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Entanglement, a unique quantum resource with no classical counterpart, remains at the heart of quantum
information. The Greenberger-Horne-Zeilinger (GHZ) and W states are two inequivalent classes of multipartite
entangled states which cannot be transformed into each other by means of local operations and classic
communication. In this paper, we present the methods to prepare the GHZ and W states via global controls on a
long-range Ising spin model. For the GHZ state, general solutions are analytically obtained for an arbitrary-size
spin system, while for the W state, we find a standard way to prepare the W state that is analytically illustrated
in three- and four-spin systems and numerically demonstrated for larger-size systems. The number of parameters
required in the numerical search increases only linearly with the size of the system.
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I. INTRODUCTION

Entanglement is one of the most intriguing features of
quantum physics, which remains at the heart of applications
such as quantum computation [1], quantum teleportation
[2], and quantum cryptography [3,4]. Meanwhile, it plays a
crucial role in a variety of phenomena, e.g., the fractional
quantum Hall effect [5] and quantum phase transitions [6].
Therefore, preparation of the entangled states is of significance
in many-particle physics. It is well known that there are
two important and different types of entangled states, which
cannot be transformed into each other under local operations
and classical communication [7], i.e., the Greenberger-Horne-
Zeilinger (GHZ) state [8]

|GHZ〉 = 1√
2

(|000 · · · 0〉 + |111 · · · 1〉) (1)

and the W state [9]

|W 〉 = 1√
n

(|100 · · · 0〉 + |010 · · · 0〉

+ |001 · · · 0〉 + · · · + |000 · · · 1〉). (2)

The study of these two states has attracted much interest
[10], and different methods to prepare these two states have
been proposed recently, e.g. via dissipative preparation of
entangled states [11,12].

One of the most commonly used methods to prepare
entangled states is via quantum circuits, which has been
implemented in experiments on various kinds of quantum
systems, such as nuclear magnetic resonance (NMR) [13], ion
traps [14], and cavity QED [15]. However, this method usually
requires individual addressability of qubits, which makes the
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experiment difficult in large systems with many qubits. To
overcome this problem, one of the practical ways is to employ
global controls that act on all the spins.

The Ising spin model is one of the most ubiquitous in many
physical systems such as optical lattices [16], NMR systems
[17], ion traps [18], and polar molecules [19]. It also plays
an important role in both condensed-matter physics [20] and
quantum information theory [21]. Recently, the study of global
control methods to generate entangled states has attracted a lot
of attention in the Ising-type spin-spin interaction systems
[22–25]. The global control method relaxes the demanding
experimental requirement to address and operate a single spin.

In this paper, we study how to prepare GHZ and W states
on a long-range Ising spin model via global controls. The rest
of this paper is organized as follows. In Sec. II we introduce
the studied spin model under global controls and our quantum
control problem. In Sec. III we present the general solutions
to obtain the GHZ state. In Sec. IV, we establish a standard
way to generate the W state. Finally, a brief summary with a
discussion is presented in Sec. V.

II. LONG-RANGE ISING SPIN MODEL AND
CONTROL PROBLEM

An n-spin long-range Ising spin model has the following
Hamiltonian:

HIsing = Hzz =
n∑

k<m

σ z
k σ z

m, (3)

where σα
k (α = x,y,z) are the spin-1/2 Pauli matrices acting

on the kth qubit. Here, we adopt the following two available
global controls:

Hx =
n∑

k=1

σx
k , Hy =

n∑
k=1

σ
y

k , (4)

i.e., applying transverse magnetic fields on all of the spins
along the x or y direction.

The total time-dependent Hamiltonian is

H (t) = Hzz + f (t)Hx + g(t)Hy, (5)
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where f (t) and g(t) are time-dependent functions. We assume
here that the global fields are strong enough that the pulses
can be regarded as the form of a δ function. This condition is
easily satisfied in some physical systems such as NMR. This
implies that the propagator can be regarded as a product of the
time-evolution operators under Hamiltonians in Eqs. (3) and
(4):

U
(
M,τm,βx

m,βy
m

) =
M∏

m=1

e−iHzzτme−iβx
mHx e−iβ

y
mHy . (6)

Our task is to find a pulse sequence with a set of suitable
parameters {M,τm,βx

m,β
y
m} to maximize the fidelity

F [U ] = ∣∣〈T |U(
M,τm,βx

m,βy
m

)|00 · · · 0〉∣∣. (7)

Here, |T 〉 = |GHZ〉 or |W 〉. In the following sections, let

ZZ(τ ) = e−iτHzz ,

X(β) = e−iβHx ,

Y (β) = e−iβHy . (8)

III. GHZ STATE

In this section, we discuss the cases in odd- and even-spin
systems, respectively.

A. Odd-spin systems

Inspired by the solution in three-spin system [25], we found
the general sequence for preparing the GHZ state in odd-spin
systems as

Y (π/4) − ZZ(π/4) − X(π/4). (9)

We will prove this in the following. A Y (π/4) pulse applied to
the initial state |0 · · · 00〉 yields a uniform superposition:

Y

(
π

4

)
|0 · · · 00〉 = 1√

2n

2n−1∑
k=0

|k〉. (10)

Here, k is a binary number indicating the index of the
basis vector. Any vector from the computational basis is an
eigenvector of the interaction Hamiltonian:

HIsing|k〉 =
{

n(n − 1)

2
− 2s(k)[n − s(k)]

}
|k〉, (11)

where s(k) is number of spin-up spins in the state |k〉.
Therefore,

ZZ

(
π

4

)
Y

(
π

4

)
|0 · · · 00〉

= 1√
2n

2n−1∑
k=0

e−i{ n(n−1)
2 −2s(k)[n−s(k)]} π

4 |k〉

= e−i
n(n−1)π

8
1√
2n

2n−1∑
k=0

is(k)[n−s(k)]|k〉. (12)

Applying X(−π/4) on the GHZ state, we obtain

X

(
−π

4

)
|GHZ〉

= 1
√

2
n+1 [(|0〉 + i|1〉)⊗n + (i|0〉 + |1〉)⊗n]

= 1
√

2
n+1

2n−1∑
k=0

(is(k) + in−s(k))|k〉. (13)

Except for the global phase, the ratio of the coefficient of the
state |k〉 in Eq. (13) to the coefficient of Eq. (12) is a function
of s(k):

f (s(k)) = (is(k) + in−s(k))/is(k)(n−s(k))

= is(k)−s(k)[n−s(k)] + in−s(k)−s(k)[n−s(k)]

= is(k)(1−n+s(k)) + i[1−s(k)][n−s(k)]. (14)

Hence,

f (s(k) + 1) = i[s(k)+1][2−n+s(k)] + is(k)[1−n+s(k)]. (15)

Note that i[1−s(k)][n−s(k)]/i[s(k)+1][2−n+s(k)] = i2[n−2s(k)−1] = 1
when n is odd. Therefore, we have

f (s(k)) = f (s(k) + 1), (16)

which implies that f (s(k)) is independent of s(k) and thus the
state in Eq. (13) is equal to that of Eq. (12) up to an overall
phase. Therefore, the sequence Y (π/4) − ZZ(π/4) − X(π/4)
creates the GHZ state in odd systems.

B. Even-spin systems

For even systems, preparing GHZ states can be regarded as
creating the total spin coherence between the state |00 · · · 0〉
and |11 · · · 1〉 with a specific phase difference [26]. The ZZ

coupling alone is zero coherence, which cannot change the
coherence order of a state. However, the ZZ coupling can be
transformed into Hxx = ∑n

k<m σ x
k σ x

m = e−iHyπ/4Hzze
iHyπ/4,

which is a sum of zero-coherence and double-coherence terms.
With this Hamiltonian, it is more convenient to expand the
initial state as a sum of tensor products of σx’s eigenstates
{|+〉,|−〉}. Let |+〉 = |0〉x and |−〉 = |1〉x , and then |k〉x is the
binary representation in σx’s basis. The initial state can be
expanded as

|00 · · · 0〉 = 1√
2n

(|+〉 + |−〉)⊗n = 1√
2n

2n−1∑
k=0

|k〉x. (17)

Like for Eq. (12), we have

XX

(
π

4

)
|k〉x = e−i

n(n−1)π
8 isx (k)[n−sx (k)]|k〉x, (18)

where sx(k) is the number of plus signs in state |k〉x and
XX(t) = e−iHxx t is the evolution operator under the Hamil-
tonian Hxx . With the same method used in Eq. (16), it can be
proved that isx (k)[n−sx (k)]/[1 + (−1)n−sx (k)in+1] is independent
of sx(k) when n is even. Combining this result with Eqs. (17)
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and (18), regardless of the global phase, we have

XX

(
π

4

)
|00 · · · 0〉

= 1
√

2
n+1

2n−1∑
k=0

[1 + (−1)n−sx (k)in+1]|k〉x

= 1√
2

(|00 · · · 0〉 + in+1|11 · · · 1〉). (19)

This is the GHZ-type state. In order to obtain the exact state
|GHZ〉 in Eq. (1), one needs to further apply a global Z rotation:

Z

(
− (n + 1)π

4n

)
= Y (π/4) − X

(
− (n + 1)π

4n

)
−Y (−π/4). (20)

In addition, as we discussed, the operator XX(t) can be
implemented as Y (π/4) − ZZ(t) − Y (−π/4). Accordingly,
the sequence to prepare the GHZ state in even-spin systems is

Y (π/4) − ZZ(π/4) − X

(
− (n + 1)π

4n

)
− Y (−π/4).

(21)

IV. W STATE

In this section, we study how to generate the W state. Since
the Hamiltonian (3) and the global control Hamiltonians (4) are
symmetric with respect to permutation of the qubits, they can
be block diagonalized under the following symmetry-adapted
basis:

|ϕm〉 = 1√
Cm−1

n

∑
s(k)=m−1

|k〉. (22)

Here, Cm
n is the number of m combinations over n elements;

the sum is taken over all the computational basis states |k〉
with s(k) spin-up spins, m = 1, . . . ,n + 1. The initial state
|0 · · · 00〉 and the target state |W 〉 are within subspace spanned
by basis (22), implying that the calculation can be analyzed in
this subspace. Moreover, Hzz and Hx commute with the “X-
parity” operator X = ∏n

i=1 σx
i ; therefore, the representations

of Hzz and Hx in the symmetry-adapted basis can be further
simultaneously block diagonalized in the two eigenspaces of
X with eigenvalues ±1:

X± : |x±
k 〉 = c(|ϕk〉 ± |ϕn+2−k〉), (23)

where c is the normalizing constant and k = 1,2, . . . ,�n/2� +
1 (�x� is the largest integer less than or equal to x). Likewise,
the representations of Hzz and Hy in the symmetry-adapted
basis can be block diagonalized under the eigenstates of the
“Y -parity” operator Y = ∏n

i=1 σ
y

i :

Y± : |y±
k 〉 = c[|ϕk〉 ± in(−1)k−1|ϕn+2−k〉], (24)

where c is the normalizing constant and k = 1,2, . . . ,�n/2� +
1.

Using different operations (X,Y , and ZZ operations), we
can shuttle between these subspaces. According to Eqs. (22),
(23), and (24), the following properties can be obtained when
n � 2 (the corresponding transformations are represented in

FIG. 1. Schematic of preparing the W state for (a) the odd-spin
system and (b) the even-spin system. Black squares represent all
quantum states from the total Hilbert space H. The blue ovals and
the red ovals denote the subsets of quantum states from X+,X− and
Y+,Y−, respectively. Solid arrows represent single pulses; dashed
arrows represent corresponding evolutions in subspaces. Black points
represent quantum states; A, B, C, and D are intermediate states in
corresponding subspaces. The initial state |00 · · · 0〉 (point I ) and the
W state (point J ) are not in any subspace.

Fig. 1): (1) When n is odd [Fig. 1(a)], (i) Y (π/4) rotates
|00 · · · 0〉 (point I ) into the subspace X+ (point A),

Y

(
π

4

)
|00 · · · 0〉 =

n−1
2∑

k=0

√
Ck

n

2n−1
|x+

k+1〉, (25)

and (ii) Y (−π/4) rotate the W state (point J ) into the subspace
X+ (point B),

Y

(
−π

4

)
|W 〉 =

n−1
2∑

k=0

√
Ck

n

2n−1n
(−1)k(n − 2k)|x+

k+1〉. (26)

(2) When n is even [Fig. 1(b)], (i) Y (π/4) rotates |00 · · · 0〉
(point I ) into the subspace X+ (point A),

Y

(
π

4

)
|00 · · · 0〉 =

n
2 −1∑
k=0

√
Ck

n

2n−1
|x+

k+1〉 +
√

C
n/2
n

2n
|x+

n/2+1〉,

(27)
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and (ii) X(−π/4) rotates the W state (point J ) into the
subspace Y− (point D),

X

(
−π

4

)
|W 〉 =

n
2 −1∑
k=0

√
Ck

n

2n−1n
[ik−1(2k − n)]|y−

k+1〉. (28)

We also note here that the subspaces X± overlap the
subspaces Y± when n is even. Utilizing these properties, a
routine way to generate the W state can be summarized as

Y

(
π

4

)
− Ux −

{
Uy − X

(
π
4

)
n is even,

Y
(

π
4

)
n is odd,

(29)

where Ux = ∏
i ZZ(θzzi)X(θxi) and Uy = ∏

i ZZ(θzzi)Y (θyi).
The number of operations needed here is uniformly bounded
[27]. Since the dimension of the subspace increases linearly
with the size n of the system, we expect that the number
of operations required also has a linear dependence on n. In
addition, the system is pure state controllable in the subspaces
X± andY±, respectively; a solution through the decomposition
(29) thus always exists. The proof is included in the Appendix.
Therefore, a solution with high fidelity can always be found
by setting the error threshold sufficiently small in principle.

As examples, we show how to prepare the W state on
three- and four-spin Ising models. Here, we denote the
matrix representations of different Hamiltonians in different
subspaces by H


α , where α = x, y, or zz and 
 = X± or Y±
represents the corresponding subspaces. We use the right-hand
side of Eqs. (25) and (27) as the initial states and the right-hand
side of Eqs. (26) and (28) as the target states for odd and even
n, respectively.

For a three-spin case, following Eq. (29), we can obtain the
W state with the sequence

Y (π/4) − ZZ

{[
π − arccos

(
1

3

)]
/4

}

−X

[
arccos

(
1

3

)
/4

]
− ZZ

{[
π − arccos

(
1

3

)]
/4

}
−Y (π/4), (30)

which can be represented on the Bloch sphere in Fig. 2(a). The
detailed analysis is identical to that in [25].

As for the four-spin case, according to Eq. (27),

|ψ1〉 = e−iHyπ/4|0000〉

=
√

2

4
|x+

1 〉 +
√

2

2
|x+

2 〉 +
√

6

4
|x+

3 〉. (31)

We should find the sequence Ux to rotate this state into the
subspace Y−. Since |x+

2 〉 is the only common basis vector for
the subspaces X+ and Y−, suppose Ux = X(θ1) − ZZ(θ2) −
X(θ3), and let

e−iH
X+
x θ3e−iH

X+
zz θ2e−iH

X+
x θ1 |ψ1〉 = eiδ|x+

2 〉, (32)

where we have θ2 = π/4, θ1 = 0, and θ3 = π/16 regarding
simplicity.

According to Eq. (28), X(−π/4)|W 〉 =
(i|y−

1 〉 − |y−
2 〉)/√2; we next need to find Uy , which

FIG. 2. Bloch-sphere representation of evolutions for preparing
the W state. An arbitrary state in the subspace can be repre-
sented as a vector on the Bloch sphere: |a〉 = (cos θ/2,eiϕ sin θ/2),
where θ is the polar angle and ϕ is the azimuthal an-
gle. (a) Evolution ZZ{[π − arccos (1/3)]/4} − X[arccos (1/3)] −
ZZ{[π − arccos (1/3)]/4} for preparing the W state in the subspace
X+ for the three-qubit case. Two rotations around the ẑ axis and
a rotation around the axis (

√
3/2,0, − 1/2) rotate A(2π/3,0) =

|x+
1 〉/2 + √

3|x+
2 〉/2 to the state D(π/3,π ) = √

3|x+
1 〉/2 − |x+

2 〉/2.
Here, B and C represent two intermediate states. Points A and
D correspond to points A and B in Fig. 1(a). (b) Evolution
Y (3π/8) − ZZ(π/12) for preparing the W state in the subspace Y−
for the four-qubit case. A rotation around the ŷ axis followed by a
rotation around the ẑ axis rotates E(π,ϕ) = |y−

2 〉 to G(π/2,π/2) =
(i|y−

1 〉 − |y−
2 〉)/√2. Points E and G correspond to the points C and

D in Fig. 1(b).

rotates |y−
1 〉 to (i|y−

1 〉 − |y−
2 〉)/√2. Since

HY−
y =

(
0 −2i

2i 0

)
(33)

and

HY−
zz =

(
6 0
0 0

)
, (34)

we have

e−iH
Y−
zz θ1e−iH

Y−
y θ2

(
0
1

)
=

(−e−6iθ1 sin 2θ2

cos 2θ2

)
; (35)

when θ1 = π/12 and θ2 = 3π/8, we obtain
(i|y−

1 〉 − |y−
2 〉)/√2. The process, as illustrated in Fig. 2(b),

can be expressed as

E : (π,ϕ)
Y (3π/8)−−−−→ F : (π/2,0)

ZZ(π/12)−−−−−→ G : (π/2,π/2).

(36)

Therefore, we achieve the target W state with the following
control sequence:

Y (π/4) − ZZ(π/4) − X(π/16) − Y (3π/8)

−ZZ(π/12) − X(π/4) → |W 〉. (37)

For large systems, it is difficult to find the analytic solutions.
However, since the dimension of the subspaces increases
linearly with the system size, with the numerical optimization
algorithm it is possible to generate the W states via the
global-control sequence in principle. Applying the approach
to a numerical search, one can find the solution in much
larger systems (Fig. 3). We tried 100 numerical searches with
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FIG. 3. Minimum number of parameters {τm,βx
m,βy

m} to create
W states vs the system size n. The control sequence is {ZZ − X}i

for odd-spin systems and {ZZ − X}i − {ZZ − Y }j for even-spin
systems. Here, i and j denote the numbers of loops. The initial state
is Y (π/4)|00 · · · 0〉. In the numerical search, we set the final state to
be Y (−π/4)|W 〉 when n is odd and X(−π/4)|W 〉 when n is even.

different initial parameters for each n and different numbers
of parameters. Blue squares in Fig. 3 represent the minimum
number of parameters in 100 sets of data to keep the fidelity
above 0.999 by the numerical optimization algorithm. The red
line represents the linear fitting. It is clear that the number of
parameters increases almost linearly with the system size; that
is, using only O(n) operations we can prepare the W states
with a high fidelity in a long-range Ising model using only
global controls.

V. CONCLUSION

In summary, we presented a universal method to prepare
the GHZ state and a standard procedure to prepare the W

state on a long-range Ising model using only global controls.
Actually, the solutions to preparing the GHZ state also obey
the rules of the partition of subspaces described for the W state:
the GHZ state is within the subspace X+. One can follow a
procedure similar to that used in finding solutions for the W

state to obtain different solutions for preparing the GHZ state if
needed. Remarkably, the dimension of the irreducible subspace
we employed increases only linearly with the size of the system
due to the symmetry, so the scheme for preparing the W state
is also feasible in larger spin systems. In addition, it is also
applicable to a wide range of physical implementations and
will contribute to quantum control for implementing quantum
information processing in the future.
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APPENDIX: CONTROLLABILITY AND IRREDUCIBILITY

In this appendix, we give the matrix representations of
the relevant Hamiltonians in the corresponding subspaces and
proofs for controllability of the system and irreducibility of
the subspaces X± and Y±.

Let Hs
x , Hs

y , and Hs
zz denote the matrix representations of

Hamiltonians Hy , Hy , and Hzz in the basis (22), respectively,
and {aij } and {bij } denote the matrix elements of Hs

x and Hs
y ,

respectively. All the elements of Hs
x and Hs

y are zero except
those on the two lines next to the diagonal line:{

ak,k+1 = ak+1,k = √
k(n − k + 1),

bk,k+1 = −bk+1,k = −i
√

k(n − k + 1)
(A1)

for k = 1, . . . ,n. The matrix representation of Hzz is diagonal
in this basis:

Hs
zz = diag(λ1,λ2, · · · ,λn+1), (A2)

where λk = 2(k − 1 − n
2 )2 − n

2 for k = 1, . . . ,n + 1.
From Fig. 1 we know that it is only necessary to know the

matrix representations of Hx in the subspace X+ when n is
either even or odd, Hy in the subspace Y− when n is even,
and Hzz. According to Eqs. (A1) and (A2), we can write down
the specific matrix representations of the Hamiltonians in the
corresponding subspaces for n � 2.

When n is even, the matrix elements of Hx , {a+
k }, in the

subspace X+ are zero except those on the lines next to the
diagonal line:

a+
k+1,k = a+

k,k+1 =
{√

k(n − k + 1) 1 � k � n
2 − 1,√

n(n + 2)/2 k = n
2 .

(A3)

When n is odd, the matrix elements of Hx , {ã+
k } (we use a tilde

to denote the case when n is odd), in the subspace X+ are zero
except those on the lines next to the diagonal line and the last
element at the bottom right corner:{

ã+
k+1,k = ã+

k,k+1 = √
k(n − k + 1) 1 � k � n−1

2 ,

ã+
n+1

2 , n+1
2

= n+1
2 k = n+1

2 .
(A4)

When n is even, the matrix elements of Hy , {b−
k }, in the

subspace Y− are zero except those on the lines next to the
diagonal line:

b−
k+1,k = −b−

k,k+1 = i
√

k(n − k + 1), (A5)

where 1 � k � n
2 − 1. Likewise, Hzz is diagonal in X± and

Y±, and the matrix representations in these subspaces are

H

zz = diag(λ1,λ2, . . . ,λ� n+1

2 �), (A6)

where 
 = X+,X−,Y+,Y−. All the diagonal elements are
different from each other:

λk = 2

(
k − 1 − n

2

)2

− n

2
,1 � k �

⌊
n + 1

2

⌋
. (A7)

When n is even, H
X+
zz and H

Y+
zz include an additional diagonal

element, λn/2+1 = −n/2. Both the analytic solutions and the
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FIG. 4. Connectivity graph for H
X+
zz and H

X+
x in the subspace

X+. Each vertex represents an eigenstate of H
X+
zz , and the label on

the edge is the transition frequency. The graph is connected by the
nonzero matrix elements of H

X+
x , and each transition is of a different

frequency. The graph shows that the system is pure state controllable
in the subspace X+

numerical search rely on the matrix representations of these
Hamiltonians.

We are concerned with pure-state controllability of the
system. One can prove this by looking at the connectivity
graph where the vertices represent the eigenstates of H

X+
zz

and the edges connect vertices j and k if the element
H

X+
x (j,k) is nonzero [27,28]. For example, in the subspace

X+ (Fig. 4), since the element H
X+
x (k,k + 1) is nonzero, it

transfers magnitude between the kth and (k + 1)th eigenstates

of H
X+
zz . Therefore, in the graph there is an edge connecting

two adjacent vertices. Moreover, the difference between the
adjacent eigenvalues λk and λk+1 of H

X+
zz is 2(n + 1) − 4k,

which means there is no degenerate transition. The same result
holds for subspaces X− and Y±. Therefore, the system is pure
state controllable in the subspaces X± and Y± according to
Theorem 3.7.1 in [27]. This proof also guarantees the existence
of the solutions in Eq. (29).

Next, we prove the subspaces X± and Y± are irreducible.
Take X+ with odd n. In order to partition X+ further, one
must find another operator A such that [Hx,A] = [Hzz,A] = 0.
Since the eigenstates of Hzz are nondegenerate according to
(A7), the matrix representation of A must be diagonal:

A = diag
(
λA

1 ,λA
2 , . . . ,λA⌊

n+1
2

⌋)
. (A8)

Since [Hx,A]|sk〉 = (HxA − AHx)|sk〉 = 0, we can always
obtain λA

1 = λA
2 = · · · = λA

� n+1
2 � according to (A3) and (A4).

Therefore, A is a trivial matrix (a product of a constant and a
unit matrix). Thus, the subspace cannot be reduced any more.
Similar results can be proved for subspaces X− and Y± and
for the case with even n.
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