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Leading approaches to fault-tolerant quantum computation dedicate a significant portion of the hardware to
computational factories that churn out high-fidelity ancillas called magic states. Consequently, efficient and
realistic factory design is of paramount importance. Here we present the most detailed resource assessment to
date of magic-state factories within a surface code quantum computer, along the way introducing a number
of techniques. We show that the block codes of Bravyi and Haah [Phys. Rev. A 86, 052329 (2012)] have
been systematically undervalued; we track correlated errors both numerically and analytically, providing fidelity
estimates without appeal to the union bound. We also introduce a subsystem code realization of these protocols
with constant time and low ancilla cost. Additionally, we confirm that magic-state factories have space-time costs
that scale as a constant factor of surface code costs. We find that the magic-state factory required for postclassical
factoring can be as small as 6.3 million data qubits, ignoring ancilla qubits, assuming 10−4 error gates and the
availability of long-range interactions.

DOI: 10.1103/PhysRevA.95.032338

I. INTRODUCTION

Architectures for quantum computers must tolerate ex-
perimental faults and imperfections, doing so in the most
practical and efficient way. One aspect of fault tolerance is
the use of error-correcting codes, which provides a storage
method for protecting quantum information from noise. To
perform quantum computations, additional techniques are
needed to ensure a universal set of quantum gates can be
implemented fault tolerantly. Most error-correcting codes
natively allow fault-tolerant implementation of gates from the
Clifford group, a nonuniversal set of gates. Fully functional
quantum computation is attained by adding the Toffoli or π/8
phase gate to the Clifford group. The prevailing proposal
for performing these gates is to first prepare high-fidelity
magic states, which are then used to inject a gate into the
main computation. These magic states are needed in vast
quantities, and their preparation requires a significant portion
of a device to operate as a dedicated magic-state factory [1–3].
Alternatives exist to the magic-state paradigm [4–10], but it is
unclear whether they will be feasible substitutes due to worse
thresholds [11,12].

Magic-state factories use several rounds of distillation
protocols, and several directions have been explored [15–20]
to improve efficiency over the original proposal which uses
Reed-Muller codes [1]. Notably, an n → k block protocol
takes n input magic states and output k at higher fidelity, with
higher ratios of n to k generally offering greater efficiency
[15–17]. These block protocols do require more complex
circuits, but there has been limited investigation into the
full resource cost of these protocols. One advance in this
direction [3] has shown that block protocols can be realized
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in constant time, independent of k, by braiding defects in the
surface code. Despite this, the same work found that efficiency
improvements of block protocols were modest. However, all
previous work has taken a very pessimistic estimate of the
fidelity of these protocols, leading to an overestimated cost. We
present several results improving resource costs and leading to
a more optimistic outlook for realzing magic-state factories.

We present a method of realizing the Bravyi-Haah block
protocols [16] in constant time without relying on braiding
operations, providing a fast implementation to other architec-
tures. Braiding operations natively support control-NOT (CNOT)
gates with multiple target qubits in constant time, which is the
key step in the circuit reduction of Ref. [3]. Our approach
does not require availability of such powerful gates, but rather
reduces time costs by borrowing concepts from subsystem
codes [21–24] and notions of gauge fixing [7,9,25]. In
subsystem codes, operations acting on many qubits are broken
up into more pieces each involving fewer qubits, which we find
enables greater parallelization in realizing Bravyi-Haah. Our
proposal is especially applicable to distributed architectures
for quantum computation and provides these devices with an
approach to magic-state distillation that is low in ancilla and
time costs.

We also show that magic-state factories can make more use
of block protocols than previously thought by using techniques
to reduce and calculate the global output error. Consider a
protocol outputting K qubits with multiqubit global error
rate εg . All previous studies have used the union bound,
also called Boole’s inequality, to assert εg � Kε, where K

is the number of magic states and ε is the average error
rate of single-qubit outputs, obtained by tracing the qubit
from the multiqubit state. For an uncorrelated product state,
ρg = ρ⊗K , we have εg = 1 − (1 − ε)K , so to leading order
εg = Kε − O(ε2), and the union bound is a good estimate for
small ε. However, the output of block protocols can be highly
correlated. Boole’s inequality holds for correlated states, but
εg can be much smaller than Kε. In distillation protocols
such as Bravyi-Haah, correlations are produced because block
protocols reduce the probability of single errors, but pairs or
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clusters of errors can go undetected and lead to a correlated
error pair. If one error is present, it almost certainly has a
partner. As such, use of the union bound has led to systematic
overestimation of noise in Bravyi-Haah and other distillation
protocols. Here we track these correlations through multiple
rounds of a magic-state factory. We take as our starting point
the triorthogonal codes for producing π/8 magic states [16]
and a method of producing Toffoli magic states [26,27]. Once
we begin tracking correlations, it becomes apparent that quality
control of the factory can be improved. Detecting an error in
one part of the factory can, due to correlations, indicate a
likely undetected partner error elsewhere in the factory. We
introduce the notion of module checking whereby we discard
magic states brought into disrepute by their correlated partners.
The enhanced fidelity of module checking is both analytically
estimated and found by numerical Monte Carlo simulations,
with excellent agreement between these methods.

The specification of the distillation protocol is just one as-
pect of designing magic-state factories. The size of magic-state
factories depends on both the distillation protocols and also the
underlying error correction codes, and a significant saving can
be made by judiciously reducing the error correction code
at earlier rounds of magic-state distillation. The balanced
investment of qubits at each round of distillation uses small
surface codes for low-fidelity magic states and larger surface
codes for high-fidelity magic states. A small fraction of magic
states in the factory will be high fidelity and require much
larger surface codes. Raussendorf et al. [28] argued that,
consequently, magic-state distillation can be achieved at a
constant factor cost over surface code error correction, which
we also observe and discuss.

Taking all factors into consideration, we present a blueprint
for a factory capable of delivering enough magic states to solve
large Shor’s algorithm tasks, beyond the reach of classical
computation, within a surface code quantum computer. Our
results are summarized in Table I, where we look at both the
space-time overhead required to produce a Toffoli magic state
and the physical footprint of the factory required to produce

magic states at an average rate that can just keep up with the
“time-optimal” surface code implementation of the algorithm
[14], which we further discuss in Sec. VI.

II. REALIZING BLOCK PROTOCOLS

Many descriptions of distillation protocols are high level,
leaving open many aspects of how to implement these proto-
cols. To assess the full resource cost, we require a low-level
description of distillation protocols in terms of elementary
operations, such as one- and two-qubit gates, preparations,
and measurements. We call such a description a realization of
a protocol, and a given protocol can have different realizations
with varying costs.

This section presents a realization of the Bravyi-Haah
protocols, giving explicit instructions presented in Fig. 1. The
protocol is presented as a four-step process acting on a col-
lection of n noisy |T 〉 states, where |T 〉 ∝ |0〉 + exp(iπ/4)|1〉.
The first step uses ancillas to measure operators composed of
Pauli-Z operators, and the second step applies a correction
dependent on the measurement outcomes. The third step
uses ancillas to measure operators composed of Pauli-X
operators, with only certain measurement outcomes kept. After
a successful third step, the k output magic states are within an
encoded state and delocalized across 3k + 8 sites. The fourth
step uses measurements to localize the output qubits to specific
sites. All these steps are detailed in Fig. 1 and show how
the multiqubit measurements are broken down into ancilla
preparation, two-qubit gates, and single-qubit measurements.
Observe in Fig. 1 that each multiqubit measurement involves
only four entangling gates, with each such gate designated
a distinct colored link. Therefore, the measurement is a
four-qubit operator. This is called the weight of the operator.
When using a single ancilla to measure a stabilizer of weight m,
we need m time steps to perform the required controlled-gate
operations. The low, and constant, weight of our measurements
gives the realization a constant time cost. More commonly,
the Bravyi-Haah protocol is presented as requiring only two

TABLE I. The size and time requirements of some examples of magic-state factories. We consider an implementation of Shor’s algorithm
requiring 40N 3 Toffoli gates, which dominates the overhead. We realize each of these gates using a single Toffoli magic state or seven T states
in parallel [13], whichever proves optimal. In this algorithm, the Toffoli gates are all sequential, so using time-optimal methods [14], the fastest
possible run time is 40N3tmeas/ff , where tmeas/ff is the time taken to make a physical measurement and feed forward the result to selectively
perform a single-qubit gate elsewhere in the quantum computer. The number of “physical qubits in factory” neglects qubit cost associated
with measuring surface code stabilizers, so for many architectures this number will be doubled. The variable tsc is the time taken to perform
a single round of the parallel stabilizer measurements of the surface code, a process involving four CNOT gates, two single-qubit gates and a
measurement. We assume throughout that tmeas/ff = 0.1tsc, which is reasonable for a distributed architecture such as ion traps.

Magic states Space-time overhead per Physical qubits in factory (and evaluation time)
required magic state in qubit rounds required for time-optimal computation

Type Count pg = 10−3 pg = 10−4 pg = 10−3, tmeas/ff = 0.1tsc pg = 10−4, tmeas/ff = 0.1tsc

Problem tsc = 10−3 s tsc = 10−5 s tsc = 10−3 s tsc = 10−5 s

1000-bit Shor Toffoli 1010.60 1.41×107 5.35×105 1.73×108 1.73×108 6.30×106 6.30×106

(6.6 weeks) (11 h) (6.6 weeks) (11 h)
2000-bit Shor Toffoli 1011.51 1.66×107 5.71×105 2.18×108 2.18×108 6.97×106 6.97×106

(53 weeks) (3.7 days) (53 weeks) (3.7 days)
4000-bit Shor Toffoli 1012.41 1.94×107 6.12×105 2.50×108 2.50×108 7.69×106 7.69×106

(8 years) (4.2 weeks) (8 years) (4.2 weeks)
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FIG. 1. Explicit circuit for realizing Bravyi-Haah (3k + 8) → k block protocols for k = 2,6,10,14, . . . . Squares indicate the (3k + 8) noisy
|T 〉 magic states to be distilled, and circles represent ancilla qubits used to effect measurements on the magic states. Increasing k does not
increase the number of time steps in the protocol but increases the number of qubits involved in a block. As we increase k, we add qubits to the
tail end, with the protocol translationally invariant along the tail. We report that we have independently confirmed the validity of the protocol
for k = 2 by full wave-function simulation, which further confirmed that all single errors are detected and all two errors processes lead to
outputs with correlated errors.

measurements of X-type observables that have weight 2k + 4,
implying a potentially expensive time cost. However, the
concept of gauge subsystem codes provides a method whereby
such complex measurements can be broken down into a larger
number of simpler measurements [21–24]. In Appendix C we
present a rigorous demonstration that the Bravyi-Haah code
can be viewed as a subsystem code, and using a combination
of gauge fixing and a cat-state ancilla, we create a circuit of
depth 4 for both X and Z measurement sets. We call this
general approach gauge-MSD, where MSD is short for magic
distillation. We remark that constant time realization was also
found by Fowler et al. [3] but was tied to a monolithic braiding
architecture.

The time complexity of our realization is simply

tblock = 8tcnot + tA + 2tprep + 3tmeasure ∼ 8dtsc, (1)

where tcnot is the two-qubit gate (e.g., CNOT) time, tA is
the gate time for single-qubit A = (X + Y )/

√
2 rotation,

tprep is the single-qubit preparation time, and tmeasure is the
single-qubit measurement time. Here all operations are applied
fault tolerantly to logical qubits within an error-correcting
code. Therefore, the time scales are for fault-tolerant gates.
We will assume throughout that logical CNOT gates are applied
transversally and thus take time tcnot = tg + d × tsc, where tg

is the time for the physical gate, d is the code distance, and tsc

is the time for a round of stabilizer measurements. Therefore,
for large distances the time is dominated by 8dtsc. We will
also take this as the time cost of a merge operation [29,30]
which we use to project two ancillary qubits into the even-
or odd-parity subspace. We assume entangling gates can be
performed in parallel, but a qubit can participate in only one
gate at a time. We allow entangling gates to be long range
as is feasible within distributed architectures for quantum
computing [31–38], although this may be relaxed at only a
modest increase in resources.

Our realization uses a number of ancilla qubits, so that
in addition to the n = 8 + 3k qubits being distilled we also
use nanc = 3k + 6 ancilla qubits, giving ntot = 6k + 14 logical
qubits in total. These ancillas appear as circles in Fig. 1. With
these logical qubits encoded in a distance d toric code, the
total qubit cost is Ntot = (6k + 14)d2. Therefore, the total
space-time cost amounts to Ntottblock ∼ (48k + 112)d3, which
compares well against other approaches (see Appendix A).

When using the toric code, A gates are also not naturally
fault tolerant and thus require their own process of state
distillation and injection. The time tA to implement such a gate
is therefore the time taken by the logical CNOT which teleports
the gate into the computation plus any Clifford correction that
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is required, although this can be rolled into a later Clifford
operation. The resources required for the state distillation of
A are far less than those of the T gate, and the ancilla resource
is reusable for many A gates [17,39]. As such, we neglect the
overhead of these gates as a small additional overhead to the
main process of |T 〉 distillation.

III. OVERVIEW

A. Blocks, branches, and modules

We begin by introducing some helpful vocabulary for de-
scribing magic-state factories. Efficient distillation uses n → k

block protocols that take n noisy |T 〉 ∝ |0〉 + exp(iπ/4)|1〉
and with some probability output k states of a higher fidelity.
Such a process we call a block, and the previous section
described the details of the inner working of such a block.
Now we treat each block as a black box with known relations
between input and output and consider how these blocks are
composed together.

Distillation protocols have many levels forming a treelike
structure with many branches that merge at points we call
modules, shown in Fig. 2. Branches contain many qubits,
which are potentially correlated. However, the inputs to block
protocols must not be correlated, so each qubit in a branch
must be fed into a different block. Therefore, as we enter a
module, a branch of Bl qubits is split up so that each qubit
enters a different block. If each block implements a nl → kl

protocol, then the whole module can be thought of taking
Blnl inputs to Blkl outputs. This entails that Bl+1 = Blkl and
that each module has nl branches feeding into it. Initially,
branches are single qubits, B1 = 1, and so Bl = ∏

1�j<l kj .

FIG. 2. The tree structure of many rounds of distillation, with
branches (directed black lines) that merge at branching points that
we call modules. The thickness of the branch increases with each
round. The main plot shows a fictitious scheme where nl = 3 and
kl = 2 for all rounds. Inset: The structure within a module. Incoming
branches contain many qubits; here this is shown to be four. These
qubits undergo a permutation σ and are fed into an instance of a block
of a distillation protocol shown as a square. Here the three incoming
branches carry four qubits, and so we need four instances of a 3 → 2
protocol. We use a fictitious protocol to keep the numbers low enough
to illustrate clearly. Each of the four blocks output two qubits, and
these are merged into a branch of eight qubits fed into a later module.
A pernicious error pattern is shown in red (lighter gray), which is
detected in two of distillation blocks, marked with crosses, but goes
undetected in a third block.

This module-branch structure is common to all proposals
to date. Such explicit terminology has not previously been
introduced but rather has been left as an implicit consequence
of statements about correlation avoidance. Establishing clear
vocabulary about this structure is important as we delve into
the effect of postselecting at different levels on this structure.
Previous protocols have considered whether individual blocks
succeed or fail; we call this block checking. Below, we outline
why it can be advantageous to postselect on the level of the
modules, which are collections of blocks. We propose an
additional quality check, so that the whole module is discarded
whenever any of its blocks fail. We call this module checking.

A block will always detect a single incoming error but might
fail to detect a pair of errors. When a block detects an error, it
indicates the presence of damaged branches, and since errors
cluster together within branches, this increases the likelihood
of errors in other blocks throughout the module. Consider
when two branches fail, each with a correlated error pair; the
first branch sends damaged qubits to blocks 1 and 2, and the
second branch sends damaged qubits to blocks 2 and 3. Since
blocks 1 and 3 each received a single erroneous qubit, they
will detect them. But block 2 receives a pair of errors, so they
may go undetected. A simplified illustration of this process is
shown in Fig. 2. Module checks improve fidelity by preventing
these processes from degrading the output fidelity. Even with
module checks, it is possible for a pair of corrupted branches to
go undetected, but both branches must carry exactly the same
pattern of errors, which is a very rare occurrence.

IV. THE G-MATRIX FORMALISM

Bravyi and Haah introduced a matrix description of their
n → k block protocols for |T0〉 state distillation. The so-called
G matrix is split into two submatrices, G1 and G0, with G0

describing the postselection criteria and G1 accounting for
how input qubits are related to output qubits. For distillation
of |T0〉 magic states, the G matrix must have the property
of triorthogonality that the reader can learn about in Ref
[16]. Rather, here we give a pragmatic account of the block’s
performance. We use |T0〉 ∝ |0〉 + eiπ/4|1〉 for a magic state
and |T1〉 = Z|T0〉 for the orthogonal state with a Z error. A
pure multiqubit state |Tx1〉|Tx2〉 · · · |Txn

〉 we concisely represent
with the vector x = {x1,x2, . . . ,xn}. If we apply a block
protocol to state x, the block succeeds (detecting no errors)
if G0x = 0 (mod 2), where the math is performed modulo 2.
When successful, the block outputs a state y = G1x. Noisy
magic states will be some probabilistic ensemble over x, with
probability Pr(x). The protocol will detect no errors and output
state |Ty1〉|Ty2〉 · · · |Tyk

〉 with (unnormalized) probability

Prunnorm(y) =
∑

{x:G0x=0,G1x=y}
Pr(x). (2)

The total success probability is captured by the sum over all
possible output states, so

Psuc =
∑

y

Prunnorm(y)

=
∑

y

∑
{x:G0x=0,G1x=y}

Pr(x) =
∑

{x:G0x=0}
Pr(x). (3)
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Conditioned on success, the normalized distribution on output
states is Prout(y) = Prunnorm(y)/Psuc. Given an explicit form
for G0 and G1, this completes the black box picture of block
protocol performance. These formulas form the basis upon
which we build both our analytic and numerical analysis in the
following sections.

The G-matrix formalism of Bravyi and Haah has been
significantly generalized [40,41]. This extension provides
protocols that convert noisy T magic states into another species
capable of injecting complex multiqubit circuits. Included in
this framework are protocols, based on G matrices, which
provide resources for implementing Toffoli gates. Protocols
independently proposed by Jones [27] and Eastin [26] realized
error-suppressed Toffoli gates, and here we consider a variant
based on G matrices that we discuss further in Appendix E. All
three variants perform identically when we use block checking.
However, with the G-matrix formalism we can again use
module checking to track correlations and achieve superior
error suppression. This is just one additional application
of module checking; the technique can be deployed in
conjunction with the general class of protocols introduced in
Refs. [40,41].

V. ANALYSIS OF MODULE CHECKING

We present a method of tracking the leading-order errors,
accounting for correlations, through many rounds of module-
checked protocols. At each level of distillation the protocol
is characterized by a function η that summarizes how well it
tolerates leading-order errors.

Definition 1. For every distance-2 G-matrix code that
distills n → k qubits, we define a function η : Zk

2 → Z, taking
values

η(y) := #{y : |x| = 2,G0x = 0,y = G1x}, (4)

where | · · · | is the weight |y| = ∑
j yj and # counts the number

of elements in a set {· · · }. In other words, the value η(y) counts
the number of inputs x such that (1) they are weight 2 [formally,
(|x| = 2)], (2) they are undetected by the protocol (formally,
G0x = 0), and (3) they give y as output (formally, G1x = y).

Since η(y) counts the number of lowest-weight errors
leading output y, the total error rate for one round of distillation
can be simply estimated as

εg =
(∑

y

η(y)

)
ε2 + O(ε4). (5)

Counting errors over many rounds is a more subtle problem,
but we find that η still provides sufficient information to
perform this calculation. If each round can even use a different
protocol, we label the corresponding function with a subscript.
We now state our key result.

Theorem 1. Consider L rounds of distillation with module
checking, with associated functions η1,η2, . . . ηL. Such a
protocol outputs a multiqubit magic state where the lth-level
modules succeed with probability

Psuc,l � Al + Bl

(Al−1 + Bl−1)nl
(6)

and output states have global infidelity

ε(l)
g � Bl

Al + Bl

, (7)

where we have made use of the following:

Al = (1 − ε)(n1n2···nl ), (8)

Bl = Clε
2l

(1 − ε)(n1n2···nl−2l ), (9)

Cl =
l∏

j=1

(∑
v

ηj (v)2l−j

)
. (10)

The most important quantity in Theorem 1 is Cl . After two
rounds C2 is simply [

∑
y η1(y)2][

∑
y η2(y)]. After l rounds,

Cl is a product of l terms. One may approximate the theorem
to leading order ε(l)

g ∼ Clε
2l

. However, our later numerical
investigations found that such an approximation was too
coarse, and we really need the slightly more complex form
given in the theorem. We postpone proof of this result to
Appendix F.

For the Bravyi-Haah protocols it is easy to verify the
following:

ηBHk
(y) =

⎧⎨
⎩

3, |y| = 2,

4, |y| = k,

0, otherwise,
(11)

so that for k > 2 we have∑
y

ηBHk
(y)m = 4m + 3m

(
k

2

)
= 4m + 3m k(k − 1)

2
, (12)

where the binomial factor arises in counting the number of y

where |y| = 2. When k = 2, we have a special case as then
the |y| = 2 terms and |y| = k terms are the all same, so∑

y

ηBH2 (y)m = 7m. (13)

For the Toffoli protocol we have

ηTof(y) = 4, y 	= 0, (14)

so ∑
y

ηTof(y)m = 7 × 4m. (15)

Given expressions for η(y)m, we can compose these protocols
anyway we wish and obtain an estimate of the global error rate
as given in Theorem 1.

We perform numerical Monte Carlo simulations by sam-
pling from the probability distribution of the raw magic states,
where Pr(x) = ε|x|(1 − ε)N−|x|, and track its evolution through
the magic-state factory.

Our simulations track the progress of potentially damaging
input error configurations of the initial raw magic states though
the factory. Direct Monte Carlo simulation is possible for one
to two rounds of distillation, but with three or more rounds the
failure events become so rare that brute force simulation fails
to provide statistically meaningful data. Rather, we use a “rare-
event” technique that preselects cases with two or more corrupt
branches. A full description of the method employed can be
found in Appendix G. We thus investigate the performance of a
factory which makes use of module checking for a range of raw
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FIG. 3. (a) and (b) The cost C of the Bravyi-Haah protocols utilizing both block checking and module checking. It can be seen that only
around the transitions to an additional level of distillation is block checking very slightly preferable.

magic-state error rates between 0.1% and 1%. We find that the
leading-order analytic estimates match well with the numeric
results, with the difference between the two being of the order
of a few percent in the investigated parameter regime. In fact,
wherever the block protocols are involved, if k � 14, we find
the percentage difference between the numerical simulation
and analytic estimate is <10%. This discrepancy between the
analytic estimate and numerical simulations is not visible on
log-log plots presented in Appendix G.

The cost of a protocol is the average number of raw magic
states consumed to produce one higher-fidelity magic state.
For an n → k protocol, which takes in states with error p, this
is

C(p) = n

kPs(p)
. (16)

For l rounds of distillation we have Cl(p) = ∏l−1
i=1 Ci(pi).

Figure 3 compares the cost of a Bravyi-Haah magic-state
factory with block checking and module checking, showing
the minimum cost achievable for given output error. For output
error rate and success probability we use known expressions
for block checking, and for module checking we use the
success probability and global error given by Theorem 1 with
an estimate of the reduced error rate on a single qubit given
by the global error rate estimate divided by the total number
of qubits in this factory’s output.

We find that module checking is superior to block checking
for a large proportion of target error rates and can use up to
4 times fewer raw magic states in some regimes. However,
near a transition from j to j + 1 rounds of distillation,
module checking loses it advantage and may even be slightly
outperformed. The best error rates that can be achieved for
a given number of rounds use low-k block codes; for these
the benefit in the global error rate of module checking over
block checking is smaller (see Table II), while the success
probability is, of course, much inferior. Above the transition
higher k values are used, for which the success probability is
much lower, and this washes out the benefit of the superior
error suppression over block checking, which has a higher
success probability. In these regimes, as one might expect,
module checking is not the optimal approach. In those regions
between the transitions, module checking allows the use of
higher-k protocols, which are more efficient, to achieve the
error rates of lower-k block-checked protocols.

VI. FACTORY OVERHEAD ANALYSIS

While the “cost” is a useful guide to the performance of
a distillation protocol, it fails to capture several important
features of real magic-state factories. The very purpose of
magic-state distillation is to supplement the shortcomings
of a particular error-correcting code, which is to say that
a magic-state factory is implemented at the level of logical
qubits, with the quantum information already encoded. As
such, the more relevant question is not how many noisy input
magic states are required per output state, but rather the number
of the physical qubits that will build up such a factory and the
rate at which the distilled magic states are produced. Both of
these numbers are of key importance to determining the size of
a quantum computer and the run time of an algorithm. A single
number, the “space-time overhead” of the magic-state factory,
captures these both as a figure of merit, which was also studied
in Ref. [3]. In this section we present a comparison based
on the space-time overhead of implementing a magic-state
factory in a surface code quantum computer, utilizing module
checking, where appropriate, and our implementations of the
Reed-Muller, Bravyi-Haah, and Toffoli protocols.

We consider a number of issues in this estimate of the
footprint of a magic-state factory, including (1) balanced
investment, the use of smaller surface codes during early
rounds of magic-state distillation, and (2) clock-rate zoning,
cycling through distillation attempts faster during early rounds
of magic-state distillation. We will assume throughout that
we use the method outlined by Li [42] to inject the initial
raw magic state into a logical surface code. We will therefore
assume throughout that the initial error rate on a magic state
before distillation is εin = 0.4pg. We also use the “rotated-
lattice” surface codes [29], such that a distance d surface
requires d2 physical data qubits. Of course a practical surface
code requires the use of physical ancilla qubits to make
the stabilizer measurements of the code; we leave this as
an extra multiplicative factor to be applied to our overhead
calculated here, as different physical realizations have different
requirements. We estimate the surface code distance required
to protect a logical qubit up to error rate Pl using the relation
Pl(d,pg) = d(100pg)

d+1
2 [3].

Given an algorithm and some implementation of it, the
number of magic states required is determined in advance. For
a given distillation protocol we must then determine whether
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TABLE II. The leading coefficient Cl for a variety of protocols with two and three levels of distillation. For clarity we also show Cl in the
large block limit (k → ∞). When we write BHk , we implicitly assume k > 2, as the results differ slightly for the k = 2 case. The final column
shows the ratio between the union bound estimate made by utilizing the reduced error rate on a single qubit εBH made by Bravyi and Haah and
the corresponding estimate of the global error rate given by Clε

2l
. It can be seen that the benefit (in error rate) of module checking scales with

both k and the number of rounds of distillation.

Level 1 Level 2 Cl limk→∞ Cl limk→∞ k1k2εBH/ε4

BHk1 BHk2

[
16 + 9

2 k1(k1 − 1)
][

4 + 3
2 k2(k2 − 1)

]
27
4 k2

1k
2
2 27k3

1k
2
2

Tof BHk 112
[
4 + 3

2 k(k − 1)
]

168k2 2352k2

BHk Tof
[
16 + 9

2 k(k − 1)
]
28 126k2 252k3

Level 1 Level 2 Level 3 Cl limk→∞ Cl limk→∞ k1k2k3εBH/ε8

BHk1 BHk2 BHk3

[
256 + 81

2 k1(k1 − 1)
][

16 + 9
2 k2(k2 − 1)

][
4 + 3

2 k3(k3 − 1)
]

273.375k2
1k

2
2k

2
3 2187k5

1k
3
2k

2
3

Tof BHk1 BHk2 1792
[
16 + 9

2 k1(k1 − 1)
][

4 + 3
2 k2(k2 − 1)

]
12096k2

1k
2
2 284 × 33k3

1k
2
2

BHk1 BHk2 Tof
[
256 + 81

2 k1(k1 − 1)
][

16 + 9
2 k2(k2 − 1)

]
28 5013k2

1k
2
2 20412k5

1k
3
2

its magic-state factory is capable of producing magic states of
fidelity great enough that there is a high probability that none
of the magic states required for the algorithm fail. Thus, we
set a target global error rate that our factory must achieve:

εtarget = 1 − (Psuc,alg)1/N , (17)

where Psuc,alg is the desired success probability of our
algorithm (i.e., the probability that every non-Clifford gate
works) and N is the number of successful iterations of the
factory needed to produce the desired number of magic states.
For example, a magic-state factory which utilizes three rounds
of Bravyi-Haah distillation with a k value of 10 in each round
will produce 1015 |T 〉 states after 1012 successful iterations.
A 90% success probability for the algorithm as a whole then
implies εtarget = 1.05 × 10−13. We must then check that the
factory is capable of producing an output of this quality. If
the factory is module checked, then this “10-10-10” factory
has a global error rate εglo = 2.3 × 10−16, making this a valid
protocol. However, the estimate of the global error rate of a
block-checked factory gives 103 × εBC ∼ 10−11, so this would
not be a valid factory for this task.

A. Balanced investment

Once we have established that a factory is valid, we can
calculate the space-time overhead per magic state that it
produces. This is done by calculating the distance of surface
code required at each level of distillation di , the length of
time in surface code cycles that each round of distillation will
take Ti , and the number of logical qubits Qi , including logical
ancillas, required at each level of the factory.

Determining the distance required at each level requires
slightly different methods depending on whether module or
block checking is used. To obtain the benefits of module
checking we cannot make full use of balanced investment
at the lower levels because doing so would inject noise at
a rate comparable to or greater than the rate of correlated
error. We can estimate the total global error output in the
output of a n → k protocol as εtot ∼ εglo + kεenc, where εenc

is the random error rate resulting from the size of the logical
encoding chosen. As such we determine the distance of the
code at the intermediate levels based on a desired error rate

εenc to be 0.1εglo/k to ensure that the error due to each qubit’s
finite encoding is much less than the reduced error ∼εglo/k on
that qubit. The final output of the factory can then ne encoded
according to εtarget.

For a block-checked factory (or the original 15-to-1 Reed-
Muller protocol) we do not have worry about “protecting”
correlated errors. This means we can work backwards from
our error target to determine an efficient balanced investment
of qubits, as illustrated in Fig. 4. For a local target error of
ptop = 10−14 the top level of distillation needs vPL(d,εenc) <

0.1 × 10−14, where v is the space-time volume of a single
block of distillation, which is the number of surface code qubits
in the block multiplied by the number of times they undergo
d rounds of surface code stabilizer measurements. Again, we
use a distance corresponding to a lower error rate by a factor
of 10 to suppress any error injected by the logical circuitry
above that which is left over after distillation. The distance
required for the next level down can then be determined by,
in this example, pi−1 = 3

√
ptop/35 for the 15-to-1 protocol,

which gives distance di−1, and so on until pi > pin.

FIG. 4. The concept of balanced investment. During the initial
rounds of distillation smaller surface codes can be used to encode the
logical information. The factory requires only logical surfaces of the
distance corresponding to the target error rate of the round in which
that qubit is involved. This target in each round will depend on the
final error target, the protocol being used to achieve it, and the error
rate of the raw state.
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FIG. 5. Space-time overheads of producing both (a) and (b) |T 〉 states and (c) and (d) |Toff〉 states. Note that module checking is more
beneficial when one of the rounds of distillation is Toffoli.

The length of time Ti for each round of distillation can be
simply determined by the protocol used and how many times
we attempt it before abandoning the round. We assume that
measurements can be completed in one time step, and the time
scale of the CNOT gates, preparation, and A gates is dominated
by the requirement for d rounds of stabilization afterwards.
Therefore, we let the time for each of these be d × tsc. The
time taken to implement the distillation protocol in round i is
then

τi =
⎧⎨
⎩

11tsc × d, round i uses Bravyi-Haah,

12tsc × d, round i uses Toffoli,
13tsc × d, round i uses Reed-Muller.

(18)

B. Clock-rate zoning

Balanced investment also allows another advantage. In the
context of surface code computing, the distance of the code is
relevant for not only the spatial dimensions of the computer
but also the execution time. A surface code of distance d

must undergo d rounds of parallel stabilizer measurements to
protect from measurement errors. As such, the time taken for
a logical operation is proportional to d (except those which
can be handled in software), and therefore, using balanced
investment, the initial rounds of distillation will take less time.
In the hypothetical case that a round of distillation leads to
a squaring of the input error rate, this would correspond to
a doubling of the code distance required by the next round
(by the exponential suppression of error with distance of a
subthreshold surface code). Therefore, one can repeat the first
round of distillation twice in the time taken for the second
round of distillation to be completed. This increases the chance
that all the necessary magic states for the second round will
have been produced in time for the next round of distillation,

without the need to decrease the rate of the factory. As such,
the time taken for a round to complete in the distillation factory
is Ti = τi ti , where ti is the number of attempts that you allow
at each round. In all our simulations, any “idle time” that the
qubits experience is counted towards the space-time cost.

C. Numerical simulations

We have therefore arrived at the expression for the full
space-time volume V in qubit rounds occupied by a factory,

V(εin,pg,N ,{ki},{ti},Psuc,alg)

=
∑r

i=1 QiTid
2
i∏r

i kiPsuc,i
=

∑r
i=1 Qiτitid

3
i∏r

i kiPsuc,i
, (19)

where ki labels the magic-state protocol used at each round
and Pi is the probability that round i of distillation will
succeed in producing enough magic states to feed the next
round. All rounds must succeed for the factory to successfully
output

∏r
i ki magic states. As discussed, V is a function of

several variables, the raw magic-state error rate εin, the error
of gate operations pg, the total states required N , the protocol
chosen {ki}, the repetitions allowed in each round {ti}, and
the probability with which you wish the algorithm to succeed
Psuc,alg.

In practice we calculate V for one, two, and three rounds
of distillation using combinations of the Bravyi-Haah, Reed-
Muller, and Toffoli protocols with our proposed implementa-
tions, with both block and module checking, and a variety of
combinations of ti . We then search for the most space-time
efficient method of producing either T or Toffoli magic states,
given a pg, assuming εin = 0.4pg, the number of magic states
desired, and an arbitrary choice of 90% for Psuc,alg.
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Figure 5 shows the results of these simulations which
suggest that module checking can provide an improvement
of a factor of 3 in the space-time overhead in certain parameter
regimes. We also see that in some regions module checking can
be detrimental by a small amount, such as near the transition
from i to i + 1 rounds of Bravyi-Haah.

We use the numbers we have generated to estimate the
size of a magic-state factory required to perform some
postclassical factoring tasks using Shor’s algorithm. Our
results are summarized in Table II, in which we approximate
Shor’s algorithm as modular exponentiation, as this is by

FIG. 6. To produce T magic states at a “time-optimal” rate the
factory must, on average, produce states at a rate equal to the fastest
rate at which they can be used in sequence by an algorithm. In this
paper, where we have assumed that tsc = 10tmeas/ff , this means ten
magic states must be produced on average every tsc to keep up with
the time-optimal implementation of the algorithm. As this figure
makes clear, it is indeed possible to produce a given number of magic
states faster (slower) than this using more (fewer) qubits. Each data
point represents one possible magic-state factory given the input error
and target number of 1016 T magic states; only the factories near the
boundary between possible and impossible factories are shown. Not
shown in the lower right of each graph are myriad other possible
factories of lower rate and higher overhead. As seen clearly in (a),
doubling the size of the factory can allow one to more than double
the rate of magic-state production when the larger factory allows the
use of the higher-k (and therefore higher-rate) block codes. This point
is less evident in (b), where only two rounds of distillation can be
sufficient and the higher-k block codes are not necessarily optimal.

far its most expensive part, and choose the minimum Toffoli
gate-count implementation, which has Toffoli count and depth
equal to 40N3 for an N bit number [43]. We then determine
the minimum possible space-time overhead per magic state
for this task and also the smallest possible factory, in terms
of physical qubits, that can produce all the magic states
necessary while keeping up with a time-optimal quantum
computation [14].

The smallest possible factory is not necessarily the most
space-time efficient factory possible: these factories tend to
use larger k blocks which can make the factory formidably
vast (see Fig. 2) but able to produce more qubits in the same
time as lower-k protocols. However, these may well produce
magic states much faster than required by the fastest possible
implementation of the algorithm. Figure 6 shows that it is
possible to use fewer qubits than required by the time-optimal
implementation and perform your computation at a reduced
speed. Equally, it is, of course, possible to increase the size of
the factory to produce magic states at a faster rate. In this case,
though, the extra qubit overhead is effectively wasted unless
the computer is performing many calculations in parallel.
We find that all the magic states required for a time-optimal
factorization of a 1000-bit number can be produced with a
surface code magic-state factory of 6.3 million “data qubits” if
the infidelity of operations on physical qubits is 10−4. This is
based on the cost of d2 physical qubits to store the information
in the rotated lattice surface code [29]. However, for many
architectures this number must be doubled to provide ancillas
responsible for syndrome extraction. In this case the physical
qubit overhead would be ∼13 million.

A summary of the time and space overheads for some
example Shor tasks can be found in Table I. We selected
Shor’s algorithm as a benchmark as the number of non-Clifford
gates required has been well studied and these results have
been used in previous analyses. We note that due to the large
resource overhead that we have demonstrated, early quantum
computers may focus on other problems, particularly in

FIG. 7. The scaling of resource cost in qubit rounds per magic
state is not worse than that of the surface code. This corroborates the
predictions of Raussendorf et al. [28] and suggests that the asymptotic
overhead scaling ∼O( log(N )3) of the surface code is applicable to
universal fault-tolerant computing with gate counts in the regime of
practical interest. Lines are fitted functions of the form V(pg,N ) =
a log(N )b + c.
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quantum chemistry. A recent analysis of some such problems
[44] demonstrates that they are solvable with overheads lower
than we find here, albeit that work makes more optimistic
assumptions of gate times and fidelities.

Of significant interest is how the cost of magic-state dis-
tillation compares to the surface code overhead. Raussendorf
et al. (see Sec. 6.2 of Ref. [28]) were the first to note that
using balanced investment in a magic-state distillation leads
to a constant factor overhead compared to the CNOT gate. Our
numerical results in Fig. 7 show a ratio between T -gate cost and
CNOT cost in the range of ∼150–310 when 1010 < N < 1030.
This ratio is much smaller than estimated by Raussendorf et al.,
who did not make use of Bravyi-Haah distillation routines. A
similar ratio can be extracted from the data tables provided in
Ref. [3], although the numbers are not directly comparable.
For instance, we also count the space-time volume due to idle
qubits, while they wait for distillation circuits to succeed.

VII. CONCLUSIONS

We proposed the notion of gauge-MSD, which is faster
and uses fewer ancillas than previous realizations of Bravyi-
Haah magic-state distillation. We further introduced module
checking as a means to exploit correlations and found it
gave an additional factor of ∼3 reduction in some parameter
regimes. Fowler et al. [3] considered realizing Bravyi-Haah
using braiding and found that Bravyi-Haah offered only a
modest factor ∼3 improvement over the first magic-state
proposal that used Reed-Muller codes [1]. Therefore, our
gains are comparable to, and build upon, other advances in
the field. The work of Bravyi and Haah predicted a much
greater improvement because they quantified cost by the
expected conversion efficiency of raw to high-fidelity magic
states. In a fully costed analysis, which we perform here,
error correction costs overwhelm and dominate the cost of
magic-state factories. We saw that an efficiently designed
factory using balanced investment is entirely limited by the
surface code cost, so refinement in distillation protocols can
offer only constant factor improvements.

It is likely that this analysis represents an overestimate of the
space-time overhead of the implementations of the distillation
circuits we describe. We have assumed the need for d rounds
of surface code measurements after every two-qubit gate.
However, it is not clear that this is necessary when performing
transversal gates. In the implementation of Bravyi-Haah (see
Fig. 1) it may prove feasible to perform d rounds of error
correction only after, say, the completion of each of the
four steps described, reducing the time overhead from 11tscd

to 4tscd [45]. Our cost analysis here could thus be further
developed by considering the effect on the performance of
the underlying surface code if multiple transversal operations
were performed between rounds of error correction. However,
such simulations lie beyond the scope of this paper.

Three-dimensional (3D) gauge color codes [7,25] and other
recent ideas do not require magic states. But they have
their own hidden costs. For 3D gauge color codes, spatial
overheads scale as ∼O( log(N )3), and time overhead scales
as O(1). Using balanced investment and surface codes, we
see similar asymptotic scaling of resources. However, current
evidence indicates an order of magnitude worse phenomeno-
logical threshold for color codes [11,12] compared to the

phenomenological threshold for the surface code. Although
a full circuit-based threshold has not yet been determined, it is
unlikely to challenge that of the surface code due to the higher
weight stabilizers required. This points towards 3D color codes
requiring physical error rates below 0.1%. Resource costs are
heavily influenced by proximity to threshold, so 3D color codes
seem to require significantly lower physical error rates before
they can start to compete with surface codes augmented by
magic states. Therefore, with current technology and fidelities,
known schemes for avoiding magic states are a false economy.
An additional benefit of the magic-state paradigm is that it can
also eliminate the additional burden of gate-synthesis costs by
preparing exotic magic states [40,41,46–49].
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APPENDIX A: COMPARISON WITH BRAIDING

Here we discuss how our results compare with prior work
on braiding defects in the surface code. It has been shown that
Bravyi-Haah can be realized in constant time [3] assuming
the architecture supports constant time implementations of
multitarget CNOT gates (in time tMT−cnot). This has time cost

t
(2)
block = 12tMT−cnot + tA + tprep + tinject + tmeasure, (A1)

where tinject is the time to inject a magic state into the circuit
and we can infer tinject = tcnot + tmeasure.

In the standard circuit model, multitarget CNOT gates do not
take constant time to implement. In the braiding picture, using
ancillary defects, this is possible. The “time” cost of braiding
12 such gates is 12 × 1.25 × d × tsc. The total space-time cost
was reported as (96k + 216) so-called plumbing pieces, which
converts into ( 5

4 )3(96k + 216) qubit rounds. It has recently
been shown that lattice surgery also supports multitarget CNOT

gates in constant time [50]. Although the Bravyi-Haah protocol
was not considered in this setting, one can infer a lattice surgery
time cost also scaling with ∼12d, but the qubit cost is not
currently known.

The above discussion implies a modest space-time saving
of using gauge-MSD in a distributed architecture rather than
braiding in a nearest-neighbor picture. We remark that gate
times and qubit expense will vary on a much greater scale
between different hardware platforms. In particular, the long-
range gates of distributed schemes are often much slower, with
photonic protocols impeded by photon loss and the potential
need for entanglement purification [31–38].

APPENDIX B: FORMAL TOOLS

1. Stabilizer Bravyi-Haah codes

Let us begin with some basic concepts from code theory
and related notation. Stabilizer codes are subspaces described
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by an Abelian group called the stabilizer S, which is a
subgroup of the Pauli group. The projector onto the code
space is � ∝ ∑

s∈S s, so that s� = � for all s ∈ S. There
always exists a minimal set of operators {S1,S2,...Sm} that
generates the group, which we denote byS = 〈S1,S2, . . . ,Sm〉.
For the Calderbank-Shor-Steane (CSS) codes, these generators
can be chosen so that they are all either X type or Z

type, as we define shortly. If g is a binary vector of
length n, we use Z[g] = ⊗n

j :[g]j =1Zj and, similarly, X[g] =
⊗n

j :[g]j =1Xj . We say Z[g] are Z-type operators and X[g] are
X-type operators. Therefore, a CSS code has generators S =
〈Z[f1], . . . ,Z[fa],X[g1], . . . ,X[gb]〉. Commutation of X[g]
and Z[f ] is equivalent to (f,g) = 0, where we use the inner
product (f,g) := fg (mod 2).

Bravyi and Haah introduced the notion of a G matrix
which is a binary matrix composed of two submatrices, G1

and G0. We label the rows of G as {g1, . . . ,gb,gb+1, . . . gm},
where the rows {g1, . . . ,gb} belong to G0 and the rows
{gb+1, . . . ,gm} belong to G1. These matrices define a CSS
code as follows. The rows of G0 are some set {g1, . . . ,gb}
that specifies the X-type generators {X[g1], . . . ,X[gb]}. The
Z-type generators are given less explicitly. Denote G⊥ as
the binary vector space orthogonal to both G0 and G1, that
is, G⊥ := {g : (f,g) = 0; ∀ f ∈ G0,G1}. Note that Bravyi and
Haah required that G0 ⊂ G⊥. We define G⊥ as some (minimal)
matrix with rows {f1, . . . ,fa} that generate the group G⊥
under row-wise modular addition. This defines the Z-type
generators {Z[f1], . . . ,Z[fb]}. Note that there exist many
different choices for G⊥, which all result in the same CSS
code with Z-type generators {Z[f1], . . . ,Z[fa]}.

This completes the description of the stabilizer code space,
although we also need to know how information is stored
within the subspace. We have that the X operator for the kth
logical qubit is X[gk], where gk is a row of G1, so b + 1 �
k � m. These are representatives of the logical operators, with
equivalent logical operators differing by only a stabilizer. For
Bravyi-Haah protocols all rows in G1 have odd weight, so we
may also take the Z operator for the kth logical qubit as Z[gk],
where gk is the kth row of G1.

2. Subsystem Bravyi-Haah codes

Given a G matrix, we define a subsystem code with
stabilizer S̃ := 〈Z[g1], . . . ,Z[gb],X[g1], . . . ,X[gb]〉, where
{g1, . . . ,gb} are the rows of G0. Notice that now there are equal
numbers of X and Z stabilizers, and they both correspond to
the rows of G0. Bravyi and Haah considered a class of matrices
obeying triorthogonality conditions, which require that G0 ⊂
G⊥. Therefore, we have that S̃ ⊂ S, with the subsystem code
having strictly fewer stabilizers than the original Bravyi-Haah
code. We denote the subsystem projector as �̃ ∝ ∑

s∈S̃ s.
We further take the logical operator for the subsystem code
to be identical to those of the original Bravyi-Haah code.
This leaves some degrees of freedom as neither stabilizers
nor logical operators. We define the gauge group Sg :=
〈Z[f1], . . . ,Z[fa],X[f1], . . . ,X[fa]〉, where {f1, . . . fa} are
rows of G⊥. Notice that Sg contains S by virtue of
G0 ⊂ G⊥.

Let us recap. Our subsystem code is defined by its stabilizer
S̃ and gauge group Sg , whereas the original Bravyi-Haah

code has stabilizer S, and these groups satisfy S̃ ⊂ S ⊂ Sg .
However, Sg is inflated in size compared to S and is no longer
Abelian. Furthermore, one can verify that Sg does not contain
any logical operators as follows. First, note that Bravyi and
Haah use triorthogonal (also called triply even) matrices where
for any f,g ∈ G we have (f,g) = 1 if and only if f = g and
f ∈ G1.

As logical operators we take X[l] and Z[l] for each l in
G1. From the triorthogonality of G we see that X[l] and
Z[l] anticommute, but X[l] and Z[l′] commute when l 	= l′.
To properly describe a subsystem code, where measuring the
gauge operators does not damage the logical qubits, we require
that the logical operators are not elements of the gauge group
Sg . Recall that the gauge group is defined by vectors that reside
in the dual code G⊥. Therefore, every gauge operator must
have a vanishing inner product with every row in G. However,
l ∈ G, and (l,l) = 1, so l is not in the dual space, and the
logical operators are not gauge operators. This completes our
proof that the logical operators indeed lie outside the gauge
group.

APPENDIX C: REALIZING THE BRAVYI-HAAH
PROTOCOLS

There are many routes to realizing magic-state distillation.
Assuming perfect Clifford operations, different realizations
suppress errors equally but differ in terms of temporal depth
and required ancillas. Many of these potential realizations
have only been sketched, without a complete assessment of
resources involved. Here we introduce a method particularly
suitable for architectures implementing logical gates via
transversal operations or lattice surgery [29]. Conceptually,
we are inspired by notions of subsystem codes and gauge-
fixing techniques and so call our approach gauge-MSD. We
consider only even k with k ∈ {2,6, . . . ,4m + 2, . . .} as then
the Bravyi-Haah codes have transversal T gates. For k ∈
{0,4,8, . . . ,4m, . . .}, the Bravyi-Haah codes have transversal
T gates only up to a nonlocal Clifford correction.

1. Outline of protocol

Here we present an outline of gauge-MSD, with details of
how to realize multiqubit Pauli measurements postponed until
the next section. First, we specify some notation. Refer back to
Appendix B for definitions of the G matrix and G⊥ matrix. Let
R be a binary matrix such that G⊥ · R = 1l (mod 2), which
is ensured to exist by virtue of the fact that G⊥ is full rank.
Furthermore, let M be a binary matrix such that M · G⊥ = G0

(mod 2), which must exist since G0 is in the span of G⊥.
Explicit examples of G⊥, R, and M will be given in the next
section. Measurement outcomes will be recorded in binary: 0
for +1 eigenvalues and 1 for −1 eigenvalues. Let O, X , and
Z be disjoint sets:

O = {6 + 3j |j = 1,2, . . . k},
X = {1,2,3},
Z = {4,5,6,7,8,7 + 3j,8 + 3j |j = 1,2, . . . ,k}. (C1)

Associated with these sets are binary matrices that allow us to
compute Pauli corrections; HZ is a k-by-|X | matrix and HX is
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a k-by-|Z| matrix as follows:

4 5 6 7 8 10 11 13 14 16 17 . . .

HZ =

⎛
⎜⎜⎝

0 1 1 1 1 1 1 0 0 0 0
0 1 1 1 1 0 0 1 1 0 0 . . .

0 1 1 1 1 0 0 0 0 1 1
...

...

⎞
⎟⎟⎠(C2)

1 2 3

HX =

⎛
⎜⎜⎝

1 1 0
1 1 0
1 1 0

...

⎞
⎟⎟⎠ (C3)

where the numbers above the columns correspond to the
elements in sets Z and X . Last, we will also make use
of a k-by-dim(G⊥) matrix denoted Q that satisfies G1 =
W + QG⊥, where W has Wj,6j+3 = 1, Wj,1 = Wj,2 = 1 and
is zero everywhere else. An example Q is given in the next
section.

We now state the protocol:
(1) Measure all Z[fk], where fk is the kth row of G⊥,

recording outcomes as μ = (μ1,μ2, . . . ,μk).
(2) Apply A[w], where w = Rμ (mod 2).
(3) Measure all X[fk], where fk is the kth row of G⊥,

recording the outcome as γ = (γ1,γ2, . . . ,γk).
(4) Declare success if Mγ = (0, . . . ,0) (mod 2) and failure

otherwise.
(5) Measure qubits in set X in the X basis, recording

outcomes as mX. Simultaneously, measure qubits in set Z
in the Z basis, recording outcomes as mZ .

(6) Qubits in X and Z are discarded, while qubits in set O
are retained as output as qubits (1,2, . . . ,k).

(7) Apply Pauli corrections X[HZmZ]Z[HXmX + Qγ ], or
update the Pauli frame accordingly.

After steps 1 and 2, the state is deterministically projected
by �Z ∝ ∑

s∈SZ
s, where SZ := 〈Z[f1], . . . ,Z[fa]〉, exactly

as in the original Bravyi-Haah protocol. After step 3, the
system is an eigenstate of (−1)γkX[fk], and we can associate
some projector with �X,γ with this process. The postselection
in step 4 ensures the system is an eigenstate of +X[gk], where
gk is the kth row of M · G⊥. Since we defined M such that
M · G⊥ = G0, we have that gk are the rows of G0. It follows
that �X,γ = �X�X,γ , where �X is the projector for the X

stabilizer of the Bravyi-Haah stabilizer code. Combining steps
1–4, we have the projections

�X,γ �Z = �X,γ �X�Z = �X,γ �, (C4)

where � = �X�Z is the full projector onto the Bravyi-Haah
stabilizer code space.

We have obtained the desired � projection required by the
Bravyi-Haah protocol. But we have picked up an additional
�X,γ . This additional projection results from measuring some
gauge operators of the subsystem variant of Bravyi-Haah.
Thus, the logically encoded qubits are unharmed, but there
has been a change in the gauge degrees of freedom.

In step 5, we perform single-qubit measurements to isolate
the k logical qubits from the n qubits in the subsystem code.
Recall that in the original presentation of Bravyi-Haah we
have logical operators Z[lj ] and X[lj ] for the j th logical
qubit, where lj is the j th row of G1. The measurements
localize these logical operators onto single qubits, up to a
Pauli correction depending on the measurement outcomes.
That is, the measurements cause the state to become stabilized
by some new ±Z[w] operators, and every logical Z[lj ] can
be multiplied by these operators to obtain a single-qubit ±Z

operator acting on the (6 + 3j )th qubit. It is straightforward to
verify that the ± sign is corrected to + by the Pauli correction
X[HZmZ]. To show that X logical operators are also localized
on a single output qubit, we first multiply X[lj ] by X-type
gauge operators until it acts on qubits 2, 3, and (6 + 3j ).
Measuring qubits 1, 2, and 3 completes the localization of
X[lj ] onto the (6 + 3j )th qubit. The required Pauli operator is
now X[HZmZ + Qγ ], where there is also some dependence
on the eigenvalues of gauge operators obtained in step 3.

2. Implementing Pauli measurements in minimum depth

Implementing the protocol requires a set of Z measure-
ments, followed by a set of X measurements. In the original
standard implementation the X measurements involved many
qubits and so were difficult to implement. However, the
previous section shows that the difficult X measurements
can be replaced with lower-weight measurements mirroring
the Z measurements performed. The complexity of these
measurements depends on the row weights of G⊥. The matrix
G⊥ must generate the space G⊥, but there is some freedom
in how we choose the generating rows. In the work of
Bravyi-Haah, G⊥ was only implicitly defined (as the dual of
G), leaving unclear how much time it would take to implement
the required measurements. It is desirable that G⊥ is as sparse
as possible to minimize the resource overheads. Therefore,
we wish to find a very sparse G⊥. We found a family of G⊥
matrices where all rows, except one, are weight 4 and the
single exception has weight k + 2. We present the exact form
of this G⊥ for k = 2, along with the associated R, M , and Q

matrices used in the previous section:

G⊥ =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 0 0 1 0 1 1 0 0 0 0 0 0 0
0 1 0 1 1 0 1 0 0 0 0 0 0 0
0 0 1 1 1 1 0 0 0 0 0 0 0 0
0 0 0 0 1 0 0 1 1 1 0 0 0 0
0 0 0 0 0 1 0 1 1 0 1 0 0 0
0 0 0 0 0 0 1 1 0 1 1 0 0 0
0 0 0 0 0 0 0 0 1 1 0 1 1 0
0 0 0 0 0 0 0 0 0 1 1 0 1 1
0 0 1 0 0 0 1 0 1 0 0 1 0 0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

, (C5)
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R =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 0 0 0 1 1 0 0 0
0 1 0 1 0 1 0 0 0
0 0 1 1 1 0 0 0 0
0 0 0 0 0 0 0 0 0
0 0 0 1 0 0 0 0 0
0 0 0 0 1 0 0 0 0
0 0 0 0 0 1 0 0 0
0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0
0 0 1 1 1 1 0 0 1
0 0 1 1 1 1 1 0 1
0 0 1 1 1 1 1 1 1

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

, Q =
(

1 1 0 0 0 1 0 0 0
1 1 0 0 0 1 0 1 0

)
,

M =
⎛
⎝0 1 0 1 1 1 1 1 0

0 0 1 1 1 1 0 1 0
1 1 1 1 1 1 0 0 0

⎞
⎠.

A Mathematica script for generating G⊥ for any k is provided in the Supplemental Material [51], which also verifies that G⊥
is full rank and dual to G. As one further example, we find for k = 6 that

G⊥ =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 0 0 1 0 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 1 0 1 1 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 1 0 0 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 1 0 1 1 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 1 1 0 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 1 1 0 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 1 1 0 1 1 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 1 1 0 1 1 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 1 1 0 1 1 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 0 1 1 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 0 1 1 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 0 1 1 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 0 1 1 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 0 1 1 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 0 1 1
0 0 1 0 0 0 1 0 1 0 0 1 0 0 1 0 0 1 0 0 1 0 0 1 0 0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

. (C6)

Notice that the bottom row has weight exceeding 4. The
measurements corresponding to weight-4 rows can be im-
plemented with each measurement using a single ancilla in
the |+〉 state and four entangling gates (control Z or control
X depending on the measurements). Therefore, for these
measurements it is possible that all these gates can be realized
in four time steps while respecting that a qubit can be involved
in only a single entangling gate at a time. Unfortunately,
there is a single row of G⊥ with weight k + 2, so using
a single ancilla to perform this measurement would result
in a growing time cost with k. Therefore, for this single
measurement we make use of a cat state |0〉⊗k+2 + |1〉⊗k+2

so that the entangling gates can be performed in parallel. The
cat state itself is constructed by merge operators on |+〉⊗k+2

qubits. The merge operations project onto |00〉〈00| + |11〉〈11|
or |01〉〈01| + |10〉〈10| subspaces and so commute with the
control gates, so the cat state can be built concurrently with
the control gates. This opens the possibility of realizing
each round of measurements in four times steps but depends

on whether the entangling gates can be scheduled in an
economical manner. The scheduling problem is equivalent to
a graph coloring problem, and we find that it can be solved
in four time steps (e.g., using four colors) as in Fig. 1. We
independently confirmed this using an automated solver of the
edge colorability problem for k up to 40; see supplementary
Mathematica script for details.

APPENDIX D: REED-MULLER CONNECTIVITY

The usual form of the 15-qubit punctured Reed-Muller code
G matrix is

GRM =

⎛
⎜⎜⎜⎝

1 1 1 1 1 1 1 1 0 0 0 0 0 0 0
1 1 1 1 0 0 0 0 1 1 1 1 0 0 0
1 1 0 0 1 1 0 0 1 1 0 0 1 1 0
1 0 1 0 1 0 1 0 1 0 1 0 1 0 1
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

⎞
⎟⎟⎟⎠.

(D1)
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For our purposes an efficient choice of dual is

G⊥
RM =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 0 0 0 1 1 1 1 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 1 1 1 1 0 0 0
0 0 0 0 0 0 0 0 1 1 0 0 1 1 0
0 0 0 0 0 0 0 0 1 0 1 0 1 0 1
1 1 1 1 0 0 0 0 0 0 0 0 0 0 0
1 1 0 0 1 1 0 0 0 0 0 0 0 0 0
1 0 1 0 1 0 1 0 0 0 0 0 0 0 0
0 1 1 0 0 0 0 0 0 1 1 0 0 0 0
0 0 1 0 1 0 0 0 0 0 1 0 1 0 0
1 0 0 0 1 0 0 0 1 0 0 0 1 0 0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

,

(D2)
which has a maximum row weight of 4 and a max column
weight of 5. There is a five-colorable graph associated with
this matrix shown in Fig. 8, similar to what we found for
the Bravyi-Haah protocol. It is well known that the Reed-
Muller code can also be viewed as a subsystem code, so the
Pauli-X measurements can clone the pattern of the Pauli-Z
measurements. This approach yields the realization shown in
Fig. 8.

APPENDIX E: TOFFOLI PROTOCOL

The Toffoli protocol converts eight T states into one Toffoli
state,

|Tof〉 = 1√
8

∑
a,b,c∈{0,1}

(−1)abc|a,b,c〉. (E1)

It has previously been described in the circuit picture with its
performance found by brute-force counting of errors [26,27].
Here we consider an equivalent protocol (with the same
performance when using block checking) but with the G

matrix formalism of the Bravyi-Haah protocols. The G matrix
achieving this is simply

GTof =

⎛
⎜⎝

1 1 1 1 0 0 0 0
1 1 0 0 1 1 0 0
1 0 1 0 1 0 1 0
1 1 1 1 1 1 1 1

⎞
⎟⎠, (E2)

where proof that this distills was given in Refs. [40,41]. Here
we show in Fig. 9 how to convert this abstract protocol to a
realization with low space-time overhead.

APPENDIX F: PROOF OF ERROR TRACKING

When iterating distillation protocols, we have a collection
of inputs which may have been outputs of an earlier round.
We illustrate the structure in Fig. 2, where we introduce the
terminology of branches and modules. Our proof proceeds
by considering how an individual module maps probability
distributions over its inputs to a probability distribution over
outputs. If a level-l module uses many nl → kl blocks, then
it requires nl branches of inputs from earlier rounds. If each
branch carries Nl qubits, then we need Nl instances of the
nl → kl protocol so that the whole module maps Nlnl → Nlkl

qubits. The size of Nl equals the product of the kl values for
all earlier rounds, which can be verified by simply counting
back through the tree.

FIG. 8. Squares represent magic states to be distilled, and circles
are ancillas used to implement measurements in Reed-Muller. Edges
show required hardware connections and associated required control-
phase gates. Edges show time ordering of control-phase gates, e.g.,
red, purple, green, blue, and gold (dark to light gray), demonstrating
the required entanglement can be established in five time steps.
Sometimes we call this the graph representing GRM

z .

We use x(j ) ∈ ZN
2 to denote the error distribution of the

input contribution from the j th branch and use probability
Pr(x(j )) for the probability of this event. For now we take
this probability as given and note only that for a block that
quadratically suppresses noise, we have that Pr(x(j ) 	= 0) is,
to first order, proportional to ε2l

after l rounds of distillation.
If a single block of an nl → kl protocol is described by a
matrix G, then N copies within a module are described by
G = G ⊗ 1lN , where ⊗ is the tensor product and 1lN is the
identity matrix of dimension N . On the first round, N = 1, so
we simply have G = G. Before proceeding we must clarify
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FIG. 9. Squares represent magic states to be distilled, and circles
are ancillas used to implement the stabilizer measurements which
project the T states into the Toffoli state. As before, edges show
required hardware connections and associated control-phase gates.
Edges show time ordering of control phase gates, e.g., red, purple,
green, blue, and gold (dark to light gray), demonstrating the required
entanglement can be established in four time steps for the Z stabilizers
and five time steps for the single X stabilizer, which utilizes just two
ancillas. We call this the graph representing GToff

z .

how this tensor product structure relates to the input strings
x. We define δ(j ) as a length-nl binary vector with entries 1
in the j th location and 0 everywhere else. It follows that x =∑

j (δ(j ) ⊗ x(j )), so thatGx = ∑
j (Gδ(j ) ⊗ x(j )). This ordering

ensures that no two qubits from the same branch collide into the
same block, which must be prevented because of correlations
within branches. We call this canonical ordering, and it is
assumed throughout. Other orderings exist that prevent such

collisions, such as an arbitrary permutation of qubits within any
branch. Potentially, such permutations could perform better
or worse than the canonical choice, leaving room for further
optimization. We continue with the canonical choice as it is
particularly natural and amenable to analysis.

After a module passes module checking, the output branch
has errors distributed as

Prl(y) = 1

Psuc,l

∑
{x:G0x=0,G1x=y}

Pr(x), (F1)

where the denominator is a normalization constant accounting
for the success probability

Psuc,l =
∑

y

∑
{x:G0x=0,G1x=y}

Pr(x). (F2)

For our proof, it is useful to work with unnormalized
probabilities that we write as

Pl(y) =
∑

{x:G0x=0,G1x=y}
Pl−1(x), (F3)

where we will renormalize later. Herein, we focus on the
smallest weight errors that can lead to a particular y. The
no-error case (y = 0) occurs when the initial states had no
errors, so

Pl(0) � (1 − ε)ml , (F4)

where ml counts the total number of raw qubits needed for l

rounds of distillation, namely, ml = ∏
j=1,...,l nj . For protocols

quadratically suppressing noise, 2l is the smallest number
of errors that can evade detection. Therefore, we take the
approximation

Pl(y) � Cl(y)ε2l

(1 − ε)ml−2l

, (F5)

where Cl(y) counts the number of different weight-2l errors
that lead to output y. For one round of distillation this is simply

C1(y) = η(y). (F6)

Recall that η(y) was defined back in Definition 1 as a function
that counts precisely the number of weight-2 errors that lead
to a particular output.

Finding Cl(y) for higher levels (l > 1) is more involved.
The relation between input and output error strings is y = G1x

(assuming G0x = 0), so x vectors of weight 2 can result in
y vectors of a variety of weights, potentially increasing the
weight, so some care is needed.

Consider a module (on some l > 1 level) where some of
the incoming branches contain errors. The probability of two
branches a and b containing errors is

Pl−1(x(a))Pl−1(x(b))Pl−1(0)nl−2

� Cl−1(x(a))Cl−1(x(b))ε2l

(1 − ε)ml−2l

. (F7)

These errors may contribute to undetected errors leaving the
module. Fewer or more branch failures do not provide leading-
order contributions. Consider when only one branch contains
any errors. After this branch is split up and fed into different
blocks, each nl → kl block can contain at most one error, so
it will be detected. If t > 2 branches contain an error, the

032338-15



JOE O’GORMAN AND EARL T. CAMPBELL PHYSICAL REVIEW A 95, 032338 (2017)

probability will be weighted by εt∗2(l−1)
, which for small ε is a

rare process compared to two failed branches.
Furthermore, with two erroneous branches a and b, we

can further deduce that either x(a) = x(b) or the error will be
detected. To see this, we begin by noting that errors will be
undetected only if (G0 ⊗ 1lN )x = 0 (mod 2), and we have

(G0 ⊗ 1lN )x = (G0δ
(a)) ⊗ x(a) + (G0δ

(b)) ⊗ x(b). (F8)

Both G0δ
(a) and G0δ

(b) are columns of G0 and so are nonzero.
Since no terms are zero, it can vanish mod 2 only if both
G0δ

(a) = G0δ
(b) and x(a) = x(b). This is a central point of

the proof, so we will give a second explanation of what is
happening here. Note that if x(a) 	= x(b), then without loss of
generality x(a) had an error in at least one location that is absent
from x(b). If the error’s location is t , then the t th distillation
block will receive an input with only one error and must detect
it. We conclude that the dominate source of errors is from the
identical failure of pairs of branches.

To simplify notation, let u = δ(a) + δ(b) and f = x(a) =
x(b), so we have the more concise expression x = u ⊗ f for
relevant errors, with u being weight 2. Above we noted that
an undetected error must satisfy G0δ

(a) = G0δ
(b), which is

equivalent to G0u = 0 (mod 2). The output from such an
error is y = (G1 ⊗ 1lN )(u ⊗ f ) = (G1u) ⊗ f . Therefore, we
can now deduce that

Pl(v ⊗ f ) =
∑

{u:G0u=0,G1u=v}
Pl−1(f )2Pl−1(0)nl−2

by counting over all u that lead to the same v. Therefore,

Cl(v ⊗ f ) =
∑

{u:G0u=0,G1u=v,|u|=2}
Cl−1(f )2.

The summation is over weight-2 vectors u, but the terms are
independent of u, so we find that

Cl(y) = Cl(v ⊗ f ) = ηl(v)Cl−1(f )2,

where we have again used the η notation introduced in
Definition 1. For two rounds of distillation, l = 2, so Cl−1 =
C1, and we can end the recursion by using Eq. (F6), so that

C2(y) = C2(v ⊗ f ) = η2(v)η1(f )2. (F9)

However, if we have more than two rounds, notice that the
relevant f will again have the form f = v′ ⊗ f ′, so that

Cl(y) = ηl(v)[Cl−1(v′ ⊗ f ′)]2

= ηl(v)[ηl−1(v′)Cl−2(f ′)2]2

= ηl(v)[ηl−1(v′)]2[Cl−2(f ′)]4 (F10)

and so on until we reach C1 and can use Eq. (F6) to end the
recursion.

From Cl(y) we have a good leading-order approximation
of the probability of an error Pl(y). The total (unnormalized)
probability of an error is

Bl =
∑
y 	=0

Pl(y) = ε2l

(1 − ε)ml−2l
∑
y 	=0

Cl(y)

= ε2l

(1 − ε)ml−2l

Cl, (F11)

where we have used the shorthand

Cl =
∑
y 	=0

Cl(y) =
l∏

j=1

(∑
v

ηj (v)2l−j

)
. (F12)

Equating also Al = Pl(0) = (1 − ε)ml , we find we have
reached the expression of Eq. (8). To renormalize the error
probability Bl , we simply divide through by the total prob-
ability Al + Bl , yielding one equation of Theorem 1. The
denominator Al + Bl represents the success probability of not
just a single module succeeding but all events feeding into
that module also succeeding. We are actually interested in the
success probability conditioned on previous modules being
successful, which is (Al + Bl) divided by (Al−1 + Bl−1)nl .
This divider comes from the unconditional success probability
of an (l − 1)-level module, (Al−1 + Bl−1), and the fact that nl

of these feed into an l-level module. This completes the proof
of Theorem 1.

APPENDIX G: NUMERICAL SIMULATIONS

1. Brute-force method

In simulating a magic-state factory it quickly becomes
apparent that a brute-force method of simulation is inade-
quate. The “brute-force” method simply involves randomly
generating a Boolean string of length

∏
l nl to describe the

input to the magic-state factory and performing calculations
of the stabilizers and logical output of each module of the
factory. The explicit procedure for a three-round factory is
given in Algorithm 1. For each module in round 1, a random
input is generated and tested until the stabilizer checks for
the module are passed. The logical output of each of these
successful modules is saved until enough have been generated
to feed into round 2. These outputs are shuffled according to
Eq. (F8) before entering round 2. Here the module checking is
performed again. If all the module checks are passed, then
we again proceed by feeding the logical output of round
2 to round 3, after shuffling. Having reached round 3, we
then determine the characteristics of this module by recording
where the module check fails and, if it succeeds, whether the
output of the module contains a logical (undetected error).

Clearly, a large number of iterations of this protocol are
required to obtain reliable statistics for the performance of
the factory. For example, our analytic treatment estimates
that with a raw magic-state error rate ε = 0.001 the rate of
undetected logical error of a round-3 module is ∼10−21. As
such, successfully simulating this by brute force would require
�1021 attempts at the algorithm to be made, not just to build
statistics but to ensure that enough instances of the third-round
module are generated in the first place. We find that the
simulation of two-round factories by brute force is achievable
for 2 < k < 50, but to simulate three rounds a different method
is required.

2. Rare-event method

An undetected error in the factory’s output after three
rounds of distillation is a rare event. To simulate these events
and gain adequate statistics we must use a method in which
we, as far as possible, eliminate the simulations of input
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FIG. 10. Numeric vs analytic. (a) Bravyi-Haah block protocols with two and three rounds of distillation. (b) Toffoli protocol followed by
one or two rounds of Bravyi-Haah. (c) One or two rounds of Bravyi-Haah followed by the Toffoli protocol. The close correspondence of our
analytic treatment of the factory and numerical simulations is demonstrated for two and three rounds of the magic-state distillation with module
checking. Points represent simulation data, while the lines are the corresponding analytic estimates as determined by Theorem 1. The protocols
are labeled by the k value of each round, which is set to be equal for each round of distillation. The global error, the probability of a logical
error anywhere in the output of the factory, is shown. For a “2-2-2” factory this is the probability of an error anywhere in the 8 output magic
states; for a “26-26-26” this corresponds to an error anywhere in the 17,576 magic states that this factory produces.

error configurations that we know cannot lead to a logical
error. Our chosen method of doing this proceeds as follows.
We know that a module has a chance of failing only if at
least two of the branches entering that module contain an
error. For a module in the third round, we focus on cases
where at least two of its input branches contain errors. We
do this using a process that can be called preselection, in
contrast to postselection. In postselection, we sample from
a distribution and reject instances that do not meet a certain
criterion. This is not feasible when the criterion (here having
at least two corrupt branches) is rare, so we instead construct
a new probability distribution conditioned on the criterion
being meet. The first step of the algorithm therefore is to first
decide how many error-containing branches will enter this
module, given that this number is �2 based on the statistics
already gathered for the rate of errors in the output of round-2
modules. Later, we analytically adjust for this process of
preselection.

For each of the “corrupt” branches entering round 3, we
know that it must originate from a round-2 module which
itself had two or more corrupt branches entering it. These
branches again would have originated in a round-1 module
(equivalently, a block) which had at least two errors fed to
it. We can thus greatly reduce the size of the simulation and
the number of iterations required by simulating only on a
subsection of the factory where these errors have occurred
(see Fig. 11). The probability of an undetected error after the
first round was determined analytically for Bravyi-Haah by
explicitly calculating the weight enumerator

W (k,ε) = 2
k∑

m is odd

(1 − 2ε)3m+4 +
k/2∑
m=0

(1 − 2ε)3(2m)

+ 6
k∑

m=0

(1 − 2ε)2k−m+4 +
k/2∑
m=0

(1 − 2ε)3(2m)+8,

(G1)
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FIG. 11. Rare-event method. When simulating the fictional fac-
tory of Fig. 2 with our rare-event method, only the red (darker gray)
highlighted parts of the factory are actively simulated, i.e., require
computation of the stabilizer outcomes and the logical state of the
outputs.

which allows analytic calculation of the global fidelity of the
output of a single round of distillation. The corresponding
result for the Toffoli protocol is given in Ref. [26].

Having chosen the number of failed branches that need to
enter round 3, we attempt to generate these failed branches.
We thus simulate the reduced factory, as described above,
discarding and repeating each module not only if the stabilizer
module check has failed but also when the check is passed and
the output does not contain a logical error. Using this method,
we eliminate the simulation of a vast number of the possible
input error strings, while holding smaller Boolean vectors in
memory at all but the last step, the full simulation of the module
in round 3. Some pseudocode is presented in Algorithm 2.

This method of simulation allows us to calculate the
correlated error rate as follows. A key number is the probability
pnum that two or more branches leaving round 2 of the factory
contain an error:

pnum = 1 − (
1 − ε

(2)
glo

)n3 − n3ε
(2)
glo

(
1 − ε

(2)
glo

)n3−1
, (G2)

where ε
(2)
glo is the probability that a branch exiting round 2

contains an undetected error, as determined by numerical
simulations of a two-round factory.

Using this allows us to determine the success probability
and the global error in the output of the round-3 module:

p(3)
suc = (

1 − ε
(2)
glo

)n3 + pnum(a3 + b3) (G3)

and

ε
(3)
glo = b3 pnum

psuc
(G4)

where b3 = #{ERROR}
#{SUCCESS}+#{FAIL}+#{ERROR} is the estimate of

the probability of a logical error in the output branch
of round 3 from the output of the simulation and a3 =

#{SUCCESS}
#{SUCCESS}+#{FAIL}+#{ERROR} .

We limit our simulations to a limited set of k values, with
ki = k for each simulation. This is an arbitrary choice and
simplifies the comparison made in Fig. 10. For three rounds
the simulations are limited to low k values, as these can be
simulated in a reasonable time frame and adequate statistics
can be gathered to infer the output error rate.

Algorithm 1. Brute-force simulation algorithm

1: select protocol: {k1,k2,kToff}
2: generate number of modules in each round:

{M1,M2,MToff} {Round One}
3: for i < M1 do
4: randomly generate binary string v length n1

5: measure stabilizers G0(k1).v
6: if stabilizers failed then return to line 3
7: end if
8: calculate logical output of module v = G1(k1)v
9: Append v to list of logical outputs V

10: end for
11: shuffle output of round 1 to firewall correlations V → V ′

{Round Two}
12: for j < M2 do
13: for each block ii in a round-2 module (there are k1) do
14: take (ii × j )th string of length n2 from V ′: v′

15: measure stabilizers G0(k2).v′

16: if stabilizers failed, than return to line 1
17: end if
18: calculate logical output of module w = G1(k2)v′

19: Append w to list of logical outputs W

20: end for
21: end for
22: shuffle output of round 2 to firewall correlations W → W ′

{Round Three}
23: for l < k1k2 do
24: measure stabilizers G0(k3)w′

25: if stabilizers failed then return FAIL
26: end if stabilizers passed
27: calculate logical output of module G1(k3)w′

28: Search for logical error in output
29: if logical error found then return ERROR
30: else logical error not found return SUCCESS
31: end if
32: end for

Algorithm 2. Rare-event simulation algorithm

1: select protocol: {k1,k2,kToff}
2: generate number of modules in each round:

{M1,M2,MToff}
3: generate number of corrupt modules in round 2: N2

{Round One}
4: for i < N2 do
5: generate number of corrupt round 1 modules N1

6: for j < N1 do
7: randomly generate binary string v length n1

8: measure stabilizers G0(k1)v
9: if stabilizers failed then return to line 6
10: end if
11: calculate logical output of module G1v

12: if there is a logical error, then Append v to list of
logical outputs V

13: else return to line 6
14: end if
15: end for
16: Pad V with zeros so it is length k1n2

17: shuffle output of corrupt module to firewall correlations
. . . V → V ′ {Round Two}

18: for each block ii in a round-2 module (there are k1) do
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19: take (ii)th string of length n2 from V ′: v′

20: measure stabilizers G0(k2)v′

21: if stabilizers failed, then return to line 6
22: end if
23: calculate logical output of module w = G1(k2)v′

24: if there is a logical error, then Append w to list W

25: else return to line 6
26: end if
27: end for
28: end for {Round Three}
29: Pad W with zeros so it is length k1k2n3

30: shuffle output of round 2 to firewall correlations W → W ′

31: for l < k1k2 do
32: measure stabilizers G0(k3)w′

33: if stabilizers failed,then return FAIL
34: end if stabilizers passed
35: calculate logical output of module G1(k3)w′

36: Search for logical error in output
37: if logical error found, then return ERROR
38: else logical error not found return SUCCESS
39: end if
40: end for
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