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Experimental quantum digital signature over 102 km
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Quantum digital signature (QDS) is an approach to guarantee the nonrepudiation, unforgeability, and
transferability of a signature with information-theoretical security. Previous experimental realizations of QDS
relied on an unrealistic assumption of secure channels and the longest distance is several kilometers. Here, we
have experimentally demonstrated a recently proposed QDS protocol without assuming any secure channel.
Exploiting the decoy state modulation, we have successfully signed a one-bit message through an up to 102-km
optical fiber. Furthermore, we continuously run the system to sign the longer message “USTC” with 32 bits at
the distance of 51 km. Our results pave the way towards the practical application of QDS.
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I. INTRODUCTION

Digital signature [1] is a basic primitive for plenty of
cryptographic protocols, which has many applications in
software distribution, financial transactions, contract manage-
ment software, and so on. Classical digital signature mainly
exploits the Rivest-Shamir-Adleman protocol [2], the security
of which is based on the mathematical complexity of the
integer factorization problem. This, however, may become
vulnerable with a quantum computer [3]. By exploiting the
laws of quantum mechanics, quantum key distribution (QKD)
can offer two legitimate users to share a random key with
information-theoretical security [4–6]. Similarly, one can
expect to exploit the laws of quantum mechanics to sign a
message with information-theoretical security, which is called
quantum digital signature (QDS).

The first QDS protocol was proposed by Gottesman and
Chuang in 2001 [7], where several technical challenges
need to be fixed for a practical implementation, including
nondestructive state comparison, long-time quantum memory,
and a secure quantum channel. Thereafter, QDS has attracted
a great deal of interest in the literature. Various QDS protocols
have been proposed [8–12] and some pioneering experimental
efforts have been made in this direction [13–16]. To name
a few, Clarke et al. [13] utilize coherent states and linear
optics to avoid the nondestructive operation and provide
the first experimental attempt. Collins et al. [14] present
a realization without the need of quantum memory, which,
however, still needs the assumption of a secure quantum
channel. A secure quantum channel means that the quantum
channel should not be tampered with. Note that the basic
model of quantum communication such as QKD [4,5] and
quantum secret sharing [17] is that the quantum channel
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can be eavesdropped upon and tampered with. Therefore, the
secure quantum channel is an unrealistic assumption and limits
the application of QDS. Meanwhile, the symmetric Mach-
Zehnder interferometer configuration of an optical multiport
(two interwoven Mach-Zehnder interferometers) [18] in the
experiment by Collins et al. [14] requires phase stability
between distant parties, which is experimentally challenging
for a long-distance implementation.

Very recently, new QDS protocols [19,20] have been
proposed to remove the assumption of a secure quantum
channel. A kilometer-range demonstration for the protocol in
Ref. [11] is provided [15], which assumes QKD to remove
the symmetric Mach-Zehnder interferometer configuration. In
this paper, we provide a complete QDS experiment without
quantum or classical secure channel assumption over a 102-km
optical fiber. We do believe that with these experimental
advances, QDS with information-theoretical security will
come to practical applications soon.

Before describing the experiment in detail, we first intro-
duce the QDS protocol [19] used in this paper. In a digital
signature protocol, Alice, the sender, will send a message with
a digital signature to two recipients, Bob and Charlie. Like
previous protocols [9–16], in our decoy state quantum digital
signature experiment, the security against forgery attack is
decoupled from the security against repudiation attack, and
the roles of Bob and Charlie are arbitrary. There is no need
to fix the authenticator before the messaging stage: either
Bob or Charlie can be the authenticator. Without loss of
generality, in our experiment, we take Bob as the authenticator
in the messaging stage. He then forwards the information that
he received from Alice, to Charlie. In a successful digital
signature protocol, Alice could not deny the signature, which is
called nonrepudiation. On the other hand, Bob could not forge
the message, which is called unforgeability. If Bob accepts the
message, Charlie will also accept the message, which is called
transferability. Our protocol is divided into three stages—
distribution stage, estimation stage, and messaging stage.

In the distribution stage, for each future possible message
m = 0,1, Alice exploits weak coherent states to randomly
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prepare two identical qubit states from the BB84 states [21],
|H 〉, |V 〉, |+〉, and |−〉, where |H 〉 and |V 〉 represent horizontal
and vertical polarization states, |+〉 = (1/

√
2)(|H 〉 + |V 〉) and

|−〉 = (1/
√

2)(|H 〉 − |V 〉). In order to avoid photon-number
splitting attack, Alice exploits the decoy state method by
randomly varying the intensity of the pulses. She chooses three
intensities μ,ν, and zero, therein, μ as signal and ν as decoy
state. Then, Alice randomly sends one qubit state with intensity
of α to Bob and the other with intensity of β to Charlie, where
(α,β) ∈ (μ,ν,0). Note that the polarization states sent to Bob
and Charlie are identical, while the intensities do not need to
be the same.

Bob and Charlie independently and randomly exploit the
Z or X basis to measure the received quantum state. Alice,
Bob, and Charlie record the corresponding data when both
Bob’s and Charlie’s detectors have a click. The nonorthogonal
state encoding scheme [22] is used to identify the conclusive
outcomes and inconclusive outcomes. For each quantum
state, Bob (Charlie) compares his measurement outcomes
with two nonorthogonal states announced by Alice. Therein,
the quantum state sent by Alice is one of the states she
announced. If his measurement outcome is orthogonal to one
of Alice’s announced states, he concludes a conclusive result
that the other state has been sent. Otherwise, he concludes
that it is an inconclusive outcome, which is only known by
himself.

In the estimation stage, Alice announces the nine intensity
sets and also the bit information of six intensity sets, μ0,
0μ, νν, ν0, 0ν, and 00. Charlie (Bob) estimates the yield
YC

11 (YB
11) and the quantum bit error rate eC

11 (eB
11) for single-

photon pairs of his conclusive results [19], where a single-
photon pair represents that one photon is sent to Bob and one
photon is sent to Charlie. The other three intensity sets μμ,
μν, and νμ constitute an overall data string. Bob or Charlie
randomly chooses some data from the overall data string as
the sampling data string and informs everyone. This random
sampling is only used for defeating Alice’s repudiation attack,
so it is same whether Bob or Charlie implements the random
sampling. They compare the bit value for the sampling string
and estimate the quantum bit error rate of conclusive results,
EB

s and EC
s , which are utilized to restrict repudiation from

Alice. The remaining data strings of Alice, Bob, and Charlie
are kept for the digital signature, denoted as SAm, SBm, and
SCm, respectively.

In the messaging stage, to sign a one-bit message m,
Alice sends the message and the corresponding data string
(m,SAm) to the authenticator Bob. Bob will accept the message
when the mismatching rate of his conclusive outcome is
less than authentication security threshold Ta . If Bob accepts
the message, he forwards (m,SAm) to the verifier, Charlie.
Charlie will accept the message when the mismatching rate
of his conclusive outcome is less than (verification) security
threshold Tv . We remark that both Bob and Charlie can be the
authenticator before the messaging stage in our decoy state
quantum digital signature, which is the same as with previous
protocols [13–16].

Exploiting the entanglement distillation technique
[19,23,24], the minimum entropy of Bob about Charlie’s
conclusive results with the single-photon pairs can be bounded
by 1 − H (eC

p11|eC
11), where eC

p11 is the phase error rate and

H (eC
p11|eC

11) is the conditional Shannon entropy (see Ap-
pendix A for details). Given the bound of the minimum entropy
of Bob, one can acquire the lower bound of mismatching rate
S11 between Bob’s declaration and Charlie’s conclusive results
with single-photon pairs, which can be given by [19,20]

1 − H
(
eC
p11

∣∣eC
11

) − H (S11) = 0, (1)

where H (x) = −x log2 x − (1 − x) log2(1 − x) is the Shan-
non entropy function. Exploiting the mismatching rate S11,
one can restrict the forgery attack of Bob.

From the view of Alice, the status of all data (conclusive
results and inconclusive results) owned by Bob (Charlie)
could be regarded as the same, since Bob (Charlie) does
not announce the position of a conclusive result. By random
sampling, the upper bound of the difference between the
data owned by Bob and Charlie can be bounded. With this
restriction, Alice has to send almost the same quantum states
to Bob and Charlie and thus the potential repudiating attack is
avoided. Taking into account the finite-size effect [25–28],
the authentication (verification) security threshold Ta (Tv)
can be determined. With Ta and Tv , one can calculate the
probabilities of successful repudiation attack, forgery attack,
and robustness. Detailed analysis can be found in Appendix A.

II. EXPERIMENTAL SETUP

In the implementation, the quantum stage setup is shown
in Fig. 1. Alice prepares four polarization-encoded BB84
states with four electrically modulated distributed feedback
laser diodes. The emissions of the laser diodes are centered
at 1550 nm with a pulse duration of 0.4 ns and repetition
frequency of 75 MHz. The difference of the central wavelength
from these lasers is well controlled to be less than 0.02 nm
via temperature control. In order to decrease side channel
attacks, we need to carefully adjust the four lasers and make
the spectrum, waveform, and time modes as indistinguishable
as possible. The spectrum and waveform modes are adjusted to
be generally almost overlapped. The time mode is controlled
to be less than 20 ps. We combine the four laser diodes with
two polarization beam splitters (PBSs) and one 45-deg rotation
beam splitter into a single fiber. An electrical variable optical
attenuator is used to attenuate the average photon number
per pulse to the experimental level. The dense wavelength
division multiplexer with 100-GHz bandwidth is used to filter
any spurious emission. After the filtration, the quantum states
are sent out to Bob through a fiber spool.

We exploit the decoy state method [29–31] by varying the
injection electrical current for the laser diodes. We set the
intensities of signal states μ = 0.22, decoy states ν = 0.066,
and vacuum states zero and their corresponding probability
distributions are Pμ = 60%, Pν = 35%, and P0 = 5%, respec-
tively. All random signals for choosing polarization states
or intensities are derived from random numbers generated
beforehand. Meanwhile, the phases for the directly modulated
laser diode are random, which is immune to the unambiguous
state discrimination attack [32].

In Bob’s side, the detector system contains four super-
conducting nanowire single-photon detectors (SNSPDs) that
provide the detection efficiency of 52% at the dark count rate
of 10 counts per second. A polarization measurement module

032334-2



EXPERIMENTAL QUANTUM DIGITAL SIGNATURE OVER . . . PHYSICAL REVIEW A 95, 032334 (2017)

FIG. 1. Experimental setup for quantum digital signature. Alice randomly prepares two copies of BB84 states with decoy state method
and sends to Bob and Charlie through two fiber spools, respectively. Bob and Charlie detect the photon with their SNSPDs (superconducting
nanowire single-photon detector). PBS, polarization beam splitter; π

4 RBS, π/4 rotation beam splitter; EVOA, electrical variable optical
attenuator; DWDM, dense wavelength division multiplexer; BS, beam splitter; EPC, electric polarization controller; FPGA, filed programmable
gate array; SynL, synchronization laser.

is connected to the detector system via single-mode fibers and
consists of one beam splitter, two electric polarization con-
trollers (EPCs), and two PBSs. By exploiting the polarization
feedback algorithm [33], the EPC is controlled to compensate
the polarization fluctuation in the fiber spool. The optical
pulses go through the polarization measurement module to be
detected by the SNSPD. One additional manual polarization
controller of each detector channel is exploited to resolve the
polarization sensitivity of the SNSPDs. The insertion loss of
the polarization measurement module is around 1.2 dB.

Bob exploits a crystal oscillator circuit to generate 500-kHz
electric signals as the synchronization signals of the system.
Bob sends synchronization laser pulses (SLPs) at 1570 nm
modulated by the 500-kHz electric signals to Alice through
an additional fiber. A photoelectric detector and phase-locked
loop utilized by Alice detect the SLP and regenerate a system
clock frequency of 75 MHz by frequency multiplication as the
clock for her four laser diodes. The measurements of Bob and
Charlie are independent from each other. It is not necessary for
all participants to share one common reference clock. There-
fore, Alice exploits another similar setup to send quantum
states to Charlie. Therein, the polarization states sent to Bob
and Charlie are identical, while the intensities are random.

III. RESULTS

In our experiment, we perform a symmetrical case that the
fiber lengths from Alice to Bob and Alice to Charlie are almost
the same. The lengths of the fiber spools are 25, 51, 76, and
102 km, respectively. For each distance, we send two groups of
quantum states to sign one future bit message in the signature
stage, where the first group is used to sign future message bit
m = 0 and the second group is for bit m = 1. The parameter
estimation and the message signature are implemented in a
local area network connecting the three users.

The bit error rates EB
s and EC

s of Bob’s and Charlie’s
conclusive results in the sampling data string are listed in
Table I. Exploiting the decoy state method [19], the yield and
quantum bit error rate of single-photon pairs can be acquired.
The lower bound of the mismatching rate S11 can be calculated
using Eq. (A1), and S11 is shown in Table I. Given that
the security bound is εsec < 10−5 and the robustness bound
is εrob < 10−6, the authentication and verification security
thresholds Ta and Tv can be chosen with proper values, which
are also shown in Table I. More details of experimental results
can be found in Appendix B.

Except for proof-of-principle demonstration of a one-bit
QDS like all previous experimental demonstrations, we also
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TABLE I. The error rates and secure thresholds at different distances in our experiment. Therein, εrep (εfor) represents the probability of
successful repudiation (forgery) attack. N represents the total pulse pairs sent by Alice to sign a half bit.

25 km 51 km 76 km 102 km
4.9 dB attenuation 9.8 dB attenuation 14.8 dB attenuation 19.8 dB attenuation

Tv 2.0% 2.0% 1.9% 2.2%
Ta 0.6% 0.6% 0.55% 0.7%
Message m = 0 m = 1 m = 0 m = 1 m = 0 m = 1 m = 0 m = 1
EB

s 0.35% 0.39% 0.37% 0.37% 0.36% 0.29% 0.51% 0.45%
EC

s 0.26% 0.29% 0.25% 0.22% 0.30% 0.26% 0.42% 0.40%
S11 4.33% 4.21% 4.27% 4.35% 4.28% 4.10% 4.46% 4.42%
Time 20 s 20 s 180 s 180 s 1620 s 1620 s 33420 s 33420 s
N 1.5 × 109 1.5 × 109 1.35 × 1010 1.35 × 1010 1.215 × 1011 1.215 × 1011 2.5065 × 1012 2.5065 × 1012

εrep 7.1 × 10−10 1.4 × 10−6 1.6 × 10−10 3.4 × 10−11 5.3 × 10−8 4.9 × 10−12 4.9 × 10−8 5.7 × 10−13

εfor 7.4 × 10−15 5.6 × 10−9 4.1 × 10−13 4.1 × 10−12 2.5 × 10−8 3.7 × 10−9 1.4 × 10−19 7.0 × 10−10

εrob 8.2 × 10−12 3.9 × 10−8 1.6 × 10−9 4.6 × 10−10 1.2 × 10−7 1.2 × 10−14 2.2 × 10−9 2.0 × 10−18

implement QDS for a longer message. We continuously collect
64 groups and each group has 180 s at the distance of 51 km.
The bit error rates of Bob’s and Charlie’s conclusive results
EB

s and EC
s in the sampling data string for each group are

shown in Fig. 2. We set the security bound to be εsec < 10−5

and the robustness bound to be εrob < 10−6 for each group.
For simplicity, the authentication and verification security
thresholds Ta and Tv can be fixed to be 2.0 and 0.6%,
respectively. Note that the secure thresholds can be different
for each group. We can sign a 32-bit message since two groups
need to be used to sign a one-bit message. Before Alice signs
the long message, she will publicly announce the length of
the message bits. Here, we have successfully signed a 32-bit
message “USTC” by taking more than 3 h. The process of
signing the message can be found in Fig. 3.

IV. CONCLUSION

We have experimentally demonstrated a QDS protocol
without the assumption of any secure channel. Exploiting

FIG. 2. The error rates and the mismatching rates for each group.
The experimental error rates EB

s (EC
s ) of Bob’s (Charlie’s) conclusive

results in the sampling data string are almost 0.3–0.4% (0.2–0.3%).
The mismatching rates S11 calculated by Eq. (A1) are almost
4.2–5.0%.

the decoy state modulation and the BB84 state encoding, we
have successfully signed a one-bit message through an up to
102-km optical fiber. Furthermore, we continuously run the
system to sign the longer message “USTC” with 32 bits at
the distance of 51 km. We remark that it takes 360 s to sign
a one-bit message at the distance of 51 km, which currently
seems to be not so practical. However, if we implement the
full parameter optimization and joint constrained statistical
fluctuation [34], combined with the six-state encoding [19],
the signature rate will increase obviously with more than two
orders of magnitude. In order to increase the practicability of
QDS in real-world applications, one may let signal pulses and
synchronization pulses multiplex a single fiber. We leave the
important work for real-world applications in the future. We

FIG. 3. Demonstration of signing the message string “USTC”
in the messaging stage. Alice sends the ASCII code for the mes-
sage “01010101010100110101010001000011” and the correspond-
ing data string S1

A0S
2
A1 · · · S31

A1S
32
A1 to Bob through the authenticated

classical channel. Bob compares the data strings S1
A0S

2
A1 · · · S31

A1S
32
A1

and S1
B0S

2
B1 · · · S31

B1S
32
B1, and accepts the message since the error rate

of Bob’s conclusive rates is less than Ta for each group. Bob forwards
the message and the corresponding data string to Charlie through
the authenticated classical channel. Charlie compares the data strings
S1

A0S
2
A1 · · · S31

A1S
32
A1 and S1

C0S
2
C1 · · · S31

C1S
32
C1, and accepts the message

since the error rate of Charlie’s conclusive rates is less than Tv for
each group.
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TABLE II. List of the total pulses, the total counts, and the error counts in the case of 25 km in the laboratory. Numbers in brackets indicate
powers of 10.

m = 0 m = 1

25 km 0 ν μ 0 ν μ

0 4.13[06] 2.62[07] 4.47[07] 4.13[06] 2.62[07] 4.47[07]
Nαβ ν 2.64[07] 1.85[08] 3.14[08] 2.64[07] 1.85[08] 3.14[08]

μ 4.45[07] 3.14[08] 5.42[08] 4.45[07] 3.14[08] 5.42[08]

0 1 4 13 0 2 13
Mαβ ν 3 10743 59590 2 10206 56841

μ 4 59339 340524 9 56775 323515

0 0 0 7 0 0 6
MB

αβ ν 1 2715 14937 1 2545 14330
μ 3 14778 85049 0 14320 81006

0 0 1 4 0 1 6
MC

αβ ν 1 2768 14839 1 2614 14215
μ 2 14990 84844 4 14108 80513

0 0 0 5 0 0 4
EB

αβMB
αβ ν 0 13 61 0 10 83

μ 0 52 283 0 48 335

0 0 0 0 0 0 0
EC

αβMC
αβ ν 1 8 31 1 8 43

μ 1 58 188 3 53 212

remark that the polarization drift compensation will become
very difficult when the fiber is self-supporting overhead optical
cables. The protocol used in our experiment is less efficient
than that in Ref. [20] in the long-distance case. But the protocol
used in our experiment requires less quantum channels and
quantum communication systems.
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APPENDIX A: DECOY STATE SCHEME
AND FINITE-SIZE EFFECT

In this section, we will review the probability of repudiation
and forgery attack calculations for the QDS protocol. No one
can unambiguously discriminate two copies of quantum states
from the four polarization states |H 〉,|V 〉,|+〉,|−〉. For the
two-photon components, the minimum entropy of Bob about
Charlie’s conclusive results acquired by the nonorthogonal
state encoding scheme [22] can be quantified by the entan-
glement distillation technique [19,23,24]. The relationship
between phase error rate ep and bit error rate eb is given by

ep = min
x

{xeb + f (x)},∀x,
2 − √

2

4
eb � a � 2 + √

2

4
eb,

(A1)

and

f (x) = 3 − 2x +
√

6 − 6
√

2x + 4x2

6
, (A2)

where a is the probability that both bit flip and phase shift
occur, which quantifies the mutual information between phase
and bit errors. The conditional Shannon entropy function can
be given by [19]

H (ep|eb) = −(1 + a − eb − ep) log2
1 + a − eb − ep

1 − eb

− (ep − a) log2
ep − a

1 − eb

− (eb − a) log2
eb − a

eb

− a log2
a

eb

. (A3)

The intensity set αβ represents that Alice sends weak
coherent-state pulses to Bob with intensity α and weak
coherent-state pulses to Charlie with intensity β. Alice
prepares the phase randomized weak coherent-state pulse pairs
in the Z basis or X basis with the intensity sets of μμ, μν, νμ,
μ0, 0μ, νν, ν0, 0ν, and 00. In the photon-number space, the
density matrix for a pulse pair of intensity αβ can be given by

ραβ =
∞∑

n=0

∞∑
m=0

e−α αn

n!
e−β βm

m!
|n〉〈n||m〉〈m|. (A4)

The effective detection event can be defined as that both Bob
and Charlie have a detection click. We denote Nαβ as the
number of pulses sent by Alice with the intensity set αβ. Mαβ

is the number of effective detection events. MB
αβ (MC

αβ) is the
number of effective detection events given that Bob (Charlie)
has the conclusive results. The gain QC

αβ is the ratio of MC
αβ to

Nαβ . EC
αβ is the quantum bit error rate in MC

αβ events.
Denote YC

11 (eC
11) as the yield (bit error rate) of Alice sending

single-photon pairs (one photon is sent to Bob and the other
is sent to Charlie) and Charlie having conclusive results.
Exploiting the decoy state method [19], the lower bound of
yield YC

11 and the upper bound of eC
11 with analytic form can be

written as

YC
11 � 1

μ2ν2(μ − ν)
× {

μ3
[
e2νQC

νν − eν
(
QC

ν0 + QC
0ν

)]
− ν3

[
e2μQC

μμ − eμ
(
QC

μ0 + QC
0μ

)] + (μ3 − ν3)QC
00

}
(A5)

and

eC
11 � 1

ν2YC
11

[
e2νEC

ννQ
C
νν + EC

00Q
C
00

− eν
(
EC

ν0Q
C
ν0 + EC

0νQ
C
0ν

)]
. (A6)

TABLE IV. List of the total pulses, the total counts, and the error counts in the case of 76 km in the laboratory. Numbers in brackets indicate
powers of 10.

m = 0 m = 1

76 km 0 ν μ 0 ν μ

0 3.34[08] 2.12[09] 3.62[09] 3.34[08] 2.12[09] 3.62[09]
Nαβ ν 2.13[09] 1.50[10] 2.54[10] 2.13[09] 1.50[10] 2.54[10]

μ 3.60[09] 2.54[10] 4.39[10] 3.60[09] 2.54[10] 4.39[10]

0 0 0 4 0 0 6
Mαβ ν 2 10912 62070 1 10794 61148

μ 6 62252 363460 3 62362 360661

0 0 0 2 0 0 0
MB

αβ ν 1 2681 15491 1 2722 15346
μ 2 15781 91014 0 15670 90341

0 0 0 3 0 0 1
MC

αβ ν 0 2741 15779 0 2785 15198
μ 2 15716 91624 0 15543 90804

0 0 0 1 0 0 0
EB

αβMB
αβ ν 0 14 50 0 12 44

μ 0 52 297 0 45 261

0 0 0 0 0 0 0
EC

αβMC
αβ ν 0 8 63 0 10 35

μ 1 45 272 0 60 265
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TABLE V. List of the total pulses, the total counts, and the error counts in the case of 102 km in the laboratory. Numbers in brackets indicate
powers of 10.

m = 0 m = 1

102 km 0 ν μ 0 ν μ

0 6.90[09] 4.37[10] 7.47[10] 6.90[09] 4.37[10] 7.47[10]
Nαβ ν 4.41[10] 3.09[11] 5.24[11] 4.41[10] 3.09[11] 5.24[11]

μ 7.44[10] 5.24[11] 9.05[11] 7.44[10] 5.24[11] 9.05[11]
0 0 1 13 0 3 8

Mαβ ν 1 21333 120069 1 22744 127079
μ 11 120257 698071 6 127284 740794

0 0 0 8 0 0 2
MB

αβ ν 0 5371 30050 1 5640 31713
μ 2 29996 175595 3 32088 186024

0 0 0 2 0 1 1
MC

αβ ν 0 5411 30174 1 5668 31701
μ 5 30267 175246 3 32217 185762

0 0 0 2 0 0 0
EB

αβMB
αβ ν 0 31 182 0 34 127

μ 0 154 856 1 145 767

0 0 0 0 0 0 0
EC

αβMC
αβ ν 0 20 113 0 21 162

μ 2 147 799 0 140 820

We exploit the standard error analysis method [25] to calculate
the finite-size effect of decoy state estimation. Thus, we have

QCU
αβ = QC

αβ

⎛
⎝1 + γ√

NαβQC
αβ

⎞
⎠, (A7)

and

QCL
αβ = QC

αβ

⎛
⎝1 − γ√

NαβQC
αβ

⎞
⎠. (A8)

where γ is the number of standard deviations, and

ε′ = 1√
2π

∫ ∞

γ

e− t2

2 dt, (A9)

where ε′ is the failure probability for each estimation.
The data string of μ0, 0μ, νν, ν0, 0ν, and 00 are all an-

nounced publicly to estimate the bit error rate of single-photon
pairs in Eq. (A6). Therefore, the data string under the case of
three intensity sets μμ, μν, and νμ constitutes an overall data
string M , i.e., M = Mμμ + Mμν + Mνμ. Similarly, MC =
MC

μμ + MC
μν + MC

νμ and MB = MB
μμ + MB

μν + MB
νμ are the

numbers of Bob’s and Charlie’s conclusive results in the
overall data string M , respectively. We denote Ms to be
the sampling data string, Mr = M − Ms to be the other
data string, MB

s and MC
s to be the numbers of Bob’s and

Charlie’s conclusive results in the sampling data string Ms ,
MB

r = MB − MB
s and MC

r = MC − MC
s to be the numbers of

Bob’s and Charlie’s conclusive results in the other data string
Mr . We denote EB

s and EC
s to be the quantum bit error rates

in MB
s and MC

s , respectively.

From the view of Bob and Charlie, only the conclusive
results can be used to detect the error (mismatching), while
the inconclusive results can only be assumed without mis-
matching. The mismatching rates of Bob and Charlie in the
sampling data string can be given by


B
s = EB

s MB
s /Ms, 
C

s = EC
s MC

s /Ms. (A10)

However, from the view of Alice, the status of all data owned
by Bob (Charlie) in the data string M could be regarded as
the same, since Bob (Charlie) does not announce the position
of conclusive results. By using the random sampling without
replacement [26], the upper bound of the difference between
the data owned by Bob and by Charlie in the other data string
can be given by


 = 
s + δ, 
s = 
B
s + 
C

s ,

δ = g[Ms,Mr,
s,ε], (A11)

where ε = 10−6 is the failure probability and

g(n,k,λ,ε) =
√

2(n + k)λ(1 − λ)

nk
ln

√
n + kC(n,k,λ)√
2πnkλ(1 − λ)ε

,

(A12)

C(n,k,λ) = exp

(
1

8(n + k)
+ 1

12k
− 1

12kλ + 1

− 1

12k(1 − λ) + 1

)
. (A13)
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TABLE VI. The counts and error counts of the random sampling.

25 km 51 km 76 km 102 km

m = 0 m = 1 m = 0 m = 1 m = 0 m = 1 m = 0 m = 1

Ms 137597 131162 145683 144388 146108 145195 281435 298206
Mr 321856 305969 338735 336140 341674 338976 656962 696951
MB

s 34378 32689 36542 36247 36650 36634 70967 74697
MB

r 80386 76967 84245 84481 85636 84723 164674 175128
MC

s 34203 32660 36491 36226 36754 36529 70616 74828
MC

r 80470 76176 85204 84395 86365 85016 165071 174852
EB

s MB
s 119 127 136 134 132 106 364 336

EC
s MC

s 90 95 90 80 110 94 297 300

By using the Chernoff bound [27,28], the optimal probabil-
ity of Alice’s repudiation attack can be written as [19]

εrep = exp

[
−

(
A − MB

r Ta/Mr

)2

2A
Mr

]
, (A14)

where A is the physical solution of the following equation and
inequalities:(

A − MB
r Ta/Mr

)2

2A
=

[
MC

r Tv/Mr − (A + 
)
]2

3(A + 
)
,

MB
r Ta/Mr < A <

(
MC

r Tv/Mr − 

)
. (A15)

The number of the single-photon pairs of Charlie’s conclu-
sive results in the other data string can be given by

MC
11r = (Nμμe−2μμ2 + Nμνe

−μ−νμν

+Nνμe−μ−νμν)YC
11(Mr/M). (A16)

We assume that Bob can guess the information of Charlie’s
conclusive results without error except the single-photon pairs.
The lower bound of mismatching rate S11 between Bob’s
declaration and Charlie’s conclusive results with single-photon
pairs can be given by

1 − H
(
eC
p11|eC

11

) − H (S11) = 0, (A17)

where H (x) = −x log2 x − (1 − x) log2(1 − x) is the Shan-
non entropy function, the phase error rate eC

p11 of single-photon

pairs can be calculated by Eq. (A1), and a = 2−√
2

4 . The optimal
probability of Bob’s forgery attack is [19]

εfor = exp

[
− (S11 − Tv11)2

2S11
MC

r11

]
, (A18)

where Tv11 = TvM
C
r /MC

r11 is the error rate threshold of single-
photon pairs of Charlie’s conclusive results. The secure bound
of the protocol can be written as

εsec = εfor + εrep + ε + 11ε′, (A19)

where 11ε′ = 7 × 10−6 is the failure probability due to the
decoy state method.

The probability of the robustness is [19]

εrob = h
[
Mr,Ms,


B
s ,MB

r Ta/Mr − 
B
s

]
, (A20)

where

h(n,k,λ,t) =
exp

[− nkt2

2(n+k)λ(1−λ)

]
C(n,k,λ)

√
2πnkλ(1 − λ)/(n + k)

. (A21)

APPENDIX B: EXPERIMENTAL RESULTS

We have performed the QDS experiment in the laboratory.
The distances form Alice to Bob (Alice to Charlie) are
performed with four cases, i.e., 25-, 51-, 76-, and 102-km
fiber spools. Therefore, the maximum distances between Bob
and Charlie can be about 50, 102, 152, and 204 km. The
secure parameters and important results at different distances
in the experiment are shown in Table I. Tables II–V show the
details of the total pulses Nαβ ; the total counts Mαβ , MB

αβ , and
MC

αβ ; and the error rates EB
αβ and EC

αβ . From the experimental
results, we can see that the probabilities of Bob’s and Charlie’s
conclusive results are all approximately 0.25 and in accordance
with the theory. Table VI shows the case of random sampling
with the probability of 30%.
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