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Necessary adiabatic run times in quantum optimization
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Quantum annealing is guaranteed to find the ground state of optimization problems provided it operates in the
adiabatic limit. Recent work [S. Muthukrishnan et al., Phys. Rev. X 6, 031010 (2016)] has found that for some
barrier tunneling problems, quantum annealing can be run much faster than is adiabatically required. Specifically,
an n-qubit optimization problem was presented for which a nonadiabatic, or diabatic, annealing algorithm requires
only a constant run time, while an adiabatic annealing algorithm requires a run-time polynomial in n. Here we
show that this nonadiabatic speedup is the direct result of a specific symmetry in the studied problem. In the
more general case, no such nonadiabatic speedup occurs and we show why the special case achieves this speedup
compared to the general case. We also prove that the adiabatic annealing algorithm has a necessary and sufficient
run time that is quadratically better than the standard quantum adiabatic condition suggests. We conclude with
an observation about the required precision in timing for the diabatic algorithm.
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I. INTRODUCTION

Recent work in quantum adiabatic optimization [1] has
focused on a class of Hamming-symmetric problems that
exhibits extremely strong nonadiabatic speedups over a
slower adiabatic approach. Numerical evidence presented by
Muthukrishnan, Albash, and Lidar [2] shows that for several
barrier tunneling problems on n qubits, a well-calibrated con-
stant time evolution of the quantum annealing Hamiltonian is
sufficient. Thus, this algorithm significantly improves upon the
slower adiabatic evolution of the Hamiltonian, which can take
polynomial or even exponential time in n. Muthukrishnan et al.
attribute this speedup to a diabatic cascade in which the ground
state is quickly depopulated in favor of higher excited states
and then repopulated right at the end of the diabatic evolution.

Usually the sufficient run time of quantum adiabatic opti-
mization is estimated using the standard adiabatic condition.
This condition says that adiabaticity is ensured if the running
time grows as

τ � max
s∈[0,1]

∥∥∥∥∂Ĥ (s)

∂s

∥∥∥∥
/

g(s)2 (1)

for the spectral gap g(s). More accurate versions of this
condition have been proven [3], but all of them depend linearly
on the matrix norm of Ĥ (s) or its derivatives with respect to s

divided by a low-degree polynomial function of the gap g(s).
The condition in Eq. (1) is merely a sufficient condition, and

it is possible to have adiabatic evolutions with shorter running
times than Eq. (1) describes. Furthermore, it is also possible
to have a nonadiabatic evolution that succeeds in solving the
optimization problem at hand. It is such a nonadiabatic speedup
that is described by Muthukrishnan et al. [2].

A nonadiabatic speedup is obviously significant for near-
term quantum computers where quantum annealing is a
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potential application. Kong and Crosson [4] have studied these
diabatic transitions, and more recently the current authors
presented complementary findings [5]. These recent results
indicate that this nonadiabatic speedup can provide an alternate
and efficient way of solving an important class of Hamming-
symmetric barrier tunneling problems that are being used as
toy models [2,4,6–11] to study the more general properties of
quantum annealing in the presence of a barrier.

Here we present results that indicate that even slightly
more generalized versions of symmetric barrier tunneling
problems do not exhibit this fast nonadiabatic speedup. The
base Hamiltonian used to study this class of problems exists
in a Hilbert space of n qubits and is given by

Ĥ (s)=−(1 − s)
n∑

i=1

σ (i)
x + s

[
n∑

i=1

σ (i)
z + b

(
n∑

i=1

σ (i)
z

)]
, (2)

where b(h) is some localized barrier or perturbation and
s = t/τ is a normalized time variable representing the linear
progression of time, t , from t = 0 to the algorithm stopping
time τ . Current numerical evidence [2] suggests that the
nonadiabatic speedup exists for many classes, shapes, and
sizes of localized barriers b(h). This article generalizes the
problem slightly [ignoring b(h) for the moment],

Ĥ (s) = −(1 − s)
n∑

i=1

σ (i)
x + sμ

n∑
i=1

σ (i)
z , (3)

by introducing a positive slope parameter μ, and we find that
for the generic case μ �= 1, the nonadiabatic speedup no longer
exists. We call μ a slope, as it relates linearly the energy of the
system with the Hamming weight

∑
i σ

(i)
z of the n qubits.

Since this Hamiltonian describes a simple toy model, it is
unlikely that a physical system will exhibit the exact μ = 1
behavior, leading us to the conclusion that for realizable
problems, this diabatic speedup will not exist. In this article,
we focus on the b(h) = 0 case since it decouples all the
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FIG. 1. The single qubit success probability, p1, as a function of
the total run time for several μ values. The dashed blue, μ = 1 line
corresponds to the model that has been studied in previous articles.
Note that the μ = 1 curve has several special properties, including
that it goes to p1 = 1 at finite τ , resulting in the nonadiabatic speedup
noted in other papers. The μ �= 1 curves do not exhibit this p1 = 1
behavior.

qubits, allowing us to extract information about the system
by studying the evolution of a single-qubit Hamiltonian. Since
μ �= 1 disrupts the nonadiabatic speedup even in this b(h) = 0
case, we fully expect similar disruptions to occur for more
complicated barriers and perturbations.

II. OPTIMAL RUN TIME

We first need to define our criteria for an optimal run time.
If an algorithm on n qubits runs for time τ and has a probability
of success of pn(τ ) at the end of that time, its expected
running time is τ/pn(τ ), and the optimal running time is the
τn that minimizes τ/pn(τ ) for n qubits. In our case, we have n

independent qubits, each of which has a probability of success
of p1, hence pn = pn

1 , which is where the n dependence comes
into the minimization.

In the μ = 1 case, p1 goes to 1 for finite τ , as shown
in Fig. 1, meaning that pn = 1 at this value, leading to the
nonadiabatic speedup noted in other studies. Figure 1 also
shows μ = 0.5 and μ = 2 curves. Note that for these curves
the success probability does not achieve p1 = 1 at finite τ .
Similar plots can be obtained for other μ �= 1, and as we note
below, this failure to reach p1 = 1 for finite τ ultimately leads
to the breaking of the nonadiabatic speedup. Therefore, this
speedup is restricted to the special case of μ = 1.

Muthukrishnan et al. [2] note that for μ = 1 the optimal
running time decreases asymptotically to a constant in the
case with a barrier because pn increases for fixed τ at
the optimal running time. Our decoupled model does not
exhibit this behavior because the success probability is pn = 1
independent of n. Therefore, in the barrier cases, the success
probability for μ = 1 seems to be approaching its value in the
no-barrier case.

To demonstrate the lack of a nonadiabatic speedup in
the μ �= 1 cases, consider Fig. 2, which shows the optimal
expected run time, τn/pn(τn), as a function of n. All of the μ
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FIG. 2. Optimal expected running time of quantum annealing,
τn/pn(τn), as a function of n for different μ values. Unlike the μ = 1
case, τn increases with n for these μ values. Lines through the symbols
are power-law fits of the form τn = Anr , and the fitted r values in the
order μ = (0.6,0.8,1.2,1.4,1.6) are (0.48,0.51,0.49,0.48,0.46), all
close to 1/2. A scaling power of 1/2 is consistent with the adiabatic
scaling of the μ = 1 case as found in [2] and our results below while
being quadratically faster than the sufficient adiabatic condition.

curves shown are increasing, meaning that the running time
increases with n, and there is no nonadiabatic algorithm that
runs in constant time. The curves are fitted to power laws of
the form τn = Anp, and all of the fitted p values are close to
1/2, indicating a running time of O(

√
n).

It should be noted that the nonadiabatic speedup could
be reinstated by modifying the driver Hamiltonian, Ĥ0, by
multiplying it by μ as well. However, this kind of fine-tuning
of the driver Hamiltonian to match up with the properties of the
final Hamiltonian implies a large amount of knowledge about
the final problem, which would not be possessed in a realistic
setting. The lack of robustness of our system to changes in
μ could be viewed alternatively as a lack of robustness in
the fine-tuning of the driver Hamiltonian. The examples of
Muthukrishnan et al. [2] show that a fine-tuned driver Hamil-
tonian can solve these problems nonadiabatically, but our work
shows that this speedup does not allow for a general algorithm
but only specific algorithms tailored to the problem at hand.

III. SINGLE-QUBIT SUCCESS PROBABILITY

We can extract the
√

n running-time behavior from the
curves in Fig. 1 as well because the qubits in our problem
are completely decoupled. For sufficiently long running times
τ , the curves of the single-qubit success probability p1 as a
function of τ shown in Fig. 1 are bounded above and below by
envelopes of the form

1 − c�(μ)

τ q
< p1 < 1 − cu(μ)

τ q
, (4)

with constants c�(μ) and cu(μ). This relationship is extracted
by performing numerical fits to the minima and maxima in
curves like those shown in Fig. 3, and for all our fits to different
μ data, q is close to 2. Note that cu(1) = 0, which, as we see,
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FIG. 3. A single-qubit success probability curve as a function of
the total run time τ for μ = 1.5, with upper and lower envelopes
shown. These envelopes were obtained by first extracting all the
local minima (maxima) and doing a power-law fit of the form p1 =
1 − cτ−q . The first two minima and maxima were excluded from this
fit and others since they tend to be more abnormal. In this case, the
upper envelope has a fitted q = 1.998 and the lower envelope has a
fitted q = 1.996, both of which are extremely close to the 2 we use
in the text.

is one of the main reasons why the μ = 1 diabatic speedup
can occur.

Muthukrishnan et al. [2] showed that the lower envelope
with c�(μ) guarantees that the worst-case running time for
the μ = 1 case scales as O(

√
n). We employ their method

to show that a relationship such as Eq. (4) provides both the
necessary and the sufficient condition for the running time.
Muthukrishnan et al. also applied methods created by Boixo
and Somma [12] to show that at least �(n1/2) is necessary for
adiabatic evolution.

If for n qubits a total success probability of p is desired
from the algorithm, then Eq. (4) tells us that(

1 − c�(μ)

τ q

)n

� p �
(

1 − cu(μ)

τ q

)n

. (5)

We can manipulate this inequality, performing an expansion
for small c∗(μ)/τq since τ will be large. The result of these
manipulations gives us a relationship between the running time
and n: (

cu(μ)

ln 1/p
n

)1/q

� τ �
(

c�(μ)

ln 1/p
n

)1/q

. (6)

Therefore, since q = 2 in our cases, having a running time that
scales as

√
n is both a necessary and a sufficient condition to

reaching a desired probability. Note that when μ=1, cu(1)=0,
so one side is no longer bounded, leading to the possibility of
a nonadiabatic speedup.

In the Hamming weight problem, the gap is constant with
n, and all matrix norms of the Hamiltonian and its derivatives
will depend linearly on n. Therefore, the adiabatic condition,
Eq. (1), would predict O(n) scaling; whereas, our results
indicate that a faster O(

√
n) running time is sufficient. This

result was shown in [2] for μ = 1, and our results indicate that
this quadratic speedup holds for general slopes μ.
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FIG. 4. Curves like the one in Fig. 3 are bounded above and below
by curves of the form 1 − c/τ 2. We show the values of c for the upper,
cu, and lower, c�, bounding functions as obtained from numerical fits.
These coefficients are a function of μ, and all of the fits used to obtain
this data were good quality. In the text, we show that these bounding
curves directly lead to a O(

√
n) running time for the algorithm in all

cases except the μ = 1 case, where cu(1) = 0.

While the standard adiabatic condition overestimates the
running time, there are other derivations that apply to our
problem more specifically and that provide a stricter bound that
matches our results. Jansen, Ruskai, and Seiler [3] showed that
for fixed Hamiltonians Ĥ0 and Ĥ1 with time evolution Ĥ (t) =
(1 − t/τ )Ĥ0 + t/τ Ĥ1, the success probability p of remaining
in the ground state throughout 0 � t � τ is bounded by

p = 1 − O(τ−2). (7)

If we take this to be the probability of success for a single-qubit
case, our results in Eqs. (5) and (6) imply that τ ∈ O(

√
n) is

sufficient for an adiabatic evolution. This shows that the result
of Jansen et al. provides a stricter sufficient condition than
the standard adiabatic condition for our optimization problem
with decoupled qubits.

In Fig. 4 we plot the coefficients cu(μ) and c�(μ) obtained
from numerical fits. The fits used to obtain these values are
akin to those shown in Fig. 3, making us confident in the
1/τ 2 scaling of the error. Note that as we approach the special
case μ = 1 we see that cu(μ) → 0 and observe that around
μ = 1 the coefficient cu(μ) stays close to 0. Hence for μ

approximately (but not exactly) 1, the nonadiabatic speedup
will persist for a large range of n until the adiabatic running
time of O(

√
n) is required again at very large n.

IV. SCALING OF THE TRUE ADIABATIC RUN TIME

All of our work so far has shown that the optimal running
time of this algorithm is O(

√
n), but this does not imply that

the optimal running time results from adiabatic evolution. If
we look at the occupancy of the energy states for these optimal
runs, we in fact see the ground state being depopulated during
the s evolution. Therefore, a remaining question to ask is
whether this behavior also holds if we require the system to
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FIG. 5. This plot shows the run time, τ , needed to ensure that
the state of the system is at least 75% in the ground state over the
entire s evolution. This growth of τ with n comes closest to a true
adiabatic evolution, and we can see that the τ ∈ O(

√
n) behavior

holds even in this case. Power-law fits to these data sets show that
the exponent for these curves, in the order μ = (0.5,1.0,1.5,2.0),
are (0.497,0.502,0.501,0.500). Therefore, the quadratic speedup we
see over the sufficient adiabatic condition is a property of adiabatic
evolution in this system, not the specific τ/pn criteria we used.

stay within a certain range of its ground state for the entire
s ∈ [0,1] evolution.

In Fig. 5, we show the time, τ , needed to ensure that the
system has at least a 75% chance of being measured in its
ground state for the entire s ∈ [0,1] evolution. All of these
curves exhibit power-law relationships, τ = Bnr , with fitted
r = (0.497,0.502,0.501,0.500) for μ = (0.5,1.0,1.5,2.0) re-
spectively. A similar plot can be obtained if a cutoff stricter
than 75% is used.

Figure 5 shows that the run-time relationships we observe
are in fact indicative of how adiabatic evolution behaves as
well. Therefore, we are led to the conclusion that for general
μ �= 1, the run time τ ∈ �(

√
n) is both necessary and sufficient

to ensure finding the true ground state. The μ = 1 case remains
a special case that goes against this rule, allowing for an
extreme speedup to a constant running time.

V. WIDTH OF THE NONADIABATIC SUCCESS PEAK

Our last goal is to understand the width of the success
probability spike of p1 in the unperturbed, μ = 1 case when
it reaches the optimal p1 = 1. We show that this narrowness
implies that to be successful for large n, one has to be very
precise in using the right running time τ .

We know that there is a critical run time τc such that p1 = 1
for a single qubit. For run times close to this τc, the probability
of success can be modeled by

p1 = 1 − δ = 1 − k(τ − τc)2, δ � 1, (8)

where |τ − τc| is the required stopping precision of the
algorithm.

Scaling the system to n qubits, the probability of success
is pn = pn

1 since the qubits are uncoupled in the unperturbed
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FIG. 6. The width of the nonadiabatic success probability peak
in the curve of pn vs τ is shown as a function of n. This problem
tunnels through a binomial barrier of width and height ∝n0.3. The
width of the peaks in success probability are extracted by performing
a Gaussian fit to the top of the peak and extracting the width of the
fitted Gaussian. The width is modeled well by the curve w = An−p ,
where A = 13.97 and p = 0.467. This width scaling with n is close
to the width scaling of n−1/2 extracted analytically for the no-barrier
case.

case:

pn = [1 − k(τ − τc)2]n ≈ 1 − nk(τ − τc)2. (9)

If we want the probability of failure to be less than ε, we must
have that

1 − ε < 1 − kn(τ − τc)2 ⇒ |τ − τc| < (ε/kn)1/2. (10)

Thus, maintaining the same success probability as n increases
requires the acceptable imprecision |τ − τc| to shrink accord-
ing to n−1/2. Note that this

√
n width scaling behavior is

independent and unrelated to the adiabatic scaling of run time.
We have run simulations using binomial-shaped barriers to

get a sense of this width scaling when a barrier is present.
For μ = 1, we find that the narrowing of the spiked success
probability pn around the critical τc running time is close to
n−1/2. In Fig. 6, we show the width of the probability peak
as a function of n for a binomial barrier with a height and
width proportional to n0.3. This width is extracted by looking
at the nonadiabatic optimal success probability peak and doing
a Gaussian fit to the data close to the peak. This fit can ignore
the fact that the peak is not directly at pn = 1 and allows us to
extract an approximation of the width of the peak.

The widths for the barrier case in Fig. 6 are well modeled
by the curve w = An−p, with a fitted value of p = 0.467. This
fitted exponent is close to what our analytics for the no-barrier
case predict. Other barrier shapes and sizes exhibit similar
scaling in the width of their nonadiabatic success probability
peak.

VI. CONCLUSION

While the μ = 1 case does exhibit a surprising nonadiabatic
speedup that could potentially be exploited, this diabatic
speedup is not a general feature of this class of quantum
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annealing problems. Even small changes to μ are enough to
alter the evolution and eliminate the speedup.

This non-adiabatic speedup had also been noted in the
semi-classical limit of the Hamming-symmetric tunneling
problem in a classical method called spin vector dynamics
[2]. We performed simple simulations of spin vector dynamics
for no barrier and μ �= 1 and observed the same breaking
of the nonadiabatic speedup seen in quantum annealing.
Therefore, the nonadiabatic speedup does not survive in either
the classical or the quantum setting.

In addition, we show that even in the μ = 1 case, achieving
the nonadiabatic speedup requires inverse polynomial preci-
sion in the run time. Thus, it is difficult to hit the speedup if
it exists. However, even in the adiabatic setting, this problem
shows a running time of

√
n, which is better than the linear

running time predicted by the adiabatic condition.

The Hamming-symmetric qubit problem has been well
studied explicitly because it is simple enough to permit analytic
work. The fact that simple changes can be made to this
system to eliminate an atypical nonadiabatic speedup shows
the robustness of this toy model. A small change to the model
is enough to bring it into line with what should be expected of
most physical systems. Running these algorithms adiabatically
remains the best and only option to achieve success in
general.
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