19)

where E and ψ are the energy and wave function of the state
of interest, and Vd = −∑N

i=1
Z
ri

+ ∑
i>j

1
rij

− μ

M

∑
i>j ∇i ·

∇j . For B1, the following identity is used to improve the

convergence of the expectation value:

〈ψ |B1|ψ〉 = α2

4

∑
i>j

〈
p2

i ψ
∣∣p2

jψ
〉 − α2

2
〈ψ |(E − V )2|ψ〉

− α2

2

μ

M
〈ψ |(E − V )

∑
i>j

∇i · ∇j

+
∑
i>j

∇i · ∇j (E − V )|ψ〉

− α2

2

( μ

M

)2
〈ψ |

⎛
⎝∑

i>j

∇i · ∇j

⎞
⎠

2

|ψ〉 (20)

with V = −∑N
i=1

Z
ri

+ ∑
i>j

1
rij

. For the case of finite nuclear
mass, we included the last term in Eq. (20), which is order
of ( μ

M
)2. The expectation values of the various relativistic

correction operators are listed in Tables II and III for the S

and P states respectively. The first-order mass polarization
coefficients of these operators, except for B1, are calculated by
perturbation methods [14]. For B1, the first- and second-order
mass polarization coefficients are calculated indirectly by
fitting a quadratic polynomial to values of 〈B1〉 for μ/M = 0,
(μ/M)7Li, and 2(μ/M)7Li. The results are also listed in
Tables II and III.

Finite mass and relativistic recoil corrections

Our objective is to include finite mass corrections of order
α2λ and α2λ2 Ry. Each term Bi in the Breit interaction (8) has a
mass polarization expansion due to the perturbing effect of the
mass polarization operator λ

∑
i>j ∇i · ∇j in the Schrödinger

Hamiltonian (1). The result is a perturbation expansion of the
form

Bi(λ) = B
(0)
i + λB

(1)
i + λ2B

(2)
i + · · · . (21)

In addition, each term B
(k)
i has a mass scaling contribution of

the form

B
(k)
i (λ) = (1 + λ)nB(k)

i (0)

=
(

1 + nλ + n(n − 1)

2
λ2 + · · ·

)
B

(k)
i (0), (22)

where n = 4 for B1 and n = 3 for all the other terms, according
to their dependence on inverse powers of r . Combining the two
expansions results in the total mass dependence

Bi(λ) = B
(0)
i (0) + [

B
(1)
i (0) + nB

(0)
i (0)

]
λ

+
[
B

(2)
i (0) + nB

(1)
i (0) + n(n − 1)

2
B

(0)
i (0)

]
λ2 + · · · .

(23)

The coefficients of λ and λ2 will be referred to as the first-
and second-order relativistic recoil terms respectively. The one
additional consideration is that the factor me/M multiplying
the terms �̃2 + �̃3Z in Eq. (8) is equivalent to

me

M
= − λ

1 + λ
(24)
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TABLE II. Total Breit interaction expansion coefficients B (0), B̃ (1), and B̃ (2) in powers of λ = −μ/M for 1s22s 2S and 1s23s 2S states of
lithium. The coefficients include the mass-scaling corrections as shown in Eq. (22) such that the total matrix element for each operator is of the
form Bi = B

(0)
i + λB̃

(1)
i + λ2B̃

(2)
i , in atomic units of 2R∞.

Operator B
(0)
i B̃

(1)
i B̃

(2)
i

1s22s 2S1/2

B1/α
2 −78.556 122 8(1) −319.371 572(3) −538.499(8)

B2/α
2 −0.435 597 832 4(3) −4.383 945 07(1) −11.362 3(5)

�̃2/α
2 −130.915 112 22(4) −304.443 028 70(9)∑

i〈δ(ri)〉 13.842 610 859(2) 42.012 422 9(7) 47.988(9)∑
i>j 〈δ(rij )〉 0.544 324 632 88(5) 1.550 966 3(4) 1.80(2)

Q 0.021 766 3(1) −0.064 215 17(5)
Q1 −24.534 879(2)

1s23s 2S1/2

B1/α
2 −77.857 416(1) −316.508 278 1(2) −531.818(8)

B2/α
2 −0.429 908 605(3) −4.212 140 20(1) −10.776 219(1)

�̃2/α
2 −129.433 834 41(8) −299.347 561 89(7)∑

i〈δ(ri)〉 13.736 502 928(4) 41.697 404 8(5) 47.512(7)∑
i>j 〈δ(rij )〉 0.536 168 417 8(2) 1.530 101 39(2) 1.778(1)

Q 0.015 769 6(5) −0.083 653(2)
Q1 −24.345 861(1)

and so only the λ0 and λ1 terms in (23) should be kept, with
n = 3 and 1/(1 + λ) = 1 − λ + · · · . The overall expansion is
thus

me

M
�̃2 = −λ�̃

(0)
2 + λ2

(
�̃

(1)
2 + 2�̃

(0)
2 + · · · ) (25)

and similarly for �̃3Z.

IV. LEADING-ORDER QED CORRECTIONS

As discussed in detail in previous papers [1,15], the QED
contribution to the energy, and its finite mass correction, can
be expressed in the form

EQED = EL,1 + EM,1 + ER,1 + EL,2, (26)

where EL,1 is the mass-independent part of the electron-
nucleus Lamb shift (the Kabir-Salpeter term [16]), EM,1

contains mass scaling and mass polarization corrections,
ER,1 contains recoil corrections (including radiative recoil),
and EL,2 is the electron-electron term originally obtained
by Araki [17] and Sucher [18]. We are concerned here
primarily with the terms EL,1 and EM,1. With the notation
〈∑i δ(ri)〉 = 〈∑i δ(ri)〉(0) + λ〈∑i δ(ri)〉(1) + · · · to express
the mass dependence of this and other similar matrix elements,
they are given by

EL,1 = 4Zα3〈∑iδ(ri)〉(0)

3

{
ln(Zα)−2 − β(n 2L) + 19

30

+ (3παZ)0.765 405 577

+ α

π
[0.404 17 − (3αZ/4)21.556 85]

+ (Zα)2

[
−3

4
ln2(Zα)−2 + C61(1s2 nL) ln(Zα)−2

+ C60(1s2 nL)

]}
, (27)

EM,1 = μ〈∑iδ(ri)〉(1)

M〈∑iδ(ri)〉(0) EL,1

+ 4Zα3μ〈∑iδ(ri)〉(0)

3M
[1 − �βMP(n 2L)], (28)

and

ER,1 = 4Z2α3μ〈∑iδ(ri)〉(0)

3M

[
1

4
ln(Zα)−2 − 2β(n 2L) − 1

12

− 7

4
a(1s2 nL) − 3

4
(πα)1.364 49

+ 3

4
πZαD50(1s2 nL) + 1

2
α2Z ln2(Zα)−2

]
. (29)

These terms closely resemble the corresponding terms in the
hydrogenic Lamb shift [19], except that an overall multiplying
factor of 〈δ(r)〉 = Z3δL,0/(πn3) for the hydrogenic case is
replaced by the correct expectation value 〈∑N

j=1 δ(rj )〉 for the
multielectron case, summed over the N electrons. The term
a(1s2 nL) corresponds to a well-known term in the hydrogenic
Lamb shift. Its three-electron generalization is [20,21]

a(1s2 nL) = 2Q1

〈∑iδ(ri)〉(0) + 2 ln Z − 3, (30)

where

Q
(0)
1 = 1

4π
lim
ε→0

∑
i

〈
r−3
i (ε) + 4π (γeu + ln ε)δ(ri)

〉
(31)

and γeu is Euler’s constant. The residual state dependence
due to other terms such as the Bethe logarithm discussed
below is then relatively weak. The state-dependent coefficients
C61(1s2 nL), C60(1s2 nL), and D50(1s2 nL) are approximated
by the generic formula [20]

X(1s2 nL) = 2X(1s) + X(nL)/n3

2 + δL,0/n3
, (32)
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TABLE III. Total Breit interaction expansion coefficients B (0), B̃ (1), and B̃ (2) in powers of λ = −μ/M for the 1s22p 2
P1/2 state of lithium.

The spin-dependent terms B3Z , B3e, and B3eγ differ by a factor of −1/2 for the 1s22p 2
P3/2 state. The coefficients include the mass-scaling

corrections as shown in Eq. (22) such that the total matrix element for each operator is of the form Bi = B
(0)
i + λB̃

(1)
i + λ2B̃

(2)
i , in atomic units

of 2R∞.

Operator B
(0)
i B̃

(1)
i B̃

(2)
i

1s22p 2
P1/2

B1/α
2 −77.505 616 73(9) −315.883 643(9) −532.21(8)

B2/α
2 −0.396 425 741 7(4) −4.190 763(1) −11.2(6)

�̃2/α
2 −128.614 890 332(1) −300.579 56(3)∑

i〈δ(ri)〉 13.676 197 050 58(6) 41.676 52(2) 47.6(2)∑
i>j 〈δ(rij )〉 0.532 274 099 91(4) 3.126 917(5) 7.96(6)

Q 0.023 050 7(1) −0.081 72(4)
Q1 −24.232 722 36(3)
B3e/α

2 0.075 396 972 7(30) −0.023 177 7(1) 0.14(3)
B3Z/α2 −0.094 459 765 48(4) 0.000 531(1) 20.37(5)
B3eγ /α2 0.046 541 795 29(7) −0.025 148(2)
�̃3Z/α2 0.033 787 593(4) −0.154 402(9)

where X(1s) and X(nL) are the corresponding hydrogenic
coefficients [19] evaluated directly for L = 0, and in a fully
screened hydrogenic approximation for L > 0. The above
formula leaves the coefficients unchanged if they are in fact
state independent (other than the overall factor of 1/n3), and
it reproduces the leading term in a 1/Z expansion if the
coefficients are state dependent.

The electron-electron QED shift EL,2 can similarly be
separated into mass-independent and mass dependent parts
according to

EL,2 = E
(0)
L,2 + μ

M
E

(1)
L,2 + · · · , (33)

where [17,18,22]

E
(0)
L,2 =α3

(
14

3
ln α+ 164

15
−πα ln α

) ∑
i>j

〈δ(rij )〉(0)− 14

3
α3Q(0)

(34)

and the mass scaling and mass polarization corrections are

E
(1)
L,2 = α3

(
14

3
ln α + 164

15

)∑
i>j

〈δ(rij )〉(1)

− 14

3
α3

⎛
⎝Q(1) +

∑
i>j

〈δ(rij )〉(0)

⎞
⎠. (35)

Following our notation, the Q(0) term for infinite mass is given
by

Q(0) = 1

4π
lim
ε→0

∑
i>j

〈
r−3
ij (ε) + 4π (γeu + ln ε)δ(rij )

〉
. (36)

The Q(1) term is the correction due to the mass polarization
correction to the wave function and mass scaling. As a
word of explanation, the infinitesimal limiting quantity ε has
dimensions of distance, and so it generates the additional term∑

i>j 〈δ(rij )〉(0) in (35) when distances are rescaled for the
finite mass case according to ε → (μ/me)ε.

The calculations of the leading-order QED corrections
involve the expectation values of the operators

∑
iδ(ri),

∑
i>j δ(rij ), Q and Q1, and the Bethe logarithm. The ex-

pectation values of
∑

iδ(ri),
∑

i>j δ(rij ), and the coefficients

Q(0), Q(1), and Q
(0)
1 can be calculated to high precision, as

shown in Tables II and III; but the coefficients Q(n) and the
Bethe logarithm converge very slowly. We use the variational
pseudostate method to calculate the Bethe logarithm. This
method was discussed by Drake and Goldman [23] for helium
and was used to calculate the Bethe logarithm for lithium
by Yan and Drake [6,24]. Very large exponential parameters
need to be included in the variational basis sets to get good
convergence. But unfortunately, these large parameters make
one subsidiary integral (W function as it called in [25]) used in
the calculation of matrix elements converge very slowly. This
obstacle limited the accuracy of Bethe logarithms of lithium in
the previous implement of the variational method. But it was
overcome recently by Li et al. [26]. In Ref. [26], the subsidiary
integral was expressed in terms of either a finite series or a finite
recursion relation, which are both computationally efficient
and numerically stable. Without the basic integral problem, the
variational basis sets are enlarged to 6809 terms for 1s22s 2S
and 1s23s 2S states, and 18 708 terms (including S, P , and
D symmetries) for the 1s22p 2

P state. As a consequence, the
accuracies of the Bethe logarithms and their mass dependent
coefficients for these states are improved significantly. The
results are listed in Table IV and compared with those of other
authors. For the 1s22s 2S state, our result is consistent with and
has a similar accuracy to that calculated recently by Puchalski
and Pachucki [7], and consistent with that calculated by Yan
and Drake [24] in 2003, but inconsistent with that calculated
by Yan et al. [6] in 2008. For 1s23s 2S state, our result is
more accurate than those of others by at least two orders of
magnitude. For 1s22p 2

P state, our result is consistent with
those of others but more accurate by one order of magnitude.

V. RESULTS AND DISCUSSION

A. Isotope shifts

It is conventional to express the total isotope shift for
an atomic transition a → b between isotopes A and A′
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TABLE IV. Bethe logarithms for 1s22s 2S, 1s23s 2S, and 1s22p 2
P states of lithium, expressed in the form β = β (0) + (μ/M)β (1) +

ln(Z2μ/me).

N1 N2 β (0) R(�) β (1) R(�)

1s22s 2S

3910 1452 2.980 833 469 9.587 0.113 790 737 15.526
3910 2445 2.980 923 592 8.791 0.113 793 610 17.772
3910 4109 2.980 937 643 6.414 0.113 801 327 0.372
3910 6809 2.980 941 416 3.724 0.113 809 084 0.995
∞ 2.980 943(1) 0.113 81(1)
Yan et al. [24] 2.980 925(3) 0.113 6(2)
Yan et al. [6] 2.981 06(1) 0.113 05(5)
Puchalski et al. [7] 2.980 944(4) 0.113 81(3)
Stanke et al. [27] 2.980 93

1s23s 2S

3910 2445 2.982 187 350 8.908 0.110 628 587 –0.1989
3910 4109 2.982 209 101 10.29 0.110 549 049 2.372
3910 6809 2.982 210 691 13.68 0.110 520 286 2.764
∞ 2.982 210(1) 0.110 50(2)
Yan et al. [24] 2.982 40(4) 0.111(1)
Yan et al. [6] 2.982 36(6) 0.110 5(3)
Stanke et al. [27] 2.982 12

1s22p 2
P

4172 6070 2.982 243 400 5.902 0.111 183 023 3.726
4172 10735 2.982 549 536 6.435 0.111 118 489 6.697
4172 18708 2.982 565 711 7.142 0.111 109 241 6.978
∞ 2.982 568(3) 0.111 107(2)
Yan et al. [6] 2.982 57(6) 0.111 08(5)
Puchalski et al. [7] 2.982 58(7) 0.111 3(5)

in the form

δν
A,A′
a→b = δν

A,A′
a→b(0) + Ca→b

[(
r̄A′
c

)2 − (
r̄A
c

)2]
, (37)

where δν
A,A′
a→b(0) is the mass-dependent part coming from

atomic structure, (r̄A
c )2 is the rms nuclear charge radius for

isotope A, and Ca→b is a constant determined primarily by the
change in electron density at the nucleus with small corrections
due to finite mass and relativistic effects (see Ref. [15] for a
detailed discussion).

The primary motivation for this work is to improve the
accuracy of the mass-dependent part δν

A,A′
a→b(0) from atomic

structure. As emphasized previously [2–4], the accuracy of
δν

A,A′
a→b(0) is much higher than for the atomic energies them-

selves because the mass-independent part of the energy cancels
when taking differences between isotopes. For example, the
leading QED uncertainties for the total energy come from
terms of order α4 Ry, but these cancel, leaving much smaller
uncertainties of order α4λ Ry ∼ 20 kHz.

The various calculated contributions to δν
A,A′
a→b(0) for the Li

isotopes relative to 6Li are summarized in Table V, with the
assumed nuclear masses as listed at the head of each column.
There is close agreement for all entries with the previous
calculations of Puchalski and Pachucki [15,31]. The main
potentially important difference is the additional contribution
from the second-order relativistic recoil term of order α2λ2.
As shown in Table VI for the 6Li -7Li isotope shift, there are
individual contributions as large as −5.1 kHz from the λ2B

(2)
1

term. However, there is a great deal of accidental cancellation,

leaving a net contribution of only 0.12 kHz. The changes are
more than an order of magnitude smaller than the uncertainties
in the measured isotope shifts (±34 kHz or larger [15]), and
so they do not significantly change the previously obtained
nuclear charge radii. The theoretical uncertainty comes almost
entirely from the estimated radiative recoil contribution of
order α4λ. The uncertainty is taken to be 25% of this term.

B. Total 2 2 S -3 2 S transition frequency

We summarize in Table VII the contributions to the total
2 2S -3 2S transition frequency, for which there are earlier
calculations [6,31] and high precision measurements [32,33]
available for comparison. Just as for the isotope shift, the
second-order relativistic recoil term of order λ2α2 is abnor-
mally small because the positive contribution of 19.5 kHz from
the λ2B

(2)
1 term is almost exactly canceled by the other con-

tributions, leaving a net contribution of only −0.44(22) kHz
for 6Li. The higher accuracy of the relativistic corrections
in the present work now brings our results into essentially
exact agreement with those of Puchalski and Pachucki [31],
but the uncertainties due to the QED terms of order α4 and
α5 Ry make the final results much less accurate (±18 MHz)
than the measurements (±0.09 MHz). Further progress on the
theoretical side must await calculations of these higher-order
QED terms. The main significance of the results in Table VII
is that all other lower-order contributions are known to
sufficiently high accuracy that an experimental value for the
higher-order terms is clearly defined.
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TABLE V. Theoretical isotope shifts of ALi (A = 7, 8, 9, 11) relative to 6Li in the 2 2S1/2 → 3 2S 1/2 transition. Contributions of the

mass-dependent terms to δν
A,A′
2s→3s with A = 6Li are calculated using the masses listed in the first row. The mass of the reference isotope 6Li is

6.015 122 794(16) u [28]. The coefficient CA,A′ for the field shift is in units of MHz/fm2. All other values are in MHz.

Term 7Li 8Li 9Li 11Li

M (amu) 7.016 003 4256(45) [29] 8.022 486 24(12) [30] 9.026 790 20(21) [30] 11.043 723 61(69) [30]
λa 11 454.655 1(2) 20 090.837 3(9) 26 788.479 1(13) 36 559.175 4(27)
λ2 −1.794 03 −2.964 4 −3.764 16 −4.761 89
λ3 0.000 34 0.000 54 0.000 65 0.000 78
α2λ 0.017 20(5) 0.030 2(1) 0.040 2(1) 0.054 9(2)
α2λ2 0.000 12(6) 0.000 20(10) 0.000 25(12) 0.000 31(15)
α3λ −0.050 08 −0.087 84(1) −0.117 12(1) −0.159 84(1)
α4λ −0.008 4(28) −0.014 7(50) −0.019 6(66) −0.026 8(90)
νpol 0.039(4)b

Total 11 452.820 4(28) 20 087.801 3(50) 26 784.619 5(66) 36 554.322(9)
11 452.820 7(24)c 20 087.801 9(42)c 26 784.620 2(66)c 36 554.323(9)c

11 452.821 1(28)d 20 087.802 6(50)d 26 784.621 3(67)d 36 554.325(9)d

CA,A′ e −1.571 9(16) −1.571 9(16) −1.572 0(16) −1.570 2(16)

aUncertainties for this line are dominated by the nuclear mass uncertainty.
bNuclear polarization correction calculated by Puchalski and Pachucki [15].
cCalculation by Puchalski and Pachucki [31].
dCalculation by Yan and Drake [15].
eUncertainty in CA,A′ is from the known error in the corresponding relativistic correction for hydrogenic systems based on the behavior of the
Dirac wave function at the origin.

C. 2 2 S1/2 -2 2 PJ transition frequency and fine structure

The 2 2S1/2 -2 2
PJ transitions (the D lines) and fine structure

have recently been calculated to high precision by Puchalski
and co-workers [7,34], including corrections of order α4 and
α5 ln(α) Ry, but not the λ2α2 terms evaluated in the present
work. The two sets of results are compared in Table VIII
for the 2 2S1/2 -2 2

PJ centroid (i.e., center of gravity). The
agreement is excellent for all the contributions with the
exception of the leading QED term of order α3 Ry. After
correcting what is evidently a misprint in Ref. [7] there is
a significant discrepancy of 15 MHz between their corrected
value of −8870(8) MHz and our value of −8885(3) MHz.
This discrepancy accounts for most of the difference in the
final transition frequencies quoted in the table. A possible
explanation is that our old value of 2.981 06(1) for the 2 2S
Bethe logarithm was used in Ref. [7] in place of the new value
2.980 943(1).

For the 6Li -7Li isotope shift in the 2 2S1/2 -2 2
PJ transitions

and the fine structure, the λ2α2 term plays a significant role.
As shown in Table IX, it contributes −17.3 ± 2.0 kHz for

TABLE VI. 7Li -6Li isotope shift: contributions to the second-
order relativistic recoil of order λ2α2 Ry for the 3 2S -2 2S transition.
Units are kHz.

Term 2 2S 3 2S 3 2S -2 2S

λ2B
(2)
1 416.022(6) 410.862(6) −5.161(8)

λ2B
(2)
2 8.777 861 8.325 276 −0.452 585(1)

λ2�̃
(1)
2 −235.200 520 −231.263 966 3.936 554

λ2α2π〈δ(rij )〉(2) −4.375(39) −4.314 8(31) 0.060(39)
λ2α2πZ〈δ(ri)〉(2)/2 −174.707(33) −172.972(24) 1.73(4)
Total 10.52(5) 10.636(25) 0.12(6)

J = 1/2 and 6.7 ± 2.0 kHz for J = 3/2. The effect comes
primarily from the spin-orbit term, and so it almost exactly
cancels from the 2 2S1/2 -2 2

PJ centroid. However, it makes
a significant contribution to the fine-structure splitting and
the splitting isotope shift (SIS). Beginning with the fine-
structure splittings, Table X shows the results for 6Li and
7Li. For 6Li as an example, the leading mass-independent
term agrees well with the calculations of Puchalski et al. [7],
but the first-order recoil correction of −2.701 02(7) MHz

TABLE VII. Contributions to the total 2 2S1/2 → 3 2S1/2 transi-
tion frequency. All values are in GHz.

Term 6Li 7Li

Infinite mass 815 630.136 435 815 630.136 435
λ −80.282 635 −68.827 980
λ2 0.006 770 0.004 976
λ3 −0.000 000 93 −0.000 000 59
α2 62.630 04(14) 62.630 04(14)
α2λ −0.000 121 −0.000 103
α2λ2 −0.000 000 4(2) −0.000 000 3(2)
α3 −5.602 8(6) −5.602 8(6)
α3λ 0.000 351 0.000 301
α4 (est.) −0.175(12) −0.175(12)
α5 (est.) 0.013(5) 0.013(5)
(r̄c)2 −0.010 1(3) −0.008 9(2)
(r̄c)2λ 0.000 003 0.000 002
Total 815 606.717(18) 815 618.171(18)
Other theory
Yan et al. [6] 815 606.712(30) 815 618.171(30)
Puchalski et al. [31] 815 606.717(19) 815 618.170(19)
Experiment
Lien et al. [32] 815 606.727 46(18) 815 618.181 45(9)
Sánchez et al. [33] 815 606.727 59(18) 815 618.181 57(18)
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TABLE VIII. Contributions to the total 2 2S1/2 → 2 2
Pcent. tran-

sition frequency centroid for 6Li. All values are in MHz.

Term Present work Puchalski et al. [7]

Infinite mass 446785483.5(1) 446785483.5(1)
λ −73826.577 −73826.6
λ2 −0.267
λ3 0.000
α2 93765.69(4) 93765.1(2)
α2λ 8.57(4) 8.6
α3 −8885.(3) −8870.(8)a

α3λ −0.257 −0.265
α4 −272.(26) −269.(26)
α5 21.(7) 30.(7)
r̄2
c −16.0 −16.0

Total 446796278.(28) 446796306.(28)

aMisprint corrected from −8850.(8) MHz in Ref. [7].

does not agree with their value −2.7861(5) MHz. The
agreement considerably improves when the second-order
recoil correction of −0.090 35(27) is added, but there remain
discrepancies of −5.3(5) kHz for 6Li and 6.6(5) kHz for 7Li.
These discrepancies are small compared with the ±0.09 MHz
uncertainties in the higher-order (mass independent) QED
corrections of order α4 and α5 ln α Ry corrections recently
evaluated by Puchalski and co-workers [34,35], but they are
significant compared with other uncertainties in the calcula-
tion. It is interesting that the large second-order contribution
comes primarily from the λ2B

(2)
3Z term. In fact, because

of accidental cancellation between mass scaling and mass
polarization for the first-order term, λ2B

(2)
3Z is actually larger

than λB
(1)
3Z .

D. The 2 2 P1/2 -2 2 P3/2 splitting iosotope shift (SIS)

As pointed out previously for the cases of Li+ [4]
and Li [20], the SIS provides a valuable check of the
consistency of experimental data because on the theoretical
side it is insensitive to higher-order QED corrections or the
finite nuclear size, and so a reliable theoretical value can
be calculated for comparison. In particular, the ±90-kHz
uncertainties [34,35] in the higher-order QED corrections
shown in Table X cancel from the SIS because they are

mass independent, leaving a theoretical prediction with an
estimated uncertainty of less than ±1 kHz. Results for the
SIS and comparisons with experiment are shown in Table XI.
Our results disagree with those of Puchalski et al. [7] largely
because of the second-order recoil terms included in the
present work, and the degree to which they may have been
partially included in Ref. [7]. For the experimental values, the
older measurements shown in Table X are in poor agreement
with each other or with theory. The situation is considerably
improved with the two most recent measurements [36,42].
The smaller value of 0.531 ± 0.024 MHz [42] includes the
effects of interference between unresolved lines and laser
polarization, and so should be taken in preference. Our older
value of 0.397(9) MHz [6] did not include the hyperfine
mixing correction of 0.146 99 MHz [7]. When this is added,
the result 0.544(9) comes into agreement with the present
work. The present theoretical value 0.556 31(7) MHz has an
additional theoretical uncertainty of approximately ±1 kHz
due to uncalculated higher-order terms of order α4λ Ry.
It is substantially larger than the previous theoretical value
0.5447(6) MHz of Puchalski et al. [7] because of the large
second-order contribution from the λ2B

(2)
3Z spin-orbit term.

VI. CONCLUSIONS

High-precision calculations for lithium and similar atomic
systems, coupled with equally high-precision measurements,
open the way to interesting techniques for measurements
at the interface between atomic and nuclear physics and
tests of fundamental QED theory. However, the calculations
themselves are sufficiently demanding in terms of both mathe-
matical analysis and computational technique that independent
checks by more than one group play an important role. This
paper has achieved our main goal of resolving discrepancies
between our previous results [6,15] and those of Puchalski and
Pachucki [15,31]. We have also verified that the pseudostate
expansion method for calculating the sums over virtual
intermediate states in the Bethe logarithm [6,23,24] is capable
of the same or higher accuracy as obtained by Puchalski
and Pachucki by use of the integral method developed by
Schwartz [43].

For isotope shifts, we have obtained results for the second-
order relativistic recoil term, and shown that, although indi-
vidual contributions are large compared with the other uncer-

TABLE IX. Contributions to the 6Li -7Li isotope shift for the 2 2S1/2 → 2 2
P J transition frequency. The term γ λ is the anomalous magnetic

moment contribution. All values are in MHz.

Term 2 2S1/2 -2 2
P1/2 2 2S1/2 -2 2

P 3/2 Centroid Puchalski et al. [7]

λ 10 533.510 55 10 533.510 55 10 533.510 55(20) 10 533.5105
λ2 0.070 675 0.070 675 0.070 68(3) 0.0707
λ3 0.000 111 0.000 111 0.000 111
α2λ −1.477 640 −1.091 623 −1.220 3(4) −1.2202
α2λ2 −0.017 3(20) 0.006 7(20) −0.001 3(20)
γ λ −0.000 425 0.000 213 0.000 000
α3λ 0.036 8 0.036 8 0.036 8 0.0377(1)
α4λ + · · · −0.010(3) −0.010(3) −0.010(3) −0.011(3)
Total 10 532.112 9(20) 10 532.523 5(20) 10 532.386 6(20) 10 532.388(3)
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TABLE X. Contributions to the 2 2
P1/2 -2 2

P3/2 fine-structure splitting for 6Li and 7Li. BAnom. is the anomalous magnetic moment
contribution. All values are in MHz.

Term 6Li 7Li

Zero-order fine structure α2λ0

B
(0)
3e −39 626.056 4(20) −39 626.056 4(20)

B
(0)
3Z 49 644.804 88(2) 49 644.804 88(2)

B
(0)
Anom. 34.960 394 34.960 394

Total 10 053.708 8(20) 10 053.708 8(20)
Puchalski et al. [7] 10 053.712 6(11) 10 053.712 6(11)

First-order recoil α2λ1

B
(1)
3e −1.111 147(7) −0.952 609(6)

B
(1)
3Z 0.025 45(7) 0.021 82(6)

�̃
(0)
3Z −1.619 790 −1.388 680

B
(1)
Anom. 0.004 469 0.003 832

Total 1st order −2.701 02(7) −2.315 64(6)

Second-order recoil α2λ2

B
(2)
3e −0.000 60(12) −0.000 44(9)

B
(2)
3Z −0.089 07(24) −0.065 47(17)

�̃
(1)
3Z −0.000 6752 −0.000 4962

Total 2nd order −0.090 35(27) −0.066 40(20)
Total 1st + 2nd order −2.791 37(27) −2.382 04(20)
Puchalski et al. [7] −2.786 1(5) −2.388 6(5)
Difference −0.005 3(5) 0.006 6(5)
Higher-order QED + δEfs

a 1.63(5) + 0.15(7) + 0.01217 1.63(5) + 0.15(7) + 0.15916
Total fine structure 10 052.71±0.09a 100 53.27±0.09a

Puchalski and Pachucki [35] 10 052.72±0.09a 100 53.25±0.09a

Experiment
Brown et al. [36] 10 052.779(17) 10 053.310(17)
Brog et al. [37] 10 052.76(24) 10 053.24(22)
Orth et al. [38] 10 053.184(58)
Noble et al. [39] 10 052.964(50) 10 053.119(58)
Walls et al. [40] 10 052.044(91) 10 052.37(11)
Das and Natarajan [41] 10 052.862(41) 10 051.999(41)

aQED corrections and ±0.09 MHz uncertainty of order α4 and α5 ln α Ry, and the hyperfine mixing correction δEfs calculated by Puchalski
and Pachucki [34,35].

TABLE XI. 6Li -7Li isotope shift in the 2 2
P3/2 -2 2

P1/2 finestruc-
ture splitting (SIS). Anom. is the anomalous magnetic moment
contribution. All values are in MHz.

Term Present work Puchalski et al. [7]

α2λ 0.385 38(1) 0.397 5(6)
α2λ2 0.023 94(7)
Anom. 0.000 638
Mixing [7] 0.146 99 0.146 99
Total 0.556 31(7)± 0.001a 0.544 7(1)± 0.001a

Recent Experiment
Sansonetti et al. [42] 0.594(30)
Brown et al. [36] 0.531(24)b

aAdditional uncertainty due to higher-order QED terms of order α4λ

Ry is not included in the calculation.
bIncludes the effects of quantum interference between unresolvable
overlapping lines and laser polarization.

tainties, the final result is nearly unchanged for the 2 2S -3 2S
transition. The remaining uncertainty is still dominated by
QED corrections of order α4λ Ry and higher. Spin-dependent
contributions of this order have recently been calculated by
Puchalski and Pachucki [34] for the fine-structure splittings
of the 2 2

P J states, but the spin-independent part is more
difficult and has not yet been evaluated. Similarly our results
for the total 2 2S -3 2S transition frequency resolve previous
discrepancies, but are less accurate than the measurements by
a factor of about 100 due to the uncalculated QED terms of
order α4 Ry. These will remain important problems for the
future. Recent progress for helium [44] provides an important
indication of what can be achieved for terms of this order.

Finally, our results for the SIS in Table XI show that
the second-order relativistic recoil makes a substantial con-
tribution that significantly shifts the theoretical prediction.
This remains an important consistency check for experimental
measurements of fine-structure splittings and isotope shifts.
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