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We provide an example of a communication model and a distributed task, for which there exists a realistic
quantum protocol that is asymptotically more efficient than any classical protocol, both in the communication
and the information resources. For this, we extend a recently proposed coherent state mapping for quantum
communication protocols, study the use of coherent state fingerprints over multiple channels, and show their role
in the design of an efficient quantum protocol for estimating the Euclidean distance of two real vectors within a
constant factor.
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I. INTRODUCTION

Quantum information processing harnesses the power of
quantum mechanics in order to enhance the efficiency and
security of information and communication technologies.
This is illustrated, for instance, in nonlocal games, where
experiments have confirmed the violation of Bell inequalities
that correspond to the CHSH and other games [1–4]. Another
prominent example is quantum cryptography, where many
protocols with unconditionally stronger security than classi-
cally possible have been demonstrated, including quantum
key distribution, digital signatures, or coin flipping [5–7].
Unlike the above-mentioned cases, most quantum algorithms
are far from implementable with current technologies, with the
exception of nonuniversal boson sampling machines that have
been realized for small inputs [8–10].

Communication complexity is an ideal model for testing
quantum mechanics and for understanding the efficiency
of quantum networks. This model studies the amount of
communication required by separate parties to jointly compute
a task. There are several examples where communicating
quantum information can result in considerable savings in
the communication overhead [11–17]. Nevertheless, it is
in general difficult to test these results experimentally and
demonstrate quantum superiority in practice since the quantum
protocols typically necessitate large, highly entangled states,
which are out of reach of current photonic technologies.

Recently, Arrazola and Lütkenhaus proposed a mapping
for encoding quantum communication protocols involving
pure states of many qubits, unitary operations, and projective
measurements to protocols based on coherent states of light
in a superposition of optical modes, linear optics operations,
and single-photon detection [18]. This powerful model was
used to propose the practical implementation of coherent
state quantum fingerprints [19], leading to two experimental
demonstrations: a proof-of-principle use of such fingerprints
for solving the communication task of equality asymptotically
better than the best known classical protocol with respect to
the transmitted information [20], and a subsequent implemen-
tation beating the classical lower bound for the transmitted
information [21]. Following these demonstrations that have
focused on equality and on transmitted information, an impor-
tant question remains: Is there a realistic model for proving and

testing in practice that quantum information is asymptotically
better than classical information for communication tasks
with respect to all important communication and information
resources?

We answer in the affirmative by proposing a communication
model and a task for which we prove that quantum mechanics
allows for a considerably more efficient protocol in all relevant
resources. We do this by building upon the mapping of
Ref. [18] to introduce coherent state fingerprints over multiple
channels and show how to use them for solving efficiently a
task that is at the foundation of many applications in machine
learning, namely estimating the Euclidean distance of two
real vectors within a constant factor. Our results show that,
in principle, it is possible to demonstrate quantum superiority
for advanced communication tasks in quantum networks using
photonic technologies within experimental reach.

II. COMMUNICATION RESOURCES

We start by defining the simultaneous message passing
model and the resources that we are trying to optimize. In
this model, two players, Alice and Bob, receive inputs x and
y respectively from an input set X × Y . Their task is to use
some private coins and send a single and smallest possible
message to a referee, who should be able to compute the value
of a function f (x,y) with a small error δ ∈ {0,1}.

The communication cost of the protocol is the number
of bits the two players have to send to the referee and
the communication complexity of the task is the minimum
communication cost over all protocols that solve the task.
In real world communication networks, very often the cost
is rather calculated as the time one uses the communication
channel, for example, on the phone network. We note that these
costs are interchangeable, provided that the communication
channel has a specific maximum rate. We define the time unit
as the time to send a single bit over the communication channel
and then, in an optimal protocol, bits and communication time
are equal, since one will always send one bit per time unit.
Another resource one can study is the transmitted information,
which, instead of the number of bits sent, calculates the real
bits of information about the inputs that the messages carry.
For example, if Alice always sends the same, long message,
independent of her input, then the communication time will be
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large, while the transmitted information will be zero, since no
information about the input has been transmitted. Transmitted
information is a resource that is important for privacy, when
on top of having an efficient protocol, we want the referee to
solve the task without learning much about the players’ inputs.
One can define the transmitted information as the mutual
information between the messages and the inputs and can
upper bound it with the logarithm of the number of different
messages. The transmitted information is always at most the
communication time, since one bit carries at most one bit of
information, and hence the bottleneck is always the time.

We can similarly define the resources for quantum proto-
cols. The communication time is again the number of time units
the protocol takes, where in a time unit at most one qubit can
be sent in expectation. Here, we have added “in expectation”
since typically in quantum communications the qubits are
realized by photons emitted by practical light sources and
hence their mean number follows a Poisson distribution [5].
In the following, we also make this change to the classical
model to make a more correct comparison; i.e., we allow one
bit in expectation per time unit, which does not change the
order of the communication time. We will also upper bound
the transmitted information as the logarithm of the minimum
dimension of the Hilbert space that contains all the possible
quantum messages that are sent in the protocol. For example,
if Alice has as input an n-bit string x and sends a message that
contains n/2 qubits of the form |x1x2..xn/2〉 and another n/2
qubits in the state |0〉, then the communication time is n while
the transmitted information is n/2.

III. EUCLIDEAN DISTANCE OF REAL VECTORS

We now describe a fundamental communication task. Alice
and Bob possess large data sets x and y respectively, which
are unit vectors in Rn. They would like to allow a referee to
check how similar their data are by estimating the Euclidean
distance (for simplicity we define its square), ||x − y||22 =∑n

j=1(xj − yj )2 (or equivalently the inner product, since
〈x,y〉 = 1 − ||x − y||22/2). We call this problem Euclidean
distance or ED.

Alice and Bob can transmit their entire data to the referee,
but this is nonoptimal. The idea is to send fingerprints of the
data, which are much shorter but still allow the referee to
approximate their Euclidean distance within some additive
constant. Classically, this problem requires Alice and Bob
to send fingerprints of size �(

√
n) [22–25]. We consider

here that Alice and Bob do not have access to any shared
randomness, otherwise the problem can be solved with only
constant communication [26]. It is natural that parties do not a
priori have such shared resources, especially in large networks
where the communication is between many different pairs of
parties.

Quantum fingerprints can be exponentially shorter than the
classical ones in this case. In particular, Alice and Bob create
and send quantum fingerprints, namely |finx〉 = ∑n

j=1 xj |j 〉
and |finy〉 = ∑n

j=1 yj |j 〉, respectively. The referee then es-
timates the Euclidean distance by performing a controlled
swap operation on the fingerprints, which outputs “1” with
probability 1/2 + |〈x,y〉|2/2 [11]. The referee estimates this

probability, and hence the Euclidean distance, within an
additive constant ε with probability at least 1 − δ, using a
constant number of fingerprints equal to O[log(1/δ)/ε2]. The
communication time is O(log n), since Alice and Bob send a
constant number of fingerprints and each fingerprint consists of
log n qubits and can be sent in log n time units. The transmitted
information is also O(log n), equal to the communication time.
Hence, if we look at the ratio of the quantum over the classical
resources, then both resources asymptotically go to zero as n

grows. Unfortunately, implementing these fingerprints with
qubit systems is out of reach for current technologies for
large n.

The notion of quantum fingerprints has been used in
practice for the equality problem [19–21], where the inputs
are binary strings and the referee checks whether they are
exactly the same. The equality problem can be reduced with the
help of error correcting codes to approximating the Euclidean
distance between the two vectors within a constant factor and
hence the previous protocol solves equality with the same
resources. Since most real data are represented as real-valued
vectors, the Euclidean distance problem is more pertinent than
equality, since it is rather improbable that two different sets of
real-valued data will be exactly equal. Hence, here, we extend
the use of the term quantum fingerprints to real-valued inputs,
where we check that fingerprints can be used to approximate
the distance of the inputs and do not check whether they are
exactly equal.

IV. COHERENT STATE FINGERPRINTS
FOR EUCLIDEAN DISTANCE

The coherent state mapping of Ref. [18] led to a protocol
for equality with communication time O(n) and transmitted
information O(log n). This protocol therefore provides an
exponential advantage in the transmitted information, at the
expense of a quadratically worse performance in communi-
cation time compared to the classical protocol, for which the
order of both resources is �(

√
n).

A schematic of the corresponding protocol for Euclidean
distance is shown in Fig. 1. Alice and Bob’s fingerprints are
trains of n coherent states sent to the referee. Alice’s state, |αx〉,
is prepared by the displacement operator D̂x(α) = exp(αâ

†
x −

α∗âx) applied to the vacuum state, where âx = ∑n
j=1 xj b̂j is

the annihilation operator of the fingerprint mode [19], and b̂j is
the photon annihilation operator of the j th time mode. Hence,

|αx〉 = D̂x(α)|0〉 = ⊗n
j=1|xjα〉j , (1)

FIG. 1. Alice and Bob send n coherent pulses, with the j th pulse’s
amplitude determined by xjα and yjα, respectively. The referee
interferes their states in a 50/50 BS and detects the output signals
using single-photon detectors D0 and D1.
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where |xjα〉j is a coherent state with amplitude xjα occupying
the j th mode. The mean photon number for the state |αx〉
is μ = ∑

j |xjα|2 = |α|2, independent of the input size. Bob
similarly creates the fingerprint |αy〉.

As shown in Fig. 1, the referee uses a 50/50 beam splitter
(BS) to interfere the incoming coherent states. This yields the
output state for the j th time unit

∣∣∣∣ (xj + yj )√
2

α〉j,D0⊗
∣∣∣∣ (xj − yj )√

2
α〉j,D1 , (2)

where the subscripts D0 and D1 denote the single-photon
detectors placed at the output arms of the BS.

Previously, for equality, only the clicks of D1 have been
used for the estimation. Then, since the expected number
of clicks of the detector depends directly on its dark count
probability, it is crucial to keep this probability very low. Here,
we try to deal with this problem, by using the clicks from both
detectors to construct a more robust estimator for the ED that
can also be used for equality.

More precisely, let Z0
j and Z1

j be the binary random
variables that are 1 with the probability with which D0 and
D1 clicks respectively at the j th time unit, namely p0

j = 1 −
exp(−μ(xj +yj )2

2 ) ≈ μ
(xj +yj )2

2 , and p1
j = 1 − exp(−μ(xj −yj )2

2 ) ≈
μ

(xj −yj )2

2 . Here, the approximation holds because we take μ to
be typically small, and x and y are unit vectors in Rn and for
large n the terms (xj + yj )2 and (xj − yj )2 are typically in the
order of 1/n. The Euclidean distance (Ẽ) is equal to

Ẽ = 2 − 1

μ
E

⎡
⎣ n∑

j=1

(
Z0

j − Z1
j

)⎤⎦. (3)

The advantage of using statistics from both detectors comes
from the fact that the Euclidean distance estimator depends
now on the difference of the clicks of the detectors, and
hence on expectation the number of dark counts cancels out,
when we assume the dark count probabilities are the same
for both detectors. We remark that this can be enforced by
symmetrization procedures [7], although in practice, since the
symmetrization will not be perfect, the estimator will in fact
depend on the square of the dark count probability, which is
easier to keep low.

By a Chernoff type argument [27], we can optimize the
experimental parameters so that we can estimate

∑n
j=1(Z0

j −
Z1

j ) within a factor ε with probability at least 1 − δ. For
constant ε,δ, the overall communication time is O(n) while the
transmitted information is O(μ log n). Note that in each time
unit, μ/n 	 1 photons are sent in expectation, thus satisfying
our model’s criterion of no more than one photon in each time
unit.

The first two rows in Table I summarize the resources of
the two protocols for ED. The performance achieved with
the coherent state fingerprint protocol is the same as for
equality, i.e., exponentially better in transmitted information
but quadratically worse in communication time. We describe
now a quantum protocol that can outperform any classical
protocol in both resources.

TABLE I. The order of the communication time and transmitted
information for all classical and quantum protocols for Euclidean
distance described in this work.

Comm. Time Trans. Info.

Classical �(
√

n) �(
√

n)

Coherent O(n) O(μ log n)

Multiple-channel classical �(
√

n

log k
) �(

√
n

log k
)

Multiple-channel coherent n

k
O(μ log n)

V. COHERENT STATE FINGERPRINTS
OVER MULTIPLE CHANNELS

We extend both the classical and quantum communication
models to allow Alice and Bob to have multiple channels with
the referee. Our model is not the usual multiplexing model
where the parties can send t bits or photons in parallel through
t channels and the referee can process all t bits or photons
in one time step. This model in fact would not make any
difference in the relative power of the classical and quantum
case, since the communication time will just be divided by t

in both cases. The important distinction we make in our model
concerns the difference between the number of channels used
by Alice and Bob for sending their bits or photons, and the
number of bits or photons that we allow the referee to be able
to process in parallel in one time unit. As we said, if these
two parameters are the same, then both classical and quantum
protocols save the same factor. Hence, in our model, we need
to have more channels than the number of bits or photons that
can be processed in order to take advantage of the fact that the
quantum protocol sends mostly empty pulses. Moreover, since
we want to examine the relative power of communication, we
make sure that all other parameters are the same in the classical
and quantum setting: We allow the same number of channels
between parties, the same number of bits or photons that can
be processed in parallel, and the number of channels could
potentially be larger than the number of bits or photons that
can be processed in parallel.

More concretely, we consider a model where we allow the
referee to have the ability in one time unit to actually process
(meaning to receive, perform some computation, and write
to memory) t bits of information that come from t bits or t

photons that have been received in parallel. For example, the
referee can have a multicore processor and parallel access
to memory. We also allow the sender and the referee to
communicate by using multiple channels to send bits or pulses.
Let us assume that there are m such channels and that for each
channel the sender can prepare and send a bit or pulse and the
receiver can detect a bit or a photon (if there exists one in the
pulse). These two parameters, t and m, may not necessarily
be the same. In fact, in our model we are interested in the case
where m is bigger than t , and so we can write m = kt . Note that
even though we have more than t channels, there is no point in
sending more than t bits and photons in parallel through these
channels, since the referee will not be able to process all the
bits and photons. In the rest of the paper, we take t = 1 and
hence m = k, because in fact our analysis shows that the ratio
between the classical and quantum time is independent of t .
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FIG. 2. Our multiple-channel protocol. Alice and Bob create
coherent state fingerprints for each of the k substrings and at each time
unit they send the corresponding set of k pulses to the referee. The
referee interferes all k pairs of pulses through a BS and processes
the resulting information (at most 1 bit/photon per time unit). The
protocol proceeds similarly for all n/k time units and the referee
estimates the ED.

In summary, our model is the following: Alice and Bob can
use k channels, where in every communication time unit, they
can send in expectation at most one bit or one photon in total
over all k channels. Or in other words, the number of available
channels exceeds the number of bits or photons that can be
processed by the referee by a factor of k.

In this model, in the classical case, the use of multiple
channels reduces the communication by at most a log k factor,
since we can simulate any multiple channel protocol with a
single channel one with a log k overhead: For every bit sent
through one of the k channels, we send the same bit and the
index of the channel in log k bits through the single channel.

In the quantum case, we can take better advantage of the
multiple channels and have a protocol with communication
time of order n/k, while the transmitted information remains
of order log n. The reason is that most of the pulses sent are
empty of photons and hence we can use the multiple channels
to send in parallel many pulses, without sending more than
one photon in expectation per time unit. More precisely, Alice
and Bob divide their n bit input into k substrings, each of
length n/k. They create coherent state fingerprints for each
of the k substrings and at each time unit they send k pulses
through the channels, one from each of the k fingerprints. The
referee interferes the corresponding pulses as in the initial
protocol, either by using k sets of BS and detectors, or by
time ordering the pulses and using a single set of BS and
detectors. The communication time is now reduced by a factor
of k. By choosing k to be ω(

√
n), we can make both resources

of the quantum protocol asymptotically smaller than the best
classical protocol. The expected number of photons in each
time unit is μk/n, which for large enough n and since k

is asymptotically smaller than n can be made < 1, hence
satisfying the no more than one photon per time unit constraint.

As we mentioned above, if the referee can treat more than
one bit or photon per time unit, say t , then by assuming
we have k × t available channels, both the classical and
quantum protocols save an additional factor t and so the ratio
of the classical and quantum communication time remains
unchanged. Figure 2 illustrates our model for t = 1. In
Appendix A we describe a possible realization of our protocol
using multiplexing techniques.

The last two rows of Table I compare the classical
and quantum multiple-channel protocols for ED. This is

FIG. 3. Log-log plot for communication resources vs input size
(n) for solving ED within ε = 0.1 with error δ � 10−6. We compare
the classical lower bound, the best known classical protocol for
equality and our multiple-channel coherent state ED protocol. The
size of the error correcting code used for comparing classical ED with
classical EQ is m = 3.6n. We set the number of channels k = O(

√
n)

and use the optimized value μ = 1969.45 (see Appendix C).

the first example of a model and a task, for which an in
principle realistic quantum protocol is asymptotically more
efficient both in the communication time and the transmitted
information than any classical protocol.

VI. PERFORMANCE ANALYSIS

We consider some standard experimental imperfections in
the setting of Fig. 2, including the BS interferometer visibility
ν and the detector dark count probability pd . Errors may be due
to the use of multiple channels as well but as these depend on
the specific implementation we do not consider them here. We
assume that all of referee’s detectors have the same parameters,
e.g., dark count probabilities.

With the above imperfections we recalculate the probability
of a click in D0 and D1 and show in Appendix B that

Ẽ = 2 − 1

μ(2ν − 1)
E

⎡
⎣ n∑

j=1

(
Z0

j − Z1
j

)
⎤
⎦. (4)

The main error comes from estimating the expectation
of the detectors clicking. This error is bounded using the
Chernoff-Hoeffding bounds and optimizing the experimental
parameters. Another source of error comes from estimating
the experimental parameters, i.e., the BS visibility ν and μ.
Note that the expectation of the difference in counts of the two
detectors does not depend on the dark counts, provided it is
the same for 0 and 1.

In Fig. 3 we show the transmitted information and com-
munication time as a function of n for the multiple-channel
protocol with k = O(

√
n), and compare its performance

with the classical lower bound and with the best-known
classical protocol for equality. The analytical expressions for
all protocols are provided in Appendix C. We see first that
if we are only interested in the communication time, which
is often the case, then our protocol outperforms the classical
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limit even for small n and by consequence for small number
of channels which can be feasible in practice. Moreover, for
large n, our protocol outperforms the classical limit for both
resources. For current parameters, the number of channels
needed is about 105, which may not be realistic. By improving
the experimental parameters one may decrease this number.

VII. DISCUSSION

A noteworthy feature of the Euclidean distance protocol
studied in our work is that Alice and Bob do not need a
memory to store their inputs and they do not perform global
operations on them. In other words, this protocol works also
in the streaming scenario, where Alice and Bob receive their
inputs one bit at a time [28]. We note that this is not the
case either for the equality protocol, where an error correcting
code needs to be applied to the entire input string, or for
the qubit protocol where the fingerprint is encoded in a
superposition of log n qubits. It will be interesting to further
explore this scenario for efficient quantum communications.
More generally, expanding the family of distributed tasks in
the coherent state communication model studied in this work
is important for demonstrating in practice quantum superiority
in a network setting.
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APPENDIX A: DESCRIPTION OF OFDM APPROACH
FOR MULTIPLE-CHANNEL COHERENT STATE ED

One way to implement the multiple-channel protocol
proposed in our work is by using k physical channels. This
would be the case for backbone communication networks,
where nodes are connected via a large number of channels.
Another way could be to employ all-optical orthogonal fre-
quency division multiplexing (OFDM), an advanced classical
multiplexing technique that has recently been adapted for
performing high-rate quantum key distribution [29]. In this
case, Alice and Bob create coherent state fingerprints for each
of their k substrings in orthogonal frequency subcarrier modes
that are generated using frequency offset locked laser diodes
(alternatively, a pulsed laser source such as a mode-locked
laser can be used for this purpose, as shown in Ref. [29]). At
every time unit, the corresponding pulse from each of the k

fingerprints is multiplexed in a k × 1 OFDM encoder and the
output signal is sent to the referee.

The frequency separation between any two adjacent sub-
carriers in the OFDM scheme is ωj+1 − ωj = �f and the
encoded OFDM signal has a pulse width of T = 1/�f . At
the first time unit t1, Alice’s coherent pulses for each of the
k substrings are {|x1α〉1,|x n

k
+1α〉1 . . . ,|x (k−1)n

k
+1α〉1}. They get

encoded in the OFDM signal Ê1(t) (subscript denotes time):

Ê1(t) =
k∑

j=1

e−
|x (j−1)n

k
+1

|2μ

2 e
x (j−1)n

k
+1

αâ
†
j
eiωj t =

k∑
j=1

Â
j

1e
iωj t

for 0 < t < T, with the j th subcarrier frequency given by ωj =
ω0 + 2πj�f . Bob employs the same multiplexing technique
to prepare his OFDM signal.

Once the OFDM signals from Alice and Bob for the time
step t1 reaches the referee, he decodes them via an optical
discrete Fourier transform (ODFT) on the input signal Ê1(t).
The output circuit to decode the qth subcarrier signal (for
q = 1, . . . ,k) at time step t1 is

D̂
q

1 (t) = 1

k

k∑
j=1

Ê1(t − (j − 1)Tc)ei2π(j−1)(q−1)/k = Â
q

1e
iωq t ,

where Tc = T/k and we used the orthogonality condition
�f = 1/T . A typical duration for the OFDM signal is T = 100
ps [29].

The advantage of this technique is that because of the
orthogonality of the employed subcarriers, these do not
interfere with each other despite overlapping sidebands be-
tween adjacent carriers, leading to an efficient demultiplexing;
however, the number of supported subcarriers in practice
currently remains quite low.

APPENDIX B: ANALYSIS OF EUCLIDEAN DISTANCE
PROTOCOL WITH IMPERFECTIONS

In the presence of the limited beam splitter visibility ν, the
output states for the referee in the detectors D0 and D1 at time
step j is given by∣∣∣∣ α√

2
[
√

ν(xj + yj ) + √
1 − ν(xj − yj )]〉j,D0

⊗
∣∣∣∣ α√

2
[
√

ν(xj − yj ) + √
1 − ν(xj + yj )]〉j,D1 (B1)

Let Z0
j and Z1

j be the binary random variables with value
1 with probability Pr[click in j,D0] and Pr[click in j,D1]
respectively, for the j th time unit and value 0 otherwise. These
probabilities are

Pr[click in j,D0]

= p
D0
j ≈ μ

2

[
ν(xj + yj )2 + (1 − ν)(xj − yj )2

+ 2
√

ν(1 − ν)
(
x2

j − y2
j

)] + pd, (B2)

Pr[click in j,D1]

= p
D1
j ≈ μ

2

[
ν(xj − yj )2 + (1 − ν)(xj + yj )2

+2
√

ν(1 − ν)
(
x2

j − y2
j

)] + pd, (B3)

where pd is the dark count probability for both detectors. We
define �Zj = Z0

j − Z1
j as the difference in the clicks from

D0 and D1 at j th step. Note that �Zj is a random variable
that takes values {−1,0,1}. We define �Z = ∑

j �Zj and we
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have

E[�Z] = μ

2
(2ν − 1)(||x + y||2 − ||x − y||2). (B4)

Using Eq. (B4) and the fact that ||x + y||2 − ||x − y||2 =
4(1 − ||x − y||2/2), we obtain the Euclidean distance between
the data sets x and y as

Ẽ = ||x − y||2 = 2 − 1

μ(2ν − 1)
E[�Z]. (B5)

The error in the estimation of the Euclidean distance comes
from two different sources: (i) the estimation of the mean value
of �Z and the (ii) error in parameter estimation of μ and ν,
which in general depends on the experimental setup but can
be considered very small.

Let us deal with the first source of error, i.e., the estimation
of the mean value of �Z. Basically, we can bound the
probability that �Z is far from its mean value, by using the
Chernoff-Hoeffding bounds to get a statement of the form:
Pr(|�Z − E[�Z]| � εE[�Z]) � δ. We prove this bound by
the Theorem Theorem 1 given below.

Theorem 1. Let X = ∑
j Xj be sum of n random variables

with each variable Xj taking values {1, − 1,0} with probability
{p{1}

j ,p
{−1}
j ,1 − p

{1}
j − p

{−1}
j } respectively. For any a ∈ R,

Pr(X � a) �
(

2P {1}

a + √
a2 + 4P {1}P {−1}

)a

× e−(P {1}+P {−1}−√
a2+4P {1}P {−1}), (B6)

where P {1} = ∑
j p

{1}
j and P {−1} = ∑

j p
{−1}
j .

Proof. Markov’s inequality on X = ∑
j Xj gives us for any

s > 0,

Pr(X � a) = Pr(esX � esa) � E(esX)

esa
. (B7)

Note that E(esX) = E(es
∑

j Xj ) = ∏
j E(esXj ), where we

used the property of independence of variables Xj . This allows
us to prove the Chernoff bound by bounding each individual
E(esXj ).

Lemma 1. Let Y be a random variable that takes value 1
with probability p1, −1 with probability p−1, and 0 otherwise,
then for all s ∈ R,

E(esY ) � ep1(es−1)+p−1(e−s−1).

Proof. We have

E(esY ) = p1e
s + p−1e

−s + [1 − (p1 + p−1)]1

= 1 + [p1(es − 1) + p−1(e−s − 1)]

� ep1(es−1)+p−1(e−s−1).

Applying Lemma 1, we obtain

E(esX) �
∏
j

ep
{1}
j (es−1)+p

{−1}
j (e−s−1)

= e
∑

j p
{1}
j (es−1)+p

{−1}
j (e−s−1). (B8)

We denote P {1} = ∑
j p

{1}
j and P {−1} = ∑

j p
{−1}
j , and by

applying the result of Eq. (B8) on Markov’s inequality Eq. (B7)

we obtain

Pr(X � a) � eP {1}(es−1)+P {−1}(e−s−1)−sa. (B9)

It can be easily verified that s ′ = ln( a+√
a2+4P {1}P {−1}

2P {1} ) mini-
mizes the upper bound in Eq. (B9). This concludes our proof:

Pr(X � a) �
(

2P {1}

a + √
a2 + 4P {1}P {−1}

)a

× e−(P {1}+P {−1}−√
a2+4P {1}P {−1}). (B10)

To use the above theorem, let us define 
 = P {1} − P {−1}
and a = 
(1 + ε), with 0 < ε < 1. Using the inequality√

(
(1 + ε))2 + 4P {1}P {−1} � (P {1} + P {−1}) + 
ε we can
relax Eq. (B10) further to

Pr[X � 
(1 + ε)] �
(

eε

(
1 + 


P {1} ε
)1+ε

)


. (B11)

Last, using the following inequalities, which are derived
from Eqs. (B2), (B3), and (B4), E[�Z] � 2μ(2ν − 1) and∑

j p
D0
j � 2μν + (n − 2μ)pd we have

Pr(|�Z − E[�Z]| � εE[�Z])

� 2

⎡
⎢⎣ eε

(
1 + 2ν−1

ν+ n−2μ

2μ
pd

ε
)1+ε

⎤
⎥⎦

2μ(2ν−1)

= δ. (B12)

Equation (B12) highlights the contributions of n,μ,ν, and
pd in the estimation of Euclidean distance, which can be
estimated within any 0 < δ < 1 by controlling the mean
photon number μ, since ν,pd are fixed by the experimental
setup used.

APPENDIX C: RESOURCE PERFORMANCE ANALYSIS

The plot in Fig. 3 of the main text compares the transmitted
information (I ) and communication time (T ) vs the data input
size n for the classical lower bound, the best classical protocol
for equality, and the quantum multiple-channel coherent state
protocol. We fix that the protocol estimates ED within a
constant factor ε = 0.1 with error probability δ � 10−6.

Classical lower bound. We use the lower bounds for the
equality problem [22,23,25] to provide a lower bound for ED.

Suppose we have a classical ED protocol for input size n

that approximates the distance within a fixed ε with probability
at least 1 − δ. To construct a protocol for equality, we choose
the error-correcting code (ECC) that amplifies the n-bit inputs
x and y to m-bit codewords E(x) and E(y) respectively, with
the minimum distance across being d > 2ε. Then, we use the
ED protocol on the codewords E(x) and E(y), and have

Ẽ

{
� ε if x = y

� d − ε > ε if x �= y
. (C1)

This guarantees solving the equality on x and y with
probability � 1 − δ.

This reduction implies that we can get a lower bound
for ED for input size n by a lower bound for equality with
input size rn, where r(< 1) is the rate of the ECC. For
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ε = 0.1 (i.e., d > 0.2), we can get r = 0.28 [30]. The time
and transmitted information resource lower bound would then
be Tcl = Icl = [(1 − 2

√
δ)

√
rn

2 log 2 − 1]/ log k [21,23], which

is shown in Fig. 3.
Classical protocol for equality. We also plot the best

classical protocol that solves equality, which uses 2
√

n + 1 bits
and succeeds with probability 1 − δ′ = 3/4. To get the desired
δ � 10−6, the protocol is repeated 10 times. Thus to solve ED,
the resources are Tcp = Icp = (20

√
r · n + 10)/ log k [23].

Quantum multiple-channel coherent state protocol. For the
quantum multiple-channel protocol that computes ED within

ε = 0.1 with error probability δ � 10−6, we optimize μ to be
μ = 1969.45 and set the other parameters to be ν = 0.99 ±
0.005 and pd = (1.0 ± 0.1) × 10−8 [20].

We use the results of Ref. [19] to precisely upper bound
the transmitted information of the protocol (asymptotically
it behaves as Iqp = O(μ log n)) and we also know that the
communication time is Tqp = n/k, where k is the number of
channels used in the protocol. The communication time can be
made less that the classical lower bound as long as k > kcrit ,
where kcrit makes the quantum protocol time equal to the time
in the classical lower bound and is of the order of O(

√
n).

[1] B. Hensen, H. Bernien, A. Dréau, A. Reiserer, N. Kalb, M.
Blok, J. Ruitenberg, R. Vermeulen, R. Schouten, C. Abellán
et al., Nature (London) 526, 682 (2015).

[2] D. N. Matsukevich, P. Maunz, D. L. Moehring, S. Olmschenk,
and C. Monroe, Phys. Rev. Lett. 100, 150404 (2008).

[3] M. Ansmann, H. Wang, R. C. Bialczak, M. Hofheinz, E. Lucero,
M. Neeley, A. O’Connell, D. Sank, M. Weides, J. Wenner et al.,
Nature (London) 461, 504 (2009).

[4] A. Pappa, N. Kumar, T. Lawson, M. Santha, S. Zhang, E.
Diamanti, and I. Kerenidis, Phys. Rev. Lett. 114, 020401
(2015).

[5] V. Scarani, H. Bechmann-Pasquinucci, N. J. Cerf, M. Dušek, N.
Lütkenhaus, and M. Peev, Rev. Mod. Phys. 81, 1301 (2009).

[6] R. J. Donaldson, R. J. Collins, K. Kleczkowska, R. Amiri, P.
Wallden, V. Dunjko, J. Jeffers, E. Andersson, and G. S. Buller,
Phys. Rev. A 93, 012329 (2016).

[7] A. Pappa, P. Jouguet, T. Lawson, A. Chailloux, M. Legré, P.
Trinkler, I. Kerenidis, and E. Diamanti, Nat. Commun. 5, 3717
(2014).
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