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Optimal witnessing of the quantum Fisher information with few measurements
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We show how to verify the metrological usefulness of quantum states based on the expectation values of an
arbitrarily chosen set of observables. In particular, we estimate the quantum Fisher information as a figure of
merit of metrological usefulness. Our approach gives a tight lower bound on the quantum Fisher information for
the given incomplete information. We apply our method to the results of various multiparticle quantum states
prepared in experiments with photons and trapped ions, as well as to spin-squeezed states and Dicke states realized
in cold gases. Our approach can be used for detecting and quantifying metrologically useful entanglement in very
large systems, based on a few operator expectation values. We also gain new insights into the difference between
metrological useful multipartite entanglement and entanglement in general.
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I. INTRODUCTION

Entanglement lies at the heart of many problems in quantum
mechanics and has attracted increasing attention in recent
years. There are now efficient methods to detect it with a mod-
erate experimental effort [1,2]. However, in spite of intensive
research, many of the intriguing properties of entanglement
are not fully understood. One such puzzling fact is that, while
entanglement is a sought after resource, not all entangled
states are useful for some particular quantum information
processing task. For instance, it has been realized recently
that entanglement is needed in very general metrological tasks
to achieve a high precision [3]. Remarkably, this is true even in
the case of millions of particles, which is especially important
for characterizing the entanglement properties of cold atomic
ensembles [4–9]. However, there are highly entangled pure
states that are useless for metrology [10].

In the light of the these results, besides verifying that
a quantum state is entangled, we should also show that it
is useful for metrology. This is possible if we know the
quantum Fisher information FQ[�,Jl] for the state. Here �

is a density matrix of an ensemble of N two-level systems
(i.e., qubits), Jl = 1

2

∑
n σ

(n)
l for l = x,y,z are the angular

momentum components and σ
(n)
l are the Pauli spin matrices

acting on qubit n.

The quantum Fisher information is a central quantity of
quantum metrology. It is connected to the task of estimating the
phase θ for the unitary dynamics of a linear interferometer U =
exp(−iJlθ ), assuming that we start from � as the initial state.
It provides a tight bound for the precision of phase estimation
as [11,12]

(�θ )2 � 1/FQ[�,Jl]. (1)

It has been shown that if FQ[�,Jl] is larger than the value
achieved by product states [3], then the state � is entangled.
Higher values of the quantum Fisher information indicate
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even multipartite entanglement [13]; this fact has been used to
analyze the results of several experiments [8,9,14].

In this paper, we suggest estimating the quantum Fisher
information based on a few measurements [15]. Our method
can be called “witnessing the quantum Fisher information”
since our estimation scheme is based on measuring operator
expectation values similarly to how entanglement witnesses
work [1,2]. Our findings are expected to simplify the ex-
perimental determination of metrological sensitivity since the
proposed set of a few measurements is much easier to carry out
than the direct determination of the metrological sensitivity,
which has been applied in several experiments [8,9,16,17].
The archetypical criterion in this regard is [3]

FQ[�,Jy] � 〈Jz〉2

(�Jx)2
, (2)

which is expected to work best for states that are almost
completely polarized in the z direction and spin-squeezed in
the x direction. Apart from spin-squeezed states, there are
conditions similar to Eq. (2) for symmetric states close to
Dicke states [18–21] and for two-mode squeezed states [22].

After finding criteria for various systems, it is crucial to
develop a general method that provides an optimal lower bound
on the quantum Fisher information in a wide class of cases,
especially for the states most relevant for experiments such
as spin-squeezed states [23], Greenberger-Horne-Zeilinger
(GHZ) states [24], and symmetric Dicke states [18]. It seems
that such a method would involve a numerical minimization
over all density matrix elements constrained for some operator
expectation values, which would be impossible except in very
small systems.

In this paper, we demonstrate that tight lower bounds on the
quantum Fisher information can still be computed efficiently.
Remarkably, our method works for thousands of particles. We
show how to obtain a bound on the quantum Fisher information
from fidelity measurements for GHZ states [25–32] and for
symmetric Dicke states [14,33–37]. We also discuss how
to obtain such bounds based on collective measurements
for spin-squeezed states of thousands of atoms [6,7,38] and
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for symmetric Dicke states prepared recently in cold gases
[8,39–41]. We stress that the method is very general and needs
only the expectation values of a set of operators chosen by
the experimenter. Then it provides a tight lower bound on the
quantum Fisher information.

Due to the relation between the quantum Fisher information
and entanglement mentioned above, our method can also
be used for entanglement detection and quantification based
on an arbitrary set of operator expectation values in very
large systems. So far, methods that can be used for large
systems, such as spin-squeezing inequalities [42–44], work
only for a specific set of observables. In addition, methods
that can quantify entanglement based on the expectation
values of an arbitrary set of observables, such as semidefinite
programming [45–47], work only for small systems.

The paper is organized as follows. In Sec. II, we show
how to bound the quantum Fisher information based on the
knowledge of some operator expectation values. In Sec. III, we
test our method on theoretical examples in small systems. In
Sec. IV, we present calculations for experimental data. Finally,
in Sec. V, we discuss how the quantum Fisher information is
expected to scale with the particle number in the limit of large
particle numbers.

II. ESTIMATION OF THE QUANTUM
FISHER INFORMATION

In this section, first we review some important properties of
the quantum Fisher information. Then we present our method
for estimating it based on a few measurements.

A. Entanglement quantification with the quantum
Fisher information

In Sec. I, we mentioned briefly, how quantum Fisher
information connects quantum metrology and entanglement
theory. In more detail, the bounds on the quantum Fisher
information make it possible to detect metrologically useful
entanglement. It has been shown that if

FQ[�,Jl] > (k − 1)N, (3)

where k is an integer, then the state has a better metrological
performance than any state with at most (k − 1)–particle
entanglement, hence it possesses at least k-particle metrolog-
ically useful entanglement [3,13]. We can immediately see
that a perfect N -particle GHZ state possesses metrologically
useful N -particle entanglement. Based on the ideas above,
it is possible to use the quantum Fisher information for
entanglement detection [8,9,14].

Let us analyze the condition, Eq. (3), further. A simple
calculation shows that for a tensor product of (k − 1)–particle
GHZ states the two sides of Eq. (3) are equal. Hence, a state
is detected by Eq. (3) if it performs better than a state in
which all particles are in GHZ states of (k − 1) particles.
For instance, if in an experiment with 10 000 particles we
detect five-particle metrologically useful entanglement, then
the state is better metrologically than a tensor product of 2500
four-particle GHZ states. Based on this example, it is easy to
see that the requirements for metrologically useful k-particle

entanglement are much stricter than for general k-particle
entanglement.

B. Estimation of a general function of �

First, we review a method that can be used to find a lower
bound on a convex function g(�) based on only a single
operator expectation value w = 〈W 〉� = Tr(W�). Theory tells
us that a tight lower bound can be obtained as [48–50]

g(�) � B(w) := sup
r

[rw − ĝ(rW )], (4)

where ĝ is the Legendre transform, in this context defined as

ĝ(W ) = sup
�

[〈W 〉� − g(�)]. (5)

Equation (4) has been applied to entanglement mea-
sures [49,50]. Since those are defined as convex roofs over all
possible decompositions of the density matrix, it is sufficient
to carry out the optimization in Eq. (4) for pure states only.
However, still an optimization over a general pure state, i.e.,
over many variables, has to be carried out, which is practical
only for small systems.

Based on this method, we would like to estimate the
quantum Fisher information, which is strongly connected to
entanglement, while it also has a clear physical meaning
in metrological applications. As the first step, we note that
FQ[�,Jl] can be obtained as a closed formula with � and Jl

[12], however, this is a highly nonlinear expression which
would make the computation of the Legendre transform very
demanding. A key point in our approach is using a very recent
finding showing that FQ[�,Jl] is the convex roof of 4(�Jy)2

[51], and hence the optimization may be carried out only
for pure states. With this, however, we are still facing an
optimization problem that cannot be solved numerically for
system sizes relevant for quantum metrology.

We now arrive at our first main result. We show that, for
the quantum Fisher information, Eq. (5) can be rewritten as an
optimization over a single real parameter.

Observation 1. The quantum Fisher information can be
estimated using the Legendre transform

F̂Q(W ) = sup
μ

{λmax[W − 4(Jl − μ)2]}, (6)

where λmax(A) denotes the maximal eigenvalue of A.

Proof. Based on the previous discussion, we can rewrite the
right-hand side of Eq. (5) for our case as

F̂Q(W ) = sup
�

[〈
W − 4J 2

l

〉
�

+ 4〈Jl〉2
�

]
. (7)

Equation (7) is quadratic in the operator expectation values.
It can be rewritten as an optimization linear in the operator
expectation values as

F̂Q(W ) = sup
�,μ

[〈
W − 4J 2

l

〉
�

+ 8μ〈Jl〉� − 4μ2
]
, (8)

which can be reformulated as Eq. (6). At the extremum, the
derivative with respect to μ must be 0, hence at the optimum
μ = 〈Jl〉�. This also means that we have to test μ values in
the interval −N/2 � μ � N/2 only. �

In this paper, we use Eq. (6) to calculate the Legendre
transform [52]. The full optimization problem to be solved
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consists of Eq. (6) and Eq. (4) with the substitutions g(�) =
FQ[�,Jl] and ĝ(W ) = F̂Q(W ).

We want to stress the generality of our findings beyond
the linear interferometers covered in this article. For nonlinear
interferometers [53–58], the phase θ must be estimated in
a unitary dynamics U = exp(−iAθ ), where A is not a sum
of single spin operators and, hence, is different from the
angular momentum components. Using Observation 1, we can
obtain lower bounds for the corresponding quantum Fisher
information FQ[�,A] if we replace Jl with A in Eq. (6).

C. Measuring several observables

We now consider the estimation of the quantum Fisher
information based on several expectation values. We can
generalize the method described by Eqs. (4) and (5) for
measuring several observables Wk as [49]

FQ[�,Jy] � sup
r1,r2,...,rK

[
K∑

k=1

rkwk − F̂Q

(
K∑

k=1

rkWk

)]
, (9)

where wk = 〈Wk〉�. As we can see, we now have several
parameters rk. Combining Eq. (9) with the Legendre trans-
form (6), we arrive at the formula

FQ[�,Jl] � sup
{rk}

[∑
k

rkwk − sup
μ

λmax(M)

]
, (10)

where

M =
∑

k

rkWk − 4(Jl − μ)2. (11)

Since F̂Q(
∑

k rkWk) is a convex function in rk, in Eq. (10) the
quantity to be maximized in rk is concave [48]. Thus, we can
easily find the maximum with the gradient method. If we do
not find the optimal rk , then we underestimate the real bound.
Hence, we will still have a valid lower bound. This does not
hold for the optimization over μ. The function to be optimized
is not a convex function of μ, and not finding the optimal μ

leads to overestimating the bound. Thus, great care must be
taken when optimizing over μ.

III. EXAMPLES

In this section, we show how to use our method to
estimate the quantum Fisher information based on fidelity
measurements, as well as collective measurements.

A. Exploiting symmetries

When making calculations for quantum systems with an
increasing number of qubits, we soon run into difficulties when
computing the largest eigenvalue in Eq. (6). The reason is that
for N qubits, we need to handle 2N × 2N matrices, hence we
are limited to systems of 10–15 qubits.

We can obtain bounds for much larger particle numbers
if we restrict ourselves to the symmetric subspace [59]. This
approach can give optimal bounds for many systems, such as
Bose-Einstein condensates of two-state atoms, which are in
a symmetric multiparticle state. The bound computed for the
symmetric subspace might not be correct for general states.
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FIG. 1. (a) Fidelity vs lower bound on the quantum Fisher
information for GHZ states of N qubits. The quantum Fisher
information is 0 if the fidelity is less than 0.5. (b) The same, but
for Dicke states with N = 6 (solid line) and N = 40 (dashed line).

Finally, it is important to note that if the operator W is
permutationally invariant and the eigenstate with the maximal
eigenvalue of the matrix in Eq. (6) is nondegenerate, then the
two bounds coincide, as shown in Appendix B.

B. Fidelity measurements

Let us examine the case where W is a projector onto a pure
quantum state. First, we consider GHZ states [24]. We choose
W = |GHZ〉〈GHZ|, hence 〈W 〉 is equal to FGHZ, the fidelity
with respect to the GHZ state. Based on knowing FGHZ, we
would like to estimate FQ[�,Jz].

Observation 2. A sharp lower bound on the quantum Fisher
information with the fidelity FGHZ is given by

FQ[�,Jz]

N2
�

{
(1 − 2FGHZ)2 if FGHZ > 1/2,

0 if FGHZ � 1/2.
(12)

The proof is based on carrying out the optimization described
above analytically and can be found in Appendix A [60].
Equation (12) is plotted in Fig. 1(a). Note that the bound on the
quantum Fisher information normalized by N2 in Eq. (12) is
independent of the number of particles. Moreover, the bound
is 0 for FGHZ � 0.5. This is consistent with the fact that for
the product state |111 . . . 11〉 we have FGHZ = 1/2, while
FQ[�,Jz] = 0.

Next, let us consider symmetric Dicke states. An N -qubit
symmetric Dicke state is given as

∣∣D(m)
N

〉 =
(

N

m

)− 1
2 ∑

k

Pk(|1〉⊗m ⊗ |0〉⊗(N−m)), (13)

where the summation is over all the different permutations
of the product state having m particles in the |1〉 state and
(N − m) particles in the |0〉 state.

From the point of view of metrology, we are interested
mostly in the symmetric Dicke state for even N and m = N

2 .

This state is known to be highly entangled [61,62] and allows
for Heisenberg limited interferometry [63]. In the following,
we omit the superscript giving the number of |1〉’s and use the
notation

|DN 〉 ≡ ∣∣D( N
2 )

N

〉
. (14)
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The witness operator that can be used for noisy Dicke states
is W = |DN 〉〈DN |, hence for the expectation value of the
witness it is just the fidelity with respect to Dicke states,
i.e., 〈W 〉 = FDicke. In Fig. 1(b), we plot the results for Dicke
states of various numbers of qubits. Now the normalized
curve is not the same for all particle numbers. FDicke = 1
corresponds to FQ[�,Jy] = N (N + 2)/2. At this point note
that for the examples presented above, the quantum Fisher
information scales as O(N2) if the quantum state has been
prepared perfectly, where O(x) is the usual Landau notation
used to describe the asymptotic behavior of a quantity for large
x [13].

Note that estimating FQ[�,Jy] based on FDicke was possible
for 40 qubits in Fig. 1(b), since we carried out the calculations
for the symmetric subspace. For our case, the witness operator
W is permutationally invariant and it has a nondegenerate
eigenstate corresponding to the maximal eigemvalue. Hence,
based on the arguments in Sec. III A the bound is valid even
for general, i.e., nonsymmetric states. Further calculations for
the large-N limit are given in Appendix C.

C. Spin-squeezed states

In the case of spin-squeezing, the quantum state has a
large spin in the z direction but a decreased variance in the x

direction. By measuring 〈Jz〉 and (�Jx)2 we can estimate the
quantum Fisher information by Eq. (2). However, this formula
does not necessarily give the best lower bound for all values
of the collective observables. With our approach we can find
the best bound.

To give a concrete example, we choose W1 = Jz, W2 = J 2
x ,

and W3 = Jx for the operators to be measured. We change w1

and w2 in some interval. We also require that w3 = 0, since
we assume that the mean spin points in the z direction [64].
This is reasonable since in most spin-squeezing experiments
we know the direction of the mean spin.

Our results are shown in Fig. 2(a). We chose N = 4
particles since for small N the main features of the plot are
clearly visible. The white areas correspond to nonphysical
combinations of expectation values. States at the boundary
can be obtained as ground states of H

(±)
bnd (μ) = ±J 2

x − μJz

(Appendix D). In Fig. 2(a), the state fully polarized in the
z direction, an initial state for spin-squeezing experiments,
corresponds to point P. The Dicke state, (14), corresponds
to point D [65]. Spin-squeezing makes (�Jx)2 decrease,
while 〈Jz〉 also decreases somewhat. Hence, at least for
small squeezing, it corresponds to moving down from point
P towards point D on the boundary of the plot, while the
metrological usefulness is increasing. Below the dashed line
FQ[�,Jy]/N > 1, hence the state possesses metrologically
useful entanglement [3]. The equal mixture of |000 . . . 00〉x
and |111 . . . 11〉x corresponds to point M, with FQ[�M,Jy] =
N. Finally, the completely mixed state corresponds to point C.
It cannot be used for metrology, hence FQ[�C,Jy] = 0.

We now compare the difference between our bound and
Eq. (2). First, we consider the experimentally relevant region
for which (�Jx)2 < 1. We find that for points that are away
from the boundary at least by 0.01 on the vertical axis, the
difference between the two bounds for FQ[�,Jy] is smaller
than 2 × 10−6. For points at the boundary the difference is
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FIG. 2. (a) Optimal lower bound on the quantum Fisher informa-
tion FQ[�,Jy] based on collective measurements for spin-squeezing
with N = 4. The mean spin points in the z direction. Below the dashed
line we have FQ[�,Jy]/N > 1. For the description of points P, D, M,
and C, see the text. (b) Lower bound on FQ[�,Jy] for 〈Jz〉 = 1.5
and (�Jx)2 = 0.567, as a function of 〈J 4

x 〉. The corresponding point
in (a) is denoted by a cross. Dashed horizontal line: Lower bound
without constraining 〈J 4

x 〉. Dotted horizontal line: Lower bound for
states in the symmetric subspace. As shown, an additional constraint
or assuming symmetry improves the bound.

somewhat larger but still small; the relative difference is less
than 2% (see Appendix E). Hence, Eq. (2) practically coincides
with the optimal bound for (�Jx)2 < 1. We now consider
the region in Fig. 2(a) for which (�Jx)2 > 1. The difference
between the two bounds is now larger. It is largest at point
M, for which the bound, (2), is 0. Hence, for measurement
values corresponding to points close to M, our method could
improve formula (2). It is important from the point of view of
applying our method to spin-squeezing experiments that the
bound, (2), can be substantially improved even for (�Jx)2 < 1
if we assume a bosonic symmetry or we measure an additional
quantity, such as 〈J 4

x 〉 as shown in Fig. 2(b).

D. Dicke states

In this section, we use our method to find lower bounds
on the quantum Fisher information for states close to the
Dicke states, (14), based on collective measurements. We
discuss what operators have to be measured to estimate the
metrological usefulness of the state. In Sec. IV B 2, we test our
approach for a realistic system with very many particles.

In order to estimate the metrological usefulness of states
created in such experiments, we choose to measure W1 = J 2

x ,
W2 = J 2

y , and W3 = J 2
z since the expectation values of these

operators uniquely define the ideal Dicke state, and they have
already been used for entanglement detection [39]. In cold-gas
experiments it is common that the state created is invariant
under transformations of the type Uz(φ) = exp(−iJzφ) [21].
For such states 〈J 2

x 〉 = 〈J 2
y 〉, which we also use as a constraint

in our optimization.
Let us demonstrate how our method works in an example for

small systems. Figure 3 shows the results for N = 6 particles
for symmetric states for which〈

J 2
x + J 2

y + J 2
z

〉 = N
2

(
N
2 + 1

) =: JN . (15)

It can be seen that the lower bound on the quantum Fisher
information is the largest for 〈J 2

z 〉 = 0. It reaches the value
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FIG. 3. Optimal lower bound on the quantum Fisher information
for symmetric states close to Dicke states for N = 6.

corresponding to the ideal Dicke state, N (N + 2)/2 = 24. It
is remarkable that the state is also useful for metrology if
〈J 2

z 〉 is very large. In this case 〈J 2
x 〉 and 〈J 2

y 〉 are smaller than
〈J 2

z 〉, and this cigar-shaped uncertainty ellipse can be used for
metrology.

IV. CALCULATIONS FOR EXPERIMENTAL DATA

In this section, we use our method to find tight lower bounds
on the quantum Fisher information based on experimental
data. First, we determine the quantum Fisher information
for several experiments in photons and trapped ions creating
GHZ states and Dicke states, in which the fidelity has been
measured [14,27,29–36,66–68]. Our method is much simpler
than obtaining the quantum Fisher information from the
density matrix [14] or estimating it from a metrological
procedure [8]. Second, we obtain a bound on the quantum
Fisher information for a spin-squeezing experiment with
thousands of particles [7]. Based on numerical examples, we
see that the bound, (2), is close to optimal even if the state is
not completely polarized. Assuming symmetry or knowing
additional expectation values can improve the bound (2).
Finally, we also obtain the bound for the quantum Fisher
information for a recent experiment with Dicke states [39]. The
estimate of the precision based on considering the particular
case where 〈J 2

z 〉 is measured for parameter estimation [21] is
close to the optimal bound computed by our method.

A. Few-particle experiments

We now estimate the quantum Fisher information based
on the fidelity with respect to Dicke states and GHZ states
for several experiments with photons and trapped cold ions,
following the ideas in Sec. III B. Our results are summarized
in Table I. For the experiments aiming to create Dicke
states, the lower bound on FQ[�,Jy]/N2 is shown, while for
the experiments with GHZ states we estimate FQ[�,Jz]/N2.

In [29,36] several logical qubits are stored in a particle, but in
the rest of the experiments only a single qubit. Reference [32]
describes experiments with 2–14 ions, of which we analyze the
8-qubit and 10-qubit GHZ sates. Finally, for the experiment
in Ref. [66] we used the fidelity estimated using reasonable

TABLE I. Fidelity values and the corresponding bounds on the
quantum Fisher information for several experiments with Dicke states
and GHZ states. For experiments targeting Dicke states, bounds on
FQ[�,Jy]/N 2 are listed. The maximal value of this quantity is 0.75
and 0.67 for N = 4 and N = 6, respectively. For experiments with
GHZ states, bounds on FQ[�,Jz]/N 2 are shown, and in this case, the
maximal value is 1.

Targeted
Physical quantum
system state Fidelity FQ

N2 � Ref. No.

Photons |D4〉 0.844 ± 0.008 0.358 ± 0.011 [33]
0.78 ± 0.005 0.281 ± 0.059 [36]

0.8872 ± 0.0055 0.420 ± 0.009 [14]
0.873 ± 0.005 0.351 ± 0.006 [69]

|D6〉 0.654 ± 0.024 0.141 ± 0.019 [34]
0.56 ± 0.02 0.0761 ± 0.012 [35]

Photons |GHZ4〉 0.840 ± 0.007 0.462 ± 0.019 [27]
|GHZ5〉 0.68 0.130 [66]
|GHZ8〉 0.59 ± 0.02 0.032 ± 0.016 [67]
|GHZ8〉 0.776 ± 0.006 0.305 ± 0.013 [29]
|GHZ10〉 0.561 ± 0.019 0.015 ± 0.011 [29]

Trapped ions |GHZ3〉 0.89 ± 0.03 0.608 ± 0.097 [30]
|GHZ4〉 0.57 ± 0.02 0.020 ± 0.013 [31]
|GHZ6〉 � 0.509 ± 0.004 0.0003 ± 0.0003 [68]
|GHZ8〉 0.817 ± 0.004 0.402 ± 0.010 [32]
|GHZ10〉 0.626 ± 0.006 0.064 ± 0.006 [32]

assumptions discussed in that paper, while the worst-case
fidelity is lower.

We can compare our estimate to the quantum Fisher
information of the state for the experiment in Ref. [14],
where the quantum Fisher information for the density ma-
trix was obtained as FQ[�,Jy]/N2 = (10.326 ± 0.093)/N2 =
(0.6454 ± 0.0058). As reported in Table I, this value is larger
than the one we obtained, however, it was calculated by
knowing the entire density matrix, while our bound is obtained
from the fidelity alone.

B. Many-particle experiments

So far, we have studied the quantum state of few particles.
Next we turn to experiments with very many particles, in
which a fidelity measurement is not practical. In such systems,
the quantum Fisher information must be estimated based on
collective measurements.

By far the most relevant quantum states in many-particle
experiments are spin-squeezed states, which can be used
to increase the precision in magnetometry and in atomic
clocks [42]. We also discuss Dicke states, since they have
been realized in several experiments [8,39–41]. Dicke states
realized in cold gases are the focus of our attention, since they
can be used for high-precision interferometry [63].

1. Spin-squeezing experiment

We now use our method to find lower bounds on the
quantum Fisher information for a recent spin-squeezing
experiment in cold gases, following the ideas in Sec. III C.
With it we show that the lower bound given in Eq. (2) is close
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to optimal in this case. We also demonstrate that we can carry
out calculations for real systems.

In particular, for our calculations we use the data from the
spin-squeezing experiment in Ref. [7]. The particle number is
N = 2300, and the spin-squeezing parameter, defined as

ξ 2
s = N

(�Jx)2

〈Jz〉2
, (16)

has the value ξ 2
s = −8.2 dB = 10−8.2/10 = 0.1514. The spin

length 〈Jz〉 has been close to maximal. In our calculations, we
choose

〈Jz〉 = α N
2 , (17)

where we test our method with various values for α. For
each α, we use a value for (�Jx)2 such that we get
the experimentally obtained spin-squeezing parameter, (16).
Moreover, we assume that 〈Jx〉 = 0, as the z direction was the
direction of the mean spin in the experiment. Based on Eq. (2),
the bound for the quantum Fisher information is obtained as

FQ[�N,Jy]

N
� 1

ξ 2
s

= 6.605, (18)

where �N is the state of the system in the experiment satisfying
Eqs. (16) and (17). We carry out the calculations for symmetric
states. This way we obtain a lower bound on the quantum
Fisher information, which we denote Bsym(〈Jz〉�N

,〈J 2
x 〉�N

). As
mentioned in Sec. III B, we could obtain a bound for the
quantum Fisher information that is valid even for general,
not necessarily symmetric states if the matrix in Eq. (6) had
nondegenerate eigenvalues. This is not the case for the spin-
squeezing problem. However, we still know that the bound
obtained with our calculations restricted to the symmetric
subspace cannot be smaller than the optimal bound for general
states, B(〈Jz〉�N

,〈J 2
x 〉�N

). On the other hand, we know that
bound (2) cannot be larger than the optimal bound for general
states. These relations can be summarized as

Bsym
(〈Jz〉�N

,
〈
J 2

x

〉
�N

)
� B

(〈Jz〉�N
,
〈
J 2

x

〉
�N

)
�

〈Jz〉2
�N

(�Jx)2
�N

, (19)

where on the right-hand side of Eq. (19) there is just the bound
in Eq. (2).

Our calculations lead to

Bsym
(〈Jz〉�N

,
〈
J 2

x

〉
�N

) = 6.605 (20)

for almost completely polarized spin-squeezed states with α =
0.85, as well as for not fully polarized ones with α = 0.5.

That is, based on numerics, the left-hand side and the right-
hand side of Eq. (19) seem to be equal. This implies that
the lower bound, (2), for the quantum Fisher information is
optimal for the system. In Appendix G, Sec. 1, the details of
the calculations are given, and we also show examples where
we can improve the bound, (2), with our approach, if symmetry
is assumed.

2. Experiment creating Dicke states

We now present our calculations for an experiment aimed
at creating Dicke states in cold gases [39]. The basic ideas are

similar to the ones explained in Sec. III D for small systems.
The experimental data are N = 7900, 〈J 2

z 〉N = 112 ± 31,
〈J 2

x 〉
N

= 〈J 2
y 〉

N
= 6 × 106 ± 0.6 × 106, where the subscript

N refers to the experimentally created N -particle state �N [21].
Applying some simple transformations, we can obtain a lower
bound on FQ[�N,Jy] for this very large number of particles,
even for general, nonsymmetric systems.

For many particles we can make calculations directly only
in the symmetric subspace. Thus, we transform the collective
quantities such that they are compatible with symmetric states,
i.e., they have to fulfill〈

J 2
x

〉
sym,N

+ 〈
J 2

y

〉
sym,N

+ 〈
J 2

z

〉
sym,N

= JN, (21)

whereJN is given in Eq. (15). This can be done by multiplying
all the second moments by the same number as〈

J 2
l

〉
sym,N

= γ
〈
J 2

l

〉
N
, (22)

where l = x,y,z, and we defined the coefficient

γ = JN〈
J 2

x + J 2
y + J 2

z

〉
N

. (23)

For a symmetric state, γ = 1. In practice, we have γ < 1, but
close to 1. From this we can see that there are no symmetric
states that are compatible with the experimentally observed
expectation values. This is the reason why we needed to apply
the transformation (22).

Next, based on the ideas of Sec. III D, we cal-
culate the lower bound on the quantum Fisher in-
formation for symmetric systems, which we denote
Bsym,N (〈J 2

x 〉sym,N ,〈J 2
y 〉sym,N ,〈J 2

z 〉sym,N ).
Finally, to obtain the results for the original, nonsymmetric

case, we need the following observation.
Observation 3. For the bounds for the original system and

the symmetric system, respectively, the inequality

BN � 1
γ
Bsym,N (24)

holds, where γ is given in Eq. (23). Here, for brevity we have
omitted the arguments of BN and Bsym,N .

Proof. For our proof we need to know that for an N -
qubit singlet state �singlet,N the relations 〈J 2

l 〉�singlet,N
= 0 hold

for l = x,z,y. Due to the well-known inequality for the
quantum Fisher information FQ[�singlet,N ,Jl] � 4(�Jl)2, we
have FQ[�singlet,N ,Jy] = 0. In other words, the singlet is not
useful for metrology with linear interferometers.

Let us now consider the mixture

�̃N = (
1 − 1

γ

)
�singlet,N + 1

γ
�sym,N , (25)

where �sym,N is a symmetric state having the second moments
〈J 2

l 〉sym,N . We can easily see from Eq. (22) that for the state
�̃N , we have 〈J 2

l 〉�̃N
= 〈J 2

l 〉N . In other words, �̃N has the
same values for the second moments that have been measured
experimentally.

We can relate the bound for general systems to the quantum
Fisher information for symmetric systems as

BN � FQ[�̃N ,Jy] = 1
γ
FQ[�sym,N ,Jy]. (26)

The inequality in Eq. (26) holds because our bound cannot
be larger than the quantum Fisher information of state �̃N
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having the expectation values 〈J 2
l 〉N . The equality in Eq. (26)

is due to the fact that both �̃N and Jy can be written as a
block-diagonal matrix of blocks corresponding to different
eigenvalues of J 2

x + J 2
y + J 2

z . Moreover, �singlet,N and �sym,N

have nonzero elements in different blocks. Then we can use
the general formula [70]

FQ[
⊕

k

pk�k,
⊕

k

Ak] =
∑

k

pkFQ[�k,Ak], (27)

where �k are density matrices with a unit trace and
∑

k pk =
1. �

Extensive numerics for small systems show that Eq. (24) is
very close to an equality, hence it can be used as a basis for
making calculations for nonsymmetric states. In this way, we
arrive at the bound for the experimental system,

BN

N
≈ 2.94. (28)

The “≈” sign is used referring to the fact that we assume that
the inequality in Eq. (26) is close to being saturated. The details
of the calculations are given in Appendix G, Sec. 2.

It is instructive to compare the value, (28), to the one
obtained in Ref. [21], where the metrological usefulness has
been estimated based on the second and fourth moments of
the collective angular momentum components, and assuming
that 〈J 2

z 〉 is used for parameter estimation. The result implies
that FQ[�N,Jy]/N � 3.3. Our result in Eq. (28) is somewhat
smaller, as we did not use the knowledge of the fourth moment,
only the second moments. The closeness of the two results is
a strong argument for the correctness of our calculations.

V. SCALING OF FQ[�,Jl ] WITH N

Recent important works examine the scaling of the quantum
Fisher information with the particle number for metrology
under the presence of decoherence [71]. They consider the
quantum Fisher information defined for nonunitary, noisy
evolution. They find that for small N it is close to the value
obtained considering coherent dynamics. Hence, even the
Heisenberg scaling, O(N2), can be reached. However, if N

is sufficiently large, then, due to the decoherence during the
parameter estimation, the quantum Fisher information scales
as O(N ).

In contrast, we do not consider the usefulness of a quantum
state in some noisy metrological process, but we estimate
the quantum Fisher information assuming a perfect unitary
dynamics. Hence, the quantum Fisher information can be
smaller than what we expect ideally only due to imperfect
state preparation [72]. We can even find simple conditions
for the state preparation that lead to a Heisenberg scaling.
Based on Eq. (12), if one could realize quantum states �N

such that FGHZ(�N ) � 0.5 + ε for N → ∞ for some ε > 0,

then we would reach FQ[�N,Jz] = O(N2). Strong numerical
evidence suggests that a similar relation holds for the fidelity
FDicke and FQ[�N,Jy], but with a smaller threshold value for
FDicke (see Appendix C). From another point of view, our
method can estimate FQ[�,Jz] for large particle numbers,
while a direct measurement of the metrological sensitivity
considerably underestimates it.

VI. CONCLUSIONS

We have reported a general method to estimate the
metrological usefulness of quantum states based on a few
measurements, such as measurements of the fidelity or some
collective observables. We tested our approach on extensive
experimental data from photonic and cold-gas experiments and
demonstrated that it works even for the case of thousands of
particles [73]. In the future, it would be interesting to use our
method to test the optimality of various recent formulas giving
a lower bound on the quantum Fisher information [19,22]. An-
other important question is how to improve the lower bounds
on the quantum Fisher information in various experiments by
using the knowledge of further operator expectation values.
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APPENDIX A: PROOF OF OBSERVATION 2

In this section, using Eqs. (4) and (6), we obtain analytically
a tight lower bound on the quantum Fisher information based
on the fidelity with respect to the GHZ state, FGHZ. The
calculation that we have to carry out is computing the bound,

B(FGHZ) = sup
r

{rFGHZ − sup
μ

[λmax(MGHZ)]}, (A1)

where

MGHZ = r|GHZ〉〈GHZ| − 4(Jz − μ)21. (A2)

We make our calculations in the Jz basis, which is defined
with the 2N basis vectors b0 = |00 . . . 000〉, b1 = |00 . . . 001〉,
b2 = |00 . . . 010〉, . . . , b(2N −2) = |11 . . . 110〉, and b(2N −1) =
|11 . . . 111〉. It is easy to see that the matrix, (A2), is almost
diagonal in the Jz basis. To be more specific, it can then be
written as

MGHZ = M2×2 ⊕ D, (A3)
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where ⊕ denotes the direct sum and

M2×2 =
( r

2 − 4(N
2 − μ)2 r

2
r
2

r
2 − 4(N

2 + μ)2

)
(A4)

is given in the {b0,b(2N −1)} basis, while D is a diagonal matrix
given in the basis of the rest of the bk vectors as

Dk = −4(〈bk|Jz|bk〉 − μ)2 (A5)

for k = 1,2, . . . ,(2N − 2). This means that MGHZ can be
diagonalized as

diag[λ+,λ−,D1,D2, . . . ,D(2N−2)], (A6)

where the two eigenvalues of M2×2 are

λ± = r

2
− N2 − 4μ2 ±

√
16μ2N2 + r2

4
. (A7)

Next, we show a way that can simplify our calculations
considerably. As indicated in Eq. (A1), we have to look for
the maximal eigenvalue of MGHZ and then optimize it over
μ. We exchange the order of the two steps, that is, we look
for the maximum of each eigenvalue over μ and then find the
maximal one. Clearly, based on Eq. (A5) we obtain

sup
μ

Dk = 0, (A8)

since we can always choose a value for μ that makes Dk = 0,
while it is clear that it cannot be positive. Thus, the maximal
eigenvalue, maximized also over μ, can be obtained as

sup
μ

[λmax(MGHZ)] := max[0, sup
μ

(λ+)]

=

⎧⎪⎨
⎪⎩

0 if r < 0,

r
2 + r2

16N2 if 0 � r � 4N2,

−N2 + r if r > 4N2,

(A9)

where we did not have to look for the maximum of λ− over μ

since clearly λ+ � λ−. Finally, we have to substitute Eq. (A9)
into Eq. (A1) and carry out the optimization over r, considering
FGHZ ∈ [0,1]. This way we arrive at Eq. (12). �

APPENDIX B: CALCULATIONS IN THE SYMMETRIC
SUBSPACE

In this section, we prove an important fact, which can be
used to simplify our calculations.

Observation 4. If a permutationally invariant N -qubit
Hamiltonian H has a nondegenerate ground state, then the
ground state is in the symmetric subspace if N > 2. An
analogous statement holds for the maximal eigenvalue.

Proof. This is a well-known fact; we give a proof only for
completeness. Let |�〉 denote the nondegenerate ground state.
This is at the same time the T = 0 thermal ground state, hence
it must be a permutationally invariant pure state. For such
states Skl|�〉〈�|Skl = |�〉〈�|, where Skl is the swap operator
exchanging qubits k and l. Based on this, it follows that
Skl|�〉 = ckl|�〉 and ckl ∈ {−1, + 1}. There are three possible
cases to consider.

(i) All ckl = +1. In this case, for all permutation operators
j we have

j |�〉 = |�〉, (B1)

since any permutation operator j can be constructed as j =
Sk1l1Sk2l2Sk3l3...Skmlm , where m � 1. Equation (B1) means that
the state |�〉 is symmetric.

(ii) All ckl = −1. This means that the state is antisymmetric,
however, such a state exists only for N = 2 qubits.

(iii) Not all ckl are identical to each other. In this case, there
must be k+, l+, k−, l− such that

Sk+l+|�〉 = +|�〉,
Sk−l−|�〉 = −|�〉. (B2)

Let us assume that k+, l+, k−, and l− are indices different
from each other. In this case, |� ′〉 = Sk+k−Sl+l−|�〉 is another
ground state of Hamiltonian H such that

Sk+l+|� ′〉 = −|� ′〉,
Sk−l−|� ′〉 = +|� ′〉. (B3)

Comparing Eq. (B2) and Eq. (B3) we can conclude that |� ′〉 �=
|�〉, while due to the permutational invariance of H we must
have 〈�|H |�〉 = 〈� ′|H |� ′〉. Thus, |�〉 is not a nongenerate
ground state. Let us now see what happens if k+, l+, k−, and
l− are not all different from each other. The proof works in
an analogous way for the only nontrivial case, k+ = k−, when
Sk+k− = 1.

Hence, if N > 2, then only (i) is possible and |�〉 must be
symmetric. �

APPENDIX C: ESTIMATING THE QUANTUM FISHER
INFORMATION BASED ON THE FIDELITY WITH

RESPECT TO DICKE STATES

In this section, we show that if the fidelity with respect to the
Dicke state, (C3), is larger than a bound, then FQ[�,Jy] > 0.
Moreover, Fig. 1(b) shows that the lower bound on FQ[�,Jy]
as a function of the fidelity FDicke normalized by N2 is not
the same curve for all N . In this section, we demonstrate with
numerical evidence that the lower bound normalized by N2

collapses to a nontrivial curve for large N .
As the first step, let us consider the state completely

polarized in the y direction,

|�y〉 = |1〉⊗N
y . (C1)

State (C1) does not change under a rotation around the y

axis, hence FQ[�,Jy] = 0. Its fidelity with respect to the Dicke
state, (14), is

FDicke(|�y〉) = 1

2N

(
N

N/2

)
≈

√
2

πN
. (C2)

From the convexity of the bound on the quantum Fisher
information in FDicke, it immediately follows that for FDicke

smaller than Eq. (C2) the optimal lower bound on FQ[�,Jy]
will give 0. For the examples shown in Fig. 1(b), this
fidelity limit is 0.3125 and 0.1254 for N = 6 and N = 40,

respectively.
Next, we examine what happens if the fidelity is larger than

Eq. (C2).
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FIG. 4. The lower bound on FQ[�,Jy], denoted B(FDicke), for
various particle numbers, for FDicke = 0.2 (diamonds), FDicke = 0.5
(circles), and FDicke = 0.7 (triangles). For FDicke = 0.2 the calculated
values times 10 are shown, for better visibility.

Observation 5. If for some state � we have

FDicke(�) ≡ Tr(|DN 〉〈DN |�) > FDicke(|�y〉), (C3)

then FQ[�,Jy] > 0. [State |DN 〉 is given in Eq. (14), and
FDicke(|�y〉) is given in Eq. (C2).]

Proof. We have to determine the maximum for FDicke(�) for
states that are not useful for metrology, i.e., FQ[�,Jy] = 0. We
know that FQ[�,Jy] is the convex roof of 4(�Jy)2 [51]. Hence,
if we have a mixed state for which FQ[�,Jy] = 0, then it can
always be decomposed into the mixture of pure states |�k〉 for
which FQ[�k,Jy] = 0. As a consequence, the extremal states
of the set of states for which FQ[�,Jy] = 0 are pure states, and
we can restrict our search for pure states. The optimization
problem we have to solve can be given as

max
|�〉:FQ[|�〉,Jy ]=0

|〈�|DN 〉|2. (C4)

Pure states |�〉 for which FQ[|�〉,Jy] = 0 must be invariant
under Uφ = exp(−iJyφ) for any φ. Such states are the
eigenstates of Jy . In order to maximize the overlap with the
Dicke state |DN 〉 in Eq. (C4), we have to look for symmetric
eigenstates of Jy. These are the Dicke states in the y basis
|D(m)

N 〉y . [See Eq. (13).] In order to proceed, we have to write
down |D(m)

N 〉y in the z basis. Then, using the formula

∑
k

(
n

k

)(
n

q − k

)
(−1)k =

{(
n

q/2

)
(−1)q/2 for even N,

0 for odd N,

(C5)

one finds that the squared overlap is given by

∣∣〈D(N/2)
N

∣∣D(m)
N

〉
y

∣∣2 =
⎧⎨
⎩

(N/2
m/2)

2( N

N/2)
2N (N

m) for even N,

0 for odd N,
(C6)

which is maximal for m = 0. �
Next, we examine the behavior of our lower bound on

FQ[�,Jy] based on FDicke for large N. In Fig. 4, the calculations
up to N = 500 present strong evidence that for the fidelity
values FDicke = 0.2, 0.5, and 0.8 the lower bound on the

quantum Fisher information FQ[�,Jy] has an O(N2) scaling.
If this is correct, then reaching a fidelity larger than a certain
bound for large N would imply Heisenberg scaling for the
bound on the quantum Fisher information. Note that it is
difficult to present similar numerical evidence for small values
of FDicke, since in that case the bound for the quantum Fisher
information is nonzero only for large N due to Observation 5.

APPENDIX D: BOUNDARY OF PHYSICAL STATES
IN THE (〈Jz〉,〈J2

x 〉) PLANE

In this section, we discuss how to find the physical region
in the (〈Jz〉,〈J 2

x 〉) plane, which was used to prepare Fig. 2(a).
The physical region must be a convex one, since the set of
quantum states is convex and the coordinates depend linearly
on the density matrix. Hence, we look for the minimal or
maximal 〈J 2

x 〉 for a given 〈Jz〉 by looking for the ground states
of the Hamiltonians [59],

H
(±)
bnd (μ) = ±J 2

x − μJz. (D1)

The points of the boundary can be obtained by evaluating 〈J 2
x 〉

and 〈Jz〉 for the ground states of Eq. (D1). In particular, the
ground states of H

(+)
bnd correspond to boundary points below

point P corresponding to the fully polarized state in Fig. 2(a).
The ground states of H

(−)
bnd correspond to boundary points above

point P.
For 0 < μ < ∞, the Hamiltonian H

(+)
bnd has nondegenerate

ground states with 〈Jx〉 = 0. For even N, the ground state of
H

(+)
bnd minimizes both 〈J 2

x 〉 and (�Jx)2 for a given 〈Jz〉. For
odd N, this is not the case for small μ [59].

On the other hand, H
(−)
bnd (μ) has doubly degenerate ground

states. For the ground-state subspace, we have 〈Jx〉 = 0.

Hence, for both even N and odd N, the ground state of H
(−)
bnd

maximizes both 〈J 2
x 〉 and (�Jx)2 for a given 〈Jz〉.

APPENDIX E: QUANTUM FISHER INFORMATION FOR
STATES AT THE BOUNDARY OF THE PHYSICAL REGION

IN THE (〈Jz〉,〈J2
x 〉) PLANE

We show that, for even N , the ground states of H
(+)
bnd (μ)

defined in Eq. (D1) are close to saturating Eq. (2). As a
consequence, for the boundary of the physical region in the
(〈Jz〉,〈J 2

x 〉) plane below point P in Fig. 2, bound (2) is close to
the optimal lower bound.

We carry out numerical calculations. Let us denote by
|�μ〉 the ground state of H

(+)
bnd (μ). Moreover, let us denote

the relevant expectation values for this state 〈J 2
x 〉μ and 〈Jz〉μ.

We know that under the constraint 〈Jz〉 = 〈Jz〉μ, the state |�μ〉
minimizes 〈J 2

x 〉. For H
(+)
bnd (μ), the ground state is unique for

0 < μ < ∞. Thus, there is no other quantum state with the
same value for 〈Jz〉 and 〈J 2

x 〉.
There is a very important consequence of the uniqueness of

the ground state of H
(+)
bnd (μ) for the lower bound on the quantum

Fisher information. We have discussed that our method based
on the Legendre transform gives the optimal lower bound for
the quantum Fisher information

FQ[�,Jy] � B
(〈Jz〉�,

〈
J 2

x

〉
�

)
, (E1)
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Jz /(N/2)
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0

0.01
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Relative
difference

FIG. 5. Behavior of the bound in Eq. (2) for points at the boundary
of physical states. The relative difference with respect to the optimal
lower bound is plotted for N = 4 (solid line), N = 20 (dashed line),
and N = 1000 (dotted line).

where B denotes the optimal bound. Since there is a unique
state corresponding to the boundary points, we must have for
the states at the boundary

B
(〈Jz〉μ,

〈
J 2

x

〉
μ

) = FQ[�μ,Jy]. (E2)

Thus, for the boundary points we do not have to compute the
lower bound with the method based on the Legendre transform.
We can just calculate the right-hand side of Eq. (E2) instead.
Since we have a pure state, the quantum Fisher information is
proportional to the variance FQ[�,Jy] = 4(�Jy)2 [11].

We add that, for even N , state |�μ〉 not only minimizes
〈J 2

x 〉 for a given value of 〈Jz〉, but also minimizes (�Jx)2, and
this state is unique (�Jx)2 [59]. Hence, for the points on the
boundary of physical states in the (〈Jz〉,(�Jx)2) space we have

B
(〈Jz〉μ,(�Jx)2

μ

) = FQ[�μ,Jy], (E3)

where B denotes the optimal bound if the expectation value
〈Jz〉 and the variance (�Jx)2 are constrained. Note that
bound (E3) is monotonous in (�Jx)2

μ [59].
In Fig. 5, we plot the relative difference between the

quantum Fisher information of |�μ〉 and the lower bound, (2),
given as

FQ[�μ,Jy] − 〈Jz〉2
μ

(�Jx )2
μ

FQ[�μ,Jy]
(E4)

for various particle numbers. It can be seen that for an almost
fully polarized state the difference is small, but even for a state
that is not fully polarized the relative difference is smaller than
3% for the particle numbers considered.

APPENDIX F: WHY WE CAN ASSUME 〈Jx〉 = 0 FOR THE
DISCUSSION OF SPIN-SQUEEZED STATES

We show that for the state minimizing FQ[�,Jy] for
given 〈Jz〉 and 〈J 2

x 〉 we have 〈Jx〉 = 0. Hence, if we constrain
only 〈Jz〉 and 〈J 2

x 〉, then we get the same bound as if we
constrained 〈Jz〉 and 〈J 2

x 〉, and we used an additional constraint
〈Jx〉 = 0.

For spin-squeezed states, we have to solve the following
optimization task. We have to find a tight lower bound on the

quantum Fisher information,

FQ[�,Jy] � B( w�), (F1)

where w� = (〈Jz〉�,〈J 2
x 〉

�
,〈Jx〉�). For any �, we can define

a state �− = σ⊗N
z �σ⊗N

z for which w�− = (〈Jz〉�,〈J 2
x 〉

�
, −

〈Jx〉�). The metrological usefulness of � and �− are the
same, i.e., FQ[�,Jy] = FQ[�−,Jy]. Then, for any �, we can
define a state �0 = 1

2 (� + �−) for which we have w�0 =
(〈Jz〉�,〈J 2

x 〉
�
,0). Due to the convexity of the quantum Fisher

information, �0 cannot be better metrologically than � or �−,
that is, FQ[�,Jy] = FQ[�−,Jy] � FQ[�0,Jy].

Since for any � there is a corresponding �0 with the
above properties, it follows that B(v�) = B(v�−) � B( w�0 ) =
B(〈Jz〉�,〈J 2

x 〉�,0). Thus, the worst-case bound for given 〈Jz〉
and 〈J 2

x 〉 is B(〈Jz〉,〈J 2
x 〉,0). Hence,

B
(〈Jz〉,

〈
J 2

x

〉) = B
(〈Jz〉,

〈
J 2

x

〉
,〈Jx〉 = 0

)
, (F2)

and our claim is proved.

APPENDIX G: MANY-PARTICLE EXPERIMENTS

In this section, we consider cold-gas experiments creating
spin-squeezed states and Dicke states.

1. Spin-squeezing experiment

We now give the details of the calculations described in
Sec. IV B 1. We present a simple scheme that we need to handle
large systems. We do not make calculations directly for N =
2300, but we start with smaller systems and make calculations
for larger and larger system sizes. This is motivated as follows.
First, we can use the output of an optimization for a smaller
particle number as an initial guess for a larger particle number.
Thus, we need fewer steps for the numerical optimization
for large system sizes, which makes our computations faster.
Second, while we are able to carry out the calculation for the
particle number of the experiment, we also see that we could
even extrapolate the results from the results obtained for lower
particle numbers. This is useful for future application of our
method to very large systems.

The basic idea is that we transform the collective quantities
from N to a smaller particle number N ′ using the scaling
relation

〈Jz〉 = N ′

2
α,

(�Jx)2 = ξ 2
s

N ′

4
α2. (G1)

We see that for the scaling we consider, for all N ′ the bound
in Eq. (2) is obtained as

FQ[�N ′ ,Jy]

N ′ � 1

ξ 2
s

= 6.605, (G2)

where �N ′ is a state satisfying Eq. (G1). Let us first take
α = 0.85, which is somewhat lower than the experimental
value, however, it helps us to see various characteristics of the
method. At the end of the section we also discuss the results
for other values of α. Based on these ideas, we compute the
bound Bsym(〈Jz〉�N ′ ,〈J 2

x 〉�N ′ ), described in Sec. IV B 1, for the
quantum Fisher information for an increasing system size N ′.
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FIG. 6. Lower bound on the quantum Fisher information based
on 〈Jz〉 and (�Jx)2 obtained for different particle numbers, making
calculations in the symmetric subspace. N = 2300 corresponds to
the spin-squeezing experiment in Ref. [7]. (a) Almost fully polarized
spin-squeezed state. Even for a moderate N ′, the bound is practically
identical to the right-hand side of Eq. (18). (b) Spin-squeezed state
that is not fully polarized. For large N ′, the bound converges to the
right-hand side of Eq. (18), represented by the dashed line. In both
panels, circles correspond to the results of our calculations, which are
connected by straight lines to guide the eye.

The results are shown in Fig. 6(a). The bound obtained
in this way is close to the bound in Eq. (18) even for
small N ′. For a larger particle number, i.e., N ′ > 200, it
is constant and coincides with the bound in Eq. (18). This
also strongly supports the idea that we could have used the
results from small particle numbers to extrapolate the bound
for N. Since for the experimental particle numbers we obtain
that Bsym(〈Jz〉�N

,〈J 2
x 〉�N

) equals the bound in (2), we find
that for N ′ = N all three lower bounds in Eq. (19) must be
equal. Hence, Eq. (2) is optimal for the experimental system
considered in this section. Besides, these results also present a
strong argument for the correctness of our approach.

We now give more details of the calculation. We were able to
carry out the optimization up to N ′ = 2300 with a usual laptop
computer using the MATLAB programming language [74].
We started the calculation for each given particle number with
the rk parameters obtained for the previous simulation with a
smaller particle number.

Let us consider a spin-squeezed state that is not fully
polarized and α = 0.5. In Fig. 6(b), we can see that for small
particle numbers we have a bound on FQ[�,Jy] larger than
the one obtained from Eq. (2). Thus for this case we could
improve bound (2) by assuming symmetry. On the other hand,
for large particle numbers we approach Eq. (2).

After seeing the results of the calculations for α = 0.85
and α = 0.5, the question arises, what would the result be for
larger α, that is, for even more polarized states? It turns out
that if we choose α larger than 0.85, then the convergence of
FQ[�N ′ ,Jy]/N ′ will be even faster than in Fig. 6(a), and for the
particle number of the experiment we obtain again that Eq. (2)
is saturated.

Finally, we add a note on a technical detail. We carried
out our calculations with the constraints on (�Jx)2, and 〈Jz〉,
with the additional constraint 〈Jx〉 = 0. For the experimental
particle numbers, one can show that our results are valid even if
we constrain only (�Jx)2 and 〈Jz〉 and do not use the 〈Jx〉 = 0
constraint. This way, in principle, we can only get a bound that

is equal to or lower than one we obtained before. However,
we previously obtained a value identical to the analytical
bound, (2). The optimal bound cannot be below the analytic
bound, since then the analytic bound would overestimate the
quantum Fisher information, and it would not be a valid bound.
Hence, even an optimization without the 〈Jx〉 = 0 constraint
could not obtain a smaller value than our results.

2. Experiment creating Dicke states

We now give the details for the calculations described in
Sec. IV B 2. As in Sec. 1 of this Appendix, we compute the
bound for quantum Fisher information for an increasing system
size N ′. However, now we are not able to do the calculation
for the experimental particle number, and we use extrapolation
from the results obtained for smaller particle numbers.

First, we transform the measured second moments to values
corresponding to a symmetric system using Eq. (22) and
Eq. (23). For our case, γ = 1.301. In this way, we obtain〈

J 2
z

〉
sym,N

= 145.69,〈
J 2

x

〉
sym,N

= 〈
J 2

y

〉
sym,N

= 7.8 × 106. (G3)

Next, we carry out calculations for symmetric systems. We
consider a scaling that keeps expectation values such that the
corresponding quantum state must be symmetric. Hence, we
use the relations〈

J 2
z

〉
sym,N ′ = 〈

J 2
z

〉
sym,N

,〈
J 2

x

〉
sym,N ′ = 〈

J 2
y

〉
sym,N ′ = 1

2 (JN ′ − 〈
J 2

z

〉
sym,N ′ ), (G4)

where JN ′ is defined in Eq. (15). Note that with Eq. (G4),
〈J 2

x + J 2
y + J 2

z 〉sym,N ′ = JN ′ holds for all N ′, hence the state
must be symmetric. The main characteristics of the scaling
relation, Eq. (G4), can be summarized as follows. 〈J 2

z 〉sym,N ′

remains equal to 〈J 2
z 〉sym,N , while 〈J 2

x 〉sym,N ′ and 〈J 2
y 〉sym,N ′

are chosen such that they are equal to each other and the
state is symmetric. For large N , Eq. (G4) implies a scaling of
〈J 2

z 〉 ∼ const. and 〈J 2
x 〉 = 〈J 2

z 〉 ∼ N (N + 2)/8.
Let us now turn to the central quantities of our paper, the

lower bounds on the quantum Fisher information. The quantum
Fisher information for the experimentally obtained state �N is
bounded from below as

FQ[�N,Jy] � BN, (G5)

where BN denotes a bound based on 〈J 2
l 〉N for l = x,y,z. An

analogous relation for the symmetric state �sym,N ′ is

FQ[�sym,N ′ ,Jy] � Bsym,N ′ , (G6)

where Bsym,N ′ denotes a bound based on 〈J 2
l 〉sym,N ′ for l =

x,y,z.
A central point in our scheme is that due to the scaling

properties of the system we can obtain the value for the particle
number N from the value for a smaller particle number N ′
as [19]

Bsym,N ≈ JN

JN ′
Bsym,N ′ , (G7)
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FIG. 7. Quantum Fisher information extrapolated to N = 7900
from calculations with different particle numbers N ′ in an experiment
creating Dicke states. Circles correspond to the results of our
calculations, which are connected by straight lines to guide the eye.

which we verify numerically. Note that for large N ′, we have
JN/JN ′ ∼ N2/(N ′)2.

As the last step, we have to return from the symmetric
system to our real, not fully symmetric one. Based on Eq. (G7),
and assuming that Eq. (24) is close to being saturated, a
relation for the lower bound for the original problem can be
obtained from the bound on the symmetric problem with N ′
particles as

BN ≈ 1

γ

JN

JN ′
Bsym,N ′ . (G8)

In Fig. 7, we plot the right-hand side of Eq. (G8) as a
function of N ′. We can see that BN ′ is constant or slightly
increasing for N ′ > 400. This is strong evidence that Eq. (G7)
is valid for large particle numbers. With this, we arrive
at Eq. (28).
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(2012).

[14] R. Krischek, C. Schwemmer, W. Wieczorek, H. Weinfurter, P.
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[44] G. Tóth, C. Knapp, O. Gühne, and H. J. Briegel, Phys. Rev. Lett.
99, 250405 (2007).

[45] A. C. Doherty, P. A. Parrilo, and F. M. Spedalieri, Phys. Rev.
Lett. 88, 187904 (2002).

[46] H. Wunderlich and M. B. Plenio, J. Mod. Opt. 56, 2100 (2009).
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Streltsov, M. N. Bera, A. Acı́n, and M. Lewenstein, Phys. Rev.
A 94, 012339 (2016);.

[61] G. Tóth, J. Opt. Soc. Am. B 24, 275 (2007).
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[69] G. Tóth, W. Wieczorek, D. Gross, R. Krischek, C. Schwemmer,
and H. Weinfurter, Phys. Rev. Lett. 105, 250403 (2010).
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