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The traveling-salesman problem is one of the most famous problems in graph theory. However, little is currently
known about the extent to which quantum computers could speed up algorithms for the problem. In this paper,
we prove a quadratic quantum speedup when the degree of each vertex is at most 3 by applying a quantum
backtracking algorithm to a classical algorithm by Xiao and Nagamochi. We then use similar techniques to
accelerate a classical algorithm for when the degree of each vertex is at most 4, before speeding up higher-degree
graphs via reductions to these instances.
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I. INTRODUCTION

A salesman has a map of n cities that they want to visit,
including the roads between the cities and how long each road
is. Their aim is to start at their home, visit each city and then
return home. To avoid wasting time, they want to visit each
city exactly once and travel via the shortest route. So what
route should the salesman take?

This is an instance of the traveling-salesman problem
(TSP). More generally, this problem takes an undirected graph
G = (V,E) of n vertices connected by m weighted edges and
returns the shortest cycle which passes through every vertex
exactly once, known as a Hamiltonian cycle, if such a cycle
exists. If no Hamiltonian cycle exists, we should report that
no Hamiltonian cycle has been found. The length or cost of
an edge is given by an n × n matrix C = (cij ) of positive
integers, known as a cost matrix. This problem has a number
of applications, ranging from route finding as in the story above
to circuit board drilling [1].

Unfortunately, the salesman might have to take a long
time in order to find the shortest route. The TSP has been
shown to be NP-hard [2], Cha. 3, suggesting that even the best
algorithms for exactly solving it must take a superpolynomial
amount of time. Nevertheless, the importance of the problem
has motivated a substantial amount of classical work to
develop algorithms for solving it provably more efficiently
than the naı̈ve algorithm which checks all O((n − 1)!) of the
potential Hamiltonian cycles in the graph. Here we consider
whether these algorithms can be accelerated using quantum
computational techniques.

Grover’s famous quantum algorithm [3] for fast unstruc-
tured search can be applied to the naı̈ve classical algorithm
to achieve a runtime of O(

√
n!), up to polynomial terms in n.

However, the best classical algorithms are already substantially
faster than this. For many years, the algorithm with the
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best proven worst-case bounds for the general TSP was the
Held-Karp algorithm [4], which runs in O(n22n) time and
uses O(n2n) space. This algorithm uses the fact that for any
shortest path, any subpath visiting a subset of vertices on that
path must be the shortest path for visiting those vertices. Held
and Karp used this to solve the TSP by computing the length
of the optimal route for starting at vertex 1, visiting every
vertex in a set S ⊆ V and finishing at a vertex l ∈ S. Denoting
the length of this optimal route D(S,l), they showed that this
distance could be computed as

D(S,l) =
{
c1l if S = {l}
minm∈S\{l} [D(S \ {l},m) + cml] otherwise.

Solving this relation recursively for S = V would result in
iterating over all O((n − 1)!) Hamiltonian cycles again, but
Held and Karp showed that the relation could be solved in
O(n22n) time using dynamic programming. Björklund et al.
[5] developed on this result, showing that modifications to the
Held-Karp algorithm could yield a runtime of

O[(2k+1 − 2k − 2)n/(k+1) poly(n)],

where k is the largest degree of any vertex in the graph; this
bound is strictly less than O(2n) for all fixed k. Unfortunately,
it is not known whether quantum algorithms can accelerate
general dynamic programming algorithms. Similarly, it is
unclear whether TSP algorithms based around the standard
classical techniques of branch and bound [6] or branch and cut
[7] are amenable to quantum speedup.

Here we apply known quantum-algorithmic techniques
to accelerate more recent classical TSP algorithms for the
important special case of bounded-degree graphs. We say that
a graph G is degree k if the maximal degree of any vertex
in G is at most k. A recent line of research has produced a
sequence of algorithms which improve on the O∗(2n) runtime
of the general Held-Karp algorithm in this setting, where the
notation O∗(cn) omits polynomial factors in n. First, Eppstein
presented algorithms which solve the TSP on degree-3 graphs
in time O∗(2n/3) ≈ O∗(1.260n), and on degree-4 graphs in
time O∗((27/4)n/3) ≈ O∗(1.890n) [8]. The algorithms are
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based on the standard classical technique of backtracking, an
approach where a tree of partial solutions is explored to find a
complete solution to a problem (see Sec. II for an introduction
to this technique). Following subsequent improvements [9,10],
the best classical runtimes known for algorithms based on this
general approach are O∗(1.232n) for degree-3 graphs [11], and
O∗(1.692n) for degree-4 graphs [12], in each case due to Xiao
and Nagamochi. All of these algorithms use polynomial space
in n.

An algorithm of Bodlaender et al. [13] achieves a faster
runtime of O∗(1.219n) for solving the TSP in degree-3
graphs, which is the best known, however, this algorithm uses
exponential space. Similarly, an algorithm of Cygan et al. [14]
solves the TSP in unweighted degree-4 graphs in O∗(1.588n)
time and exponential space. Both of these algorithms use an
approach known as cut and count, which is based on dynamic
programming, so a quantum speedup is not known for either
algorithm.

In the case where we have an upper bound L on the
maximum edge cost in the graph, Björklund [15] gave a
randomized algorithm which solves the TSP on arbitrary
graphs in O∗(1.657nL) time and polynomial space, which
is an improvement on the runtime of the Xiao-Nagamochi
algorithm for degree-4 graphs when L is subexponential in
n. Again, the techniques used in this algorithm do not seem
obviously amenable to quantum speedup.

Here we use a recently developed quantum backtracking
algorithm [16] to speed up the algorithms of Xiao and Nag-
amochi in order to find Hamiltonian cycles shorter than a given
upper bound, if such cycles do exist. We run this algorithm
several times, using a binary search to specify what our upper
bound should be, in order to find the shortest Hamiltonian
cycle and solve the traveling-salesman problem. In doing so,
we achieve a near-quadratic reduction in the runtimes:

Theorem 1. There are bounded-error quantum algo-
rithms which solve the TSP on degree-3 graphs in time
O∗(1.110n log L log log L) and on degree-4 graphs in time
O∗(1.301n log L log log L), where L is the maximum edge
cost. The algorithms use poly(n) space.

In this result and elsewhere in the paper, “bounded error”
means that the probability that the algorithm either does
not find a Hamiltonian cycle when one exists or returns a
nonoptimal Hamiltonian cycle is at most 1/3. This failure
probability can be reduced to δ, for arbitrary δ > 0, by
repeating the algorithm O(log 1/δ) times. Also here and
throughout the paper, log denotes log base 2. Note that the time
complexity of our algorithms has some dependence on L, the
largest edge cost in the input graph. However, this dependence
is quite mild. For any graph whose edge costs are specified by

w bits, L � 2 . Thus terms of the form polylog(w L) are at most
polynomial in the input size.

Next, we show that degree-5 and degree-6 graphs can be
dealt with via a randomized reduction to the degree-4 case.

Theorem 2. There is a bounded-error quantum algorithm
which solves the TSP on degree-5 and degree-6 graphs in
time O∗(1.680n log L log log L). The algorithm uses poly(n)
space.

We summarize our results in Table I.

A. Related work

Surprisingly little work has been done on quantum algo-
rithms for the TSP. Dörn [17] proposed a quantum speedup
for the TSP for degree-3 graphs by applying amplitude
amplification [18] and quantum minimum finding [19] to
Eppstein’s algorithm, and stated a quadratic reduction in the
runtime. However, we were not able to reproduce this result
(see Sec. II below for a discussion).

Very recently, Mandrà, Guerreschi, and Aspuru-Guzik [20]
developed a quantum algorithm for finding a Hamiltonian
cycle in time O(2(k−2)n/4) in a graph where every vertex
has degree k. Their approach reduces the problem to an
occupation problem, which they solve via a backtracking
process accelerated by the quantum backtracking algorithm
[16]. The bounds obtained from their algorithm are O(1.189n)
for k = 3 and O(1.414n) for k = 4, in each case a bit
slower than the runtimes of our algorithms; for k � 5, their
algorithm has a slower runtime than Björklund’s classical
algorithm [15].

Martoňák, Santoro, and Tosatti [21] explored the option of
using quantum annealing to find approximate solutions for the
TSP. Rather than solve the problem purely through quantum
annealing, they simplify their Ising Hamiltonian for solving the
TSP and use path-integral Monte Carlo [22] to run their model.
While no bounds on runtime or accuracy were strictly proven,
they concluded by comparing their algorithm to simulated
annealing via the Metropolis-Hastings algorithm [23] and
the Kernighan-Lin algorithm for approximately solving the
TSP [24]. Their results showed that ad hoc algorithms could
perform better than general simulated or quantum annealing,
but quantum annealing could outperform simulated annealing
alone. However, they noted that simulated annealing could
perform better than in their analysis if combined with local
search heuristics [25].

Chen et al. [26] experimentally demonstrated a quantum
annealing algorithm for the TSP. Their demonstration used a
nuclear-magnetic-resonance quantum simulator to solve the
problem for a graph with four vertices.

TABLE I. Runtimes of our quantum algorithms for a graph of n vertices with maximum edge cost L, compared with the best classical
algorithms known.

Degree Quantum Classical (poly space) Classical (exp space)

3 O∗(1.110n polylog L) O∗(1.232n) [11] O∗(1.219n) [13]
4 O∗(1.301n polylog L) O∗(1.692n) [12], O∗(1.657nL) [15] O∗(1.588n) [14]
5, 6 O∗(1.680n polylog L) O∗(1.657nL) [15]
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B. Organization

We start by introducing the main technique we use,
backtracking, and comparing it with amplitude amplification.
Then, in Sec. III, we describe how this technique can be used
to accelerate classical algorithms of Xiao and Nagamochi for
graphs of degree at most 4 [11,12]. In Sec. IV, we extend this
approach to graphs of degree at most 6.

II. BACKTRACKING ALGORITHMS FOR THE TSP

Many of the most efficient classical algorithms known for
the TSP are based around a technique known as backtracking.
Backtracking is a general process for solving constraint
satisfaction problems, where we have v variables and we need
to find an assignment to these variables such that they satisfy
a number of constraints. A naı̈ve search across all possible
assignments will be inefficient, but if we have some local
heuristics then we can achieve better performance by skipping
assignments that will definitely fail.

Suppose each variable can be assigned one value from
[d] := {0, . . . ,d − 1}. We define the set of partial assignments
for v variables as D := ({1, . . . ,v},[d])j , where j � v, with
the first term denoting the variable to assign and the second de-
noting the value it is assigned. Using this definition for partial
assignments, backtracking algorithms have two components.
The first is a predicate, P : D → {true, false, indeterminate},
which takes a partial assignment and returns true if this
assignment will definitely result in the constraints being
satisfied regardless of how everything else is assigned, false
if the assignment will definitely result in the constraints being
unsatisfied, and indeterminate if we do not yet know. The
second is a heuristic, h : D → {1, . . . ,v}, which takes a partial
assignment and returns the next variable to assign.

The following simple recursive classical algorithm takes
advantage of P and h to solve a constraint satisfaction problem.
We take as input a partial assignment (initially, the empty as-
signment). We run P on this partial assignment; if the result is
true then we return the partial assignment, and if it is false then
we report that no solutions were found in this recursive call. We
then call h on this partial assignment and find out what the next
variable to assign is. For every value in i ∈ [d] we can assign
that variable, we recursively call the backtracking algorithm
with i assigned to that variable. If one of the recursive calls
returns a partial assignment then we return that assignment,
otherwise we report that no solutions were found in this call.
We can view this algorithm as exploring a tree whose vertices
are labeled with partial assignments. The size of the tree
determines the worst-case runtime of the algorithm, assuming
that there is no assignment that satisfies all the constraints.

It is known that this backtracking algorithm can be
accelerated using quantum techniques:

Theorem 3 (Montanaro [16]). Let A be a backtracking
algorithm with predicate P and heuristic h that finds a solution
to a constraint satisfaction problem on v variables by exploring
a tree of at most T vertices. There is a quantum algorithm which
finds a solution to the same problem with failure probability δ

with O(
√

T v3/2 log v log(1/δ)) uses of P and h.
Montanaro’s result is based on a previous algorithm by

Belovs [27,28], and works by performing a quantum walk

on the backtracking tree to find vertices corresponding to
assignments which satisfy the constraints. The reader familiar
with [16] may note that the definition of the set of partial
assignments D is different from that given there, in that it
incorporates information about the ordering of assignments to
variables. However, it is easy to see from inspection of the
algorithm of [16] that this change does not affect the stated
complexity of the algorithm.

It is worth noting that more standard quantum approaches
such as amplitude amplification [18] will not necessarily
achieve a quadratic speedup over the classical backtracking
algorithm. Amplitude amplification requires access to a
function f : {0,1}k → {true, false} and a guessing function
G. If the probability of G finding a result x ∈ {0,1}k such that
f (x) = true is p, then amplitude amplification will succeed
after O(1/

√
p) applications of f and G [18].

To apply amplitude amplification, we would need to access
the leaves of the tree, as these are the points where the
backtracking algorithm is certain whether or not a solution
will be found. Thus, for each integer i, we would need to
find a way of determining the ith leaf li in the backtracking
tree. In the case of a perfectly balanced tree, such as Fig. 1(a),
where every vertex in the tree is either a leaf or has exactly
d branches descending from it, such a problem is easy: write
i in base d and use each digit of i to decide which branch to
explore. But not all backtracking trees are perfectly balanced,
such as in Fig. 1(b). In these cases, finding leaf li is hard as
we cannot be certain which branch leads to that leaf. Some
heuristic approaches, by performing amplitude amplification
on part of the tree, can produce better speedups for certain
trees, but do not provide a general speedup on the same level
as the quantum backtracking algorithm [16].

It is also worth understanding the limitations of the quantum
backtracking algorithm, and why it cannot necessarily speed
up all algorithms termed “backtracking algorithms” [16]. First,
a requirement for the quantum algorithm is that decisions
made in one part of the backtracking tree are independent
of results in another part of the tree, which is not true of all
classical algorithms, such as constraint recording algorithms
[29]. Second, the runtime of the quantum algorithm depends
on the size of the entire tree. Thus, to achieve a quadratic
speedup over a classical algorithm, the algorithm must explore
the whole backtracking tree, instead of stopping after finding
the first solution or intelligently skipping branches such as in
backjumping [29]. Therefore, it is important to check on a
case-by-case basis whether classical backtracking algorithms
can actually be accelerated using Theorem 3.

Another limitation of the quantum backtracking algorithm
is that often there will be a metric M : D → N we want
the backtracking algorithm to minimize while satisfying
the other constraints. This is particularly relevant for the
TSP, where the aim is to return the shortest Hamiltonian
cycle. Classical backtracking algorithms can achieve this by
recursively traveling down each branch of the tree to find
results D1, . . . ,Dd ∈ D and returning the result that minimizes
M . The quantum backtracking algorithm cannot perform this;
it instead returns a solution selected randomly from the tree that
satisfies the constraints. In order to achieve a quantum speedup
when finding the result that minimizes M , we can modify the
original predicate to prune results which are greater than or
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l0 l1 l2 l3 l4 l5 l6 l7

(a)

l0 l1 l2

l3

l4

l5

l6 l7

(b)

FIG. 1. Example backtracking trees, where l5 is a leaf corresponding to a solution to a constraint satisfaction problem: panel (a) shows an
example of a perfectly balanced backtracking tree, where each leaf can be associated with a three-bit string corresponding to a path to that leaf;
panel (b) on the other hand shows an example of an unbalanced backtracking tree, where specifying a path to a leaf requires six bits.

equal to a given bound. We then repeat the algorithm in a
binary search fashion, updating our bound based on whether
or not a solution was found. This will find the minimum after
repeating the quantum algorithm at most O(log Mmax) times,
where

Mmax = max{M(D) : D ∈ D,P (D) = true}.
We describe this binary search approach in more detail in
Sec. III B.

The intuition behind why backtracking is a useful technique
for solving the TSP is that we can attempt to build up a
Hamiltonian cycle by determining for each edge in the graph
whether it should be included in the cycle (“forced”), or deleted
from the graph. As we add more edges to the cycle, we may
either find a contradiction (e.g., produce a non-Hamiltonian
cycle) or reduce the graph to a special case that can be handled
efficiently (e.g., a collection of disjoint cycles of four unforced
edges). This can sometimes allow us to prune the backtracking
tree substantially.

To analyze the performance of backtracking algorithms for
the TSP, a problem size measure is often defined that is at least
0 and at most n (e.g., the number of vertices minus the number
of forced edges). Note that if there are more than n forced edges
then it is impossible to form a Hamiltonian cycle that includes
every forced edge, so the number of forced edges is at most n.
At the start of the backtracking algorithm, there are no forced
edges so the problem size is n. Each step of the backtracking
algorithm reduces the problem size until the size is 0, at which
point either the n forced edges form a Hamiltonian cycle or a
Hamiltonian cycle that includes every forced edge cannot be

found. A quasiconvex programming problem can be developed
based on how the backtracking algorithm reduces the problem
size. Solving this quasiconvex problem determines the number
of recursive calls the backtracking algorithm needs to make
before the problem size has been reduced to 0. This is a runtime
for the algorithm in terms of the problem size, which can
be rewritten in terms of n due to the problem size being at
most n.

It was proposed by Dörn [17] that amplitude amplification
could be applied to speed up the runtime of Eppstein’s
algorithm for the TSP on degree-3 graphs [8] from O∗(2n/3) to
O∗(2n/6). Amplitude amplification can be used in this setting
by associating a bit string with each sequence of choices of
whether to force or delete an edge, and searching over bit
strings to find the shortest valid Hamiltonian cycle. However,
as suggested by the general discussion above, a difficulty with
this approach is that some branches of the recursion, as shown
in Fig. 2, only reduce the problem size by 2 (as measured by
the number of vertices n, minus the number of forced edges).
The longest branch of the recursion can, as a result, be more
than n/3 levels deep. In the worst case, this depth could be
as large as n/2 levels. Specifying the input to the checking
function f could then require up to n/2 bits, giving a search
space of size O(2n/2). Under these conditions, searching for
the solution via amplitude amplification could require up to
O∗(2n/4) time in the worst case. To yield a better runtime, we
must take more of an advantage of the structure of our search
space to avoid instances which will definitely not succeed.

The same issue with amplitude amplification applies to
other classical algorithms for the TSP which are based on
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FIG. 2. An instance of the recursive step in Eppstein’s backtracking algorithm for the TSP [8] for a subgraph of a larger graph G, with
forced edges displayed in bold and branching on edge bc. If we force bc, then b and c are both incident to two forced edges, so bd and ci

cannot be part of the Hamiltonian cycle and can be removed from the graph. After these edges are removed, vertices i and d are both of degree
2, so in order to reach those vertices the edges hi, ij , df , and dg must also be included in the Hamiltonian cycle. So forcing bc has overall
added five edges to the Hamiltonian cycle. On the other hand, if we remove edge bc, we find that b and c are vertices of degree 2, so edges bd

and ci must be part of the Hamiltonian cycle. Thus we have only added two more edges to the Hamiltonian cycle.

backtracking [11,12]. In the case of the Xiao-Nagamochi
algorithm for degree-3 graphs, although the overall runtime
bound proven for the problem means that the number of
vertices in the tree is O(23n/10), several of the branching vectors
used in their analysis have branches that reduce the problem
size by less than 10/3, leading to a branch in the tree that could
be more than 3n/10 levels deep.

III. QUANTUM SPEEDUPS FOR THE TRAVELING
SALESMAN PROBLEM ON BOUNDED-DEGREE GRAPHS

Our algorithms are based on applying the quantum algo-
rithm for backtracking (Theorem 3) to Xiao and Nagamochi’s
algorithm for solving the TSP for degree-3 graphs [11].
Before describing our algorithms, we need to introduce some
terminology from [11] and describe their original algorithm.
The algorithm, and its analysis, are somewhat involved, so we
omit details wherever possible.

A. Algorithm of Xiao and Nagamochi

A graph G is k edge connected if there are k edge-disjoint
paths between every pair of vertices. An edge in G is said to
be forced if it must be included in the final tour, and unforced
otherwise. The set of forced edges is denoted F , and the set
of unforced edges is denoted U . An induced subgraph of
unforced edges which is maximal and connected is called a
U component. If a U component is just a single vertex, then
that U component is trivial. A maximal sequence C of edges
in a U component H is called a circuit if either

(i) C = {xy} and there are three edge-disjoint paths from x

to y,

(ii) or C = {c0,c1, . . . ,cm−1} such that for 0 � i < m − 1,
there is a subgraph Bi of H such that the only two unforced
edges incident to Bi are ci and ci+1.

A circuit is reducible if subgraph Bi for some i is incident
to only two edges. In order for Bi to be reached, both
edges incident to Bi need to be forced. Forcing one edge
in the circuit then means that the other edges can be either
forced or removed. The polynomial time and space process
by Xiao and Nagamochi to reduce circuits, by forcing and
removing alternating edges in the circuit, is known as the
circuit procedure [11].

Note that each edge can be in at most one circuit. If two
distinct circuits C,C ′ shared an edge ei , then there are two
possibilities. The first is that there is a subgraph Bi incident
to unforced edges ei ∈ C ∩ C ′, ei+1 ∈ C − C ′, ej ∈ C ′ − C. In
this case, Bi is incident to more than two unforced edges, so
neither C nor C ′ are circuits, which is a contradiction.

The second is that there is some edge ei which is incident to
distinct subgraphs Bi,B

′
i related to C,C ′, respectively. Circuits

are maximal sequences, so it cannot be the case that Bi is
a subgraph of B ′

i , otherwise C ′ ⊆ C. Now we consider the
subgraphs Bi ∩ B ′

i and Bi − B ′
i , which must be connected

by unforced edges as they are both subgraphs of Bi . These
unforced edges are incident to B ′

i , which is a contradiction as
they are not part of C ′.

Let X be a subgraph. We define cut(X) to be the set of edges
that connect X to the rest of the graph. If |cut(X)| = 3, then
we say that X is three-cut reducible. It was shown by Xiao
and Nagamochi [11] that, if X is three-cut reducible, X can be
replaced with a single vertex of degree 3 with outgoing edges
weighted such that the length of the shortest Hamiltonian cycle
is preserved.
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The definition of four-cut reducible is more complex. Let
X be a subgraph such that cut(X) ⊆ F and |cut(X)| = 4. A
solution to the TSP would have to partition X into two disjoint
paths such that every vertex in X is in one of the two paths. If
x1, x2, x3, and x4 are the four vertices in X incident to the four
edges in cut(X), then there are three ways these paths could
start and end:

(i) x1 ↔ x2 and x3 ↔ x4,
(ii) x1 ↔ x3 and x2 ↔ x4,
(iii) or x1 ↔ x4 and x2 ↔ x3.
We say that X is four-cut reducible if for at least one of

the above cases it is impossible to create two disjoint paths in
X that include all vertices in X. Xiao and Nagamochi defined
a polynomial time and space process for applying the above
reductions, known as 3/4-cut reduction [11].

A set of edges {ei} are parallel if they are incident to
the same vertices (note that here we implicitly let G be a
multigraph; these may be produced in intermediate steps of
the algorithm). If there are only two vertices in the graph, then
the TSP can be solved directly by forcing the shortest two
edges. Otherwise if at least one of the edges is not forced, then
we can reduce the problem by removing the longer unforced
edges until the vertices are only adjacent via one edge. This
is the process Xiao and Nagamochi refer to as eliminating
parallel edges [11].

Finally, a graph is said to satisfy the parity condition if every
U component is incident to an even number of forced edges
and for every circuit C, an even number of the corresponding
subgraphs Bi satisfy that |cut(Bi) ∩ F | is odd.

We are now ready to describe Xiao and Nagamochi’s
algorithm. The algorithm takes as input a graph G = (V,E)
and a set of forced edges F ⊆ E and returns the length of the
shortest Hamiltonian cycle in G containing all the edges in F ,
if one exists.

The algorithm is based on four subroutines: eliminating
parallel edges, the 3/4-cut reduction, selecting a good circuit,
and the circuit procedure, as well as the following lemma:

Lemma 1 (Eppstein [8]). If every U component in a graph
G is trivial or a component of a four-cycle, then a minimum
cost tour can be found in polynomial time.

We will not define the subroutines here in any detail; for
our purposes, it is sufficient to assume that they all run in
polynomial time and space. The circuit procedure for a circuit
C begins by either adding an edge e ∈ C to F or deleting
it from the graph, then performing some other operations.
“Branching on a circuit C at edge e ∈ C” means generating
two new instances from the current instance by applying each
of these two variants of the circuit procedure starting with e.

The Xiao-Nagamochi algorithm, named TSP3, proceeds as
follows, reproduced from [11]:

(1) If G is not 2-edge-connected or the instance violates the
parity condition, then return ∞;

(2) Elseif there is a reducible circuit C, then return
TSP3(G′,F ′) for an instance (G′,F ′) obtained by applying
the circuit procedure on C started by adding a reducible edge
in C to F ;

(3) Elseif there is a pair of parallel edges, then
return TSP3(G′,F ′) for an instance (G′,F ′) obtained
by applying the reduction rule of eliminating parallel
edges;

(4) Elseif there is a 3/4-cut reducible subgraph X con-
taining at most eight vertices, then return TSP3(G′,F ′) for an
instance (G′,F ′) obtained by applying the 3/4-cut reduction
on X;

(5) Elseif there is a U -component H that is neither
trivial nor a 4-cycle, then select a good circuit C in H and
return min{TSP3(G1,F1),TSP3(G2,F2)}, where (G1,F1) and
(G2,F2) are the two resulting instances after branching on C;

(6) Else [each U -component of the graph is trivial or a
4-cycle], solve the problem directly in polynomial time by
Lemma 1 and return the cost of an optimal tour.

Step 1 of the algorithm checks that the existence of a
Hamiltonian cycle is not ruled out, by ensuring that that there
are at least two disjoint paths between any pair of vertices and
that the graph satisfies the parity condition. Step 2 reduces
any reducible circuit by initially forcing one edge and then
alternately removing and forcing edges. Step 3 removes any
parallel edges from the graph, and step 4 removes any circuits
of three edges as well as setting up circuits of four edges
so that all edges incident to them are forced. Step 5 is the
recursive step, branching on a good circuit by either forcing or
removing an edge in the circuit and then applying the circuit
procedure. The algorithm continues these recursive calls until
it either finds a Hamiltonian cycle or G \ F is a collection of
single vertices and cycles of length 4, all of which are disjoint
from one another, at which point the problem can be solved in
polynomial time via step 6.

Xiao and Nagamochi looked at how the steps of the
algorithm, and step 5 in particular as the branching step,
reduced the size of the problem for different graph structures.
From this they derived a quasiconvex program corresponding
to 19 branching vectors, each describing how the problem size
is reduced at the branching step in different circumstances.
Analysis of this quasiconvex program showed that the algo-
rithm runs in O∗(23n/10) time and polynomial space [11].

B. Quantum speedup of the Xiao-Nagamochi algorithm

Here we describe how we apply the quantum backtracking
algorithm to the Xiao-Nagamochi algorithm. It is worth noting
that the quantum backtracking algorithm will not necessarily
return the shortest Hamiltonian cycle, but instead returns a
randomly selected Hamiltonian cycle that it found. Adding
constraints on the length of the Hamiltonian cycles to our
predicate and running the quantum backtracking algorithm
multiple times will allow us to find a solution to the TSP.

The first step towards applying the quantum backtracking
algorithm is to define the set of partial assignments. A partial
assignment will be a list of edges in G ordered by when they
are assigned in the backtracking algorithm and paired with
whether the assignment was to force or remove the edge. The
assignment is denoted A ∈ ({1, . . . ,m},{force, remove})j ,
where j � m. We have m � 3n/2 as G is degree 3.

The quantum approach to backtracking requires us to
define a predicate P and heuristic h, each taking as input a
partial assignment. Our predicate and heuristic make use of
a reduction function, introduced in [11], as a subroutine; this
function is described in the next subsection. However it may
be worth noting that the algorithm uses the original graph G,
and partial assignments of it at each stage.
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First, we describe the P function, which takes a partial
assignment A = ((e1,A1), . . . ,(ej ,Aj )) as input:

(1) Using the partial assignment A, apply the reduction
function to (G,F ) to get (G′,F ′).

(2) If G′ is not two-edge-connected or fails the parity
condition, then return false.

(3) If every U component in G′ is either trivial or a four-
cycle, then return true.

(4) Return indeterminate.
Step 2 matches step 1 of Xiao and Nagamochi’s algorithm.

Step 3 is where the same conditions are met as in step 6
of Xiao and Nagamochi’s algorithm, where a shortest length
Hamiltonian cycle is guaranteed to exist and can be found in
polynomial time classically via Lemma 1. Step 4 continues
the branching process, which together with how the circuit
is picked by h and step 2(c) of the reduction function (qv)
matches step 5 of Xiao and Nagamochi.

The h function is described as follows, taking as input
a partial assignment A = ((e1,A1), . . . ,(ej ,Aj )) of the edges
of G:

(1) Using the partial assignment A, apply the reduction
function to (G,F ) to get (G′,F ′).

(2) Select a U component in G′ that is neither trivial nor a
cycle of length 4. Select a circuit C in that component that fits
the criteria of a “good” circuit [11], then select an edge e′

i ∈ C.
(3) Return an edge in G corresponding to e′

i (if there is more
than one, choosing one arbitrarily).

Step 2 applies step 5 of Xiao and Nagamochi’s algorithm,
by selecting the next circuit to branch on and picking an edge
in that circuit. If the reduced version of the graph results in
h picking an edge corresponding to multiple edges in the
original graph, step 3 ensures that we only return one of
these edges to the backtracking algorithm, as step 2(b) of the
reduction function will ensure that every edge in the original
graph corresponding to an edge in the reduced graph will be
consistently forced or removed. The rest of the circuit will be
forced or removed by step 2(c) of the reduction function.

We can now apply the backtracking algorithm (Theorem 3)
to P and h to find a Hamiltonian cycle. We will later choose its
failure probability δ to be sufficiently small that we can assume
that it always succeeds, i.e., finds a Hamiltonian cycle if one
exists, and otherwise reports that one does not exist. At the end
of the algorithm, we will receive either the information that no
assignment was found, or a partial assignment. By applying the
reduction steps and the partial assignments, we can reconstruct
the graph at the moment our quantum algorithm terminated,
which will give a graph such that every U component is either
trivial or a four-cycle. We then construct and return the full
Hamiltonian cycle in polynomial time using step 6 of Xiao and
Nagamochi’s algorithm [11].

To solve the TSP, we need to find the shortest Hamiltonian
cycle. This can be done as follows. First, we run the
backtracking algorithm. If the backtracking algorithm does not
return a Hamiltonian cycle then we report that no Hamiltonian
cycle was found. Otherwise after receiving Hamiltonian cycle
� with length L� , we create variables � ← 0 and u ← L� and
modify P to return false if

∑
ei,j ∈F

cij � (� + u)/2�.

If no cycle is found after running the algorithm again, we
set � ← (� + u)/2� and repeat. Otherwise, upon receiving
Hamiltonian cycle �′ with total cost L�′ , we set u ← L�′

and repeat. We continue repeating until � and u converge, at
which point we return the Hamiltonian cycle found by the
algorithm. The scenario that will give the longest runtime
is when the shortest cycle is found during the first run of
the backtracking algorithm: the backtracking algorithm will
fail to find a Hamiltonian cycle shorter than (� + u)/2�,
update � and repeat until � and u converge. In this case,
this algorithm matches a binary search. So the number of
repetitions of the backtracking algorithm required to return
the shortest Hamiltonian cycle is at most O(log L′), where

L′ =
n∑

i=1

max {cij : j ∈ {1, . . . ,n}} (1)

is an upper bound on the total cost of any Hamiltonian cycle
in the graph.

C. Reduction function

Finally, we describe the reduction function, which takes
the original graph G and partial assignment A, and applies
the partial assignment to this graph in order to reduce it
to a smaller graph G′ with forced edges F ′. This reduction
might mean that forcing or removing a single edge in G′
would be akin to forcing several edges in G. For example,
let X be a three-reducible subgraph of at most eight vertices
with cut(X) = {ax1,bx2,cx3} for vertices x1,x2,x3 ∈ V (X).
The 3/4-cut reduction reduces X to a single vertex x ∈ G′
with edges ax,bx,cx. If the edges ax and bx are forced, this
is equivalent to forcing every edge in � ∪ {ax1,bx2}, where
� is the shortest path that starts at x1, visits every vertex in X

exactly once, and ends at x2. As we need to solve the problem
in terms of the overall graph G and not the reduced graph G′,
our assigned variables need to correspond to edges in G. To
do this, our h function described in Sec. III B includes a step
where if the edge selected in G′ corresponds to multiple edges
in G, we simply select one of the corresponding edges in G to
return. Likewise, if the next edge in our partial assignment is
one of several edges in G corresponding to a single edge in G′,
we apply the same assignment to all of the other corresponding
edges in G.

The reduction function works as follows, using reductions
and procedures from Xiao and Nagamochi [11]:

(1) Create a copy of the graph G′ ← G and set of forced
edges F ′ ← ∅.

(2) For each i = 1, . . . ,j :
(a) Repeat until none of the cases apply:
(i) If G′ contains a reducible circuit C, then apply the circuit

procedure to C.
(ii) If G′ contains parallel edges, then apply the reduction

rule of eliminating parallel edges.
(iii) If G′ contains a subgraph X of at most eight vertices

such that X is 3/4-cut reducible, then apply the 3/4-cut
reduction to X.

(b) Apply assignment (ei,ai) to (G′,F ′) by adding edge ei to
F ′ if ai = force, or deleting edge ei from G′ if Ai = remove.
If edge ei is part of a set of edges corresponding to a single
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edge in G′, apply the same assignment to all edges in G which
correspond to the same edge in G′ by adding them all to F ′ if
ai = force, or deleting them all from G′ if ai = remove.

(c) Apply the circuit procedure to the rest of the circuit
containing edge ei .

(3) Run step 2(a) again.
(4) Return (G′,F ′).
Step (2)(a)(i) recreates step 2 from Xiao and Nagamochi’s

original algorithm by applying the circuit procedure where
possible. Step (2)(a)(ii) recreates step 3 of the original
algorithm by applying the reduction of parallel edges. Step
(2)(a)(iii) recreates step 4 of the original algorithm via the 3/4-
cut reduction. Step (2)(b) applies the next step of the branching
that has been performed so far, to ensure that the order in which
the edges are forced is the same as in the classical algorithm.
Step (2)(c) corresponds to branching on a circuit at edge ei .
Finally, step (3) checks whether or not the graph can be reduced
further by running the reduction steps again.

One might ask if an edge could be part of two circuits, in
which case our algorithm would fail as it would not be able
to reduce the circuit. However, as discussed in Sec. III A, any
edge can only be part of at most one circuit.

D. Analysis

Steps (2)(a)(i)–(iii) of the reduction algorithm can be
completed in polynomial time [11]. All of these steps also
reduce the size of a problem by at least a constant amount,
so only a polynomial number of these steps are needed.
Step (2)(b) is constant time and step (2)(c) can be run in
polynomial time as the circuit is now reducible. All steps are
only repeated O(m) times, so the whole reduction algorithm
runs in polynomial time in terms of m.

Steps (2) and (3) of the h subroutine run in polynomial time
as searching for a good circuit in a component can be done
in polynomial time [11]. Likewise, steps (2) and (3) of the P

function involve looking for certain structures in the graph that
can be found in polynomial time. As a result, the runtimes for
the P and h functions are both polynomial in m.

By Theorem 3, the number of calls to P and h we make
in order to find a Hamiltonian cycle with failure probability δ

is O(
√

T poly(m) log(1/δ)), where T is the size of the back-
tracking tree, which in our case is equal to the number of times
the Xiao-Nagamochi algorithm branches on a circuit. P and
h both run in polynomial time and as a result can be included
in the poly(m) term of the runtime. Because m � 3n/2, the
polynomial term in this bound is also polynomial in terms of n.

The behavior of the P and h subroutines is designed to
reproduce the behavior of Xiao and Nagamochi’s TSP3 algo-
rithm [11]. It is shown in [11, Theorem 1] that this algorithm
is correct, runs in time O∗(23n/10), and uses polynomial space.
As the runtime of the TSP3 algorithm is an upper bound
on the number of branching steps it makes, the algorithm
branches on a circuit O∗(23n/10) times. Therefore, the quantum
backtracking algorithm finds a Hamiltonian cycle, if one exists,
with failure probability at most δ in time O∗(23n/20 log(1/δ)) ≈
O∗(1.110n log(1/δ)) and polynomial space.

Finding the shortest Hamiltonian cycle requires repeating
the algorithm O(log L′) times, where L′ is given in Eq. (1).
By using a union bound over all the runs of the algorithm,

to ensure that all runs succeed with high probability it is
sufficient for the failure probability δ of each run to be at
most O(1/(log L′)). From this we obtain the following result,
proving the first part of Theorem 1:

Theorem 4. There is a bounded-error quantum algo-
rithm which solves the TSP on degree-3 graphs in time
O∗(1.110n log L log log L), where L is the maximum edge
cost. The algorithm uses poly(n) space.

Note that we have used the bound L′ � nL, where the extra
factor of n is simply absorbed into the hidden poly(n) term.

IV. EXTENDING TO HIGHER-DEGREE GRAPHS

We next consider degree-k graphs for k � 4. We start
with degree-4 graphs by applying the quantum backtracking
algorithm to another algorithm by Xiao and Nagamochi [12].
We then extend this approach to graphs of higher degree by
reducing the problem to degree-4 graphs.

A. Degree-4 graphs

Here we will show the following, which is the second part
of Theorem 1:

Theorem 5. There is a bounded-error quantum algo-
rithm which solves the TSP for degree-4 graphs in time
O∗(1.301n log L log log L), where L is the maximum edge
cost. The algorithm uses poly(n) space.

As the argument is very similar to the degree-3 case, we
only sketch the proof.

Proof sketch. Xiao and Nagamochi’s algorithm for degree-
4 graphs works in a similar way to their algorithm for degree-3
graphs: The graph is reduced in polynomial time by looking
for specific structures in the graph and then picking an edge in
the graph to branch on. We apply the quantum backtracking
algorithm as before, finding a Hamiltonian cycle with failure
probability δ in O∗(1.301n log(1/δ)) time. We then use a
binary search to find the shortest Hamiltonian cycle after
O(log L) repetitions of the algorithm, rejecting if the total
length of the forced edges is above a given threshold. To
achieve overall failure probability 1/3, the algorithm runs in
O∗(1.301n log L log log L) time.

B. Degree-5 and degree-6 graphs

To deal with degree-5 and degree-6 graphs, we reduce them
to the degree-4 case. The complexity of the two cases turns
out to be the same; however, for clarity we consider each case
separately.

Theorem 6. There is a bounded-error quantum algo-
rithm which solves the TSP for degree-5 graphs in time
O∗(1.680n log L log log L).

Proof. Our algorithm works by splitting each vertex of
degree 5 into one vertex of degree 3 and another of degree 4
connected by a forced edge. The forced edges can be included
in our quantum algorithm by modifying step 1 of the reduction
function so that F ′ contains all the forced edges created by
splitting a vertex of degree-5 into two vertices connected
by a forced edge. Once all degree-5 vertices are split this
way, we run the degree-4 algorithm. It is intuitive to think
that this splitting of the vertices could increase the runtime
complexity of the degree-4 algorithm, due to n being larger.

032323-8



QUANTUM SPEEDUP OF THE TRAVELING-SALESMAN . . . PHYSICAL REVIEW A 95, 032323 (2017)

a

b

c

d

e

f

a

b

d

c

e

f

a

b

e

c

d

f

a

b

f

c

d

e

a

c

d

b

e

f

a

c

e

b

d

f

a

c

f

b

d

e

a

d

e

b

c

f

a

d

f

b

c

e

a

e

f

b

c

d

FIG. 3. Breaking a vertex of degree 5 or 6 into two lower-degree vertices. In the degree-5 case, dashed edge f is not present and the vertex
is split into one vertex of degree 3 and another of degree 4 connected by a forced edge in bold. In the degree-6 case, dashed edge f is present
and the vertex is split into two vertices of degree 4 connected by a forced edge. If edges a and b are included in the original graph’s shortest
Hamiltonian cycle, then they must not be adjacent to one another in the final graph. This holds in six of the ten ways of splitting the vertex.

However, the addition of a forced edge incident to every new
vertex means that we do not need to create more branches
in the backtracking tree in order to include the new vertex
in the Hamiltonian cycle. As a result, the time complexity of
the degree-4 algorithm will remain the same.

There are ten unique ways of splitting a vertex of degree 5
into one vertex of degree 3 and another of degree 4 connected
by a forced edge. These ten ways of splitting the vertex are
shown in Fig. 3 for a vertex incident to edges a,b,c,d,e.
Without loss of generality, let a and b be the two edges which
are part of the Hamiltonian cycle. In order for a and b to also be
part of the Hamiltonian cycle in the degree-4 graph produced, a
and b cannot be adjacent to one another. Looking at Fig. 3, the
split is successful in six of the ten ways of splitting the vertex.

If there are f vertices of degree 5, then there are 10f

possible ways of splitting all such vertices, of which 6f will
give the correct solution to the TSP. We can apply Dürr and
Høyer’s quantum algorithm for finding the minimum [19] to
find a splitting that leads to a shortest Hamiltonian cycle, or
reporting if no cycle exists, after O((10/6)f/2) repeated calls
to the degree-4 algorithm. To ensure that the failure probability
of the whole algorithm is at most 1/3, we need to reduce the
failure probability of the degree-4 algorithm to O((10/6)−f/2),
which can be achieved by repeating it O(f ) times and returning
the minimum-length tour found. The overall runtime is thus

O∗
((

10

6

)f/2

1.301n log L log log L

)

= O∗(1.680n log L log log L).

�
It is also possible to split a vertex of degree 5 into three

vertices of degree 3 connected by two forced edges. There are
15 ways of performing this splitting, of which six will succeed.
Applying the degree-3 algorithm to these reduced graphs finds
a runtime of

O∗
((

15

6

)f/2

1.110n log L log log L

)

= O∗(1.754n log L log log L),

which performs worse than Theorem 6. We next turn to degree-
6 graphs, for which the argument is very similar.

Theorem 7. There is a quantum algorithm which solves the
TSP for degree-6 graphs with failure probability 1/3 in time
O∗(1.680n log L log log L).

Proof. We can extend the idea of Theorem 6 to degree-6
graphs by splitting vertices of degree 6 into two vertices
of degree 4 connected by a forced edge. Because the de-
gree of both new vertices is 4, there are (6

3)/2 = 10 unique
ways of partitioning the edges, of which four will fail. We
show this in Fig. 3 by including the dashed edge f as the sixth
edge. The overall runtime is the same as the degree-5 case.

C. Degree-7 graphs

We finally considered extending the algorithm to degree-7
graphs by partitioning degree-7 vertices into one of degree 5
and another of degree 4, connected by a forced edge. We can
split a vertex of degree 7 into a vertex of degree 4 and another of
degree 5 in (7

4) = 35 ways, of which (7 − 2
4 − 2) + (7 − 2

3 − 2) = 15 will
not preserve the shortest Hamiltonian cycle. We then use the
same process as for the degree-5 and degree-6 cases, halting
after O((35/20)k/2) iterations and returning either the shortest
Hamiltonian cycle found or reporting if no Hamiltonian cycle
exists. From this, our overall runtime is

O∗
((

35

20

)k/2

1.680n log L log log L

)

= O∗(2.222n log L log log L).

This is the point where we no longer see a quantum speedup
over the fastest classical algorithms using this approach, as
classical algorithms such as those of Held-Karp [4] and
Björklund et al. [5] run in O∗(2n) and O∗(1.984n) time,
respectively.

Note added. Recently, we became aware of two related
results in this area. First, a quantum backtracking algorithm
whose runtime depends only on the number of tree vertices
visited by the classical backtracking algorithm, rather than the
whole tree [30]. This alleviates one, though not all, of the
limitations of the backtracking algorithm discussed in Sec. II.
Second, a quantum algorithm for the general TSP based on
accelerating the dynamic programming algorithm [31]. The
algorithm’s runtime is somewhat worse than ours for graphs
of degree at most 6, and it uses exponential space; but it works
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for any graph, rather than the special case of bounded-degree
graphs considered here. In addition, Heim et al. [32] have re-
ported simulations of quantum annealing experiments to solve
the TSP, concluding that “analog quantum annealing devices
are unlikely to be of interest as TSP solvers in the near future.”

No new data were created during this study.

ACKNOWLEDGMENTS

A.E.M. was supported by the Bristol Quantum Engi-
neering Centre for Doctoral Training, EPSRC Grant No.
EP/L015730/1. A.M. was supported by EPSRC Early Career
Fellowship No. EP/L021005/1. We would like to thank A.
Ambainis for bringing Refs. [30,31] to our attention.

[1] M. Grötschel, M. Jünger, and G. Reinelt, ZOR - Methods and
Models of Operations Research 35, 61 (1991).

[2] E. L. Lawler, J. K. Lenstra, A. H. G. Rinnooy Kan, and
D. B. Shmoys, The Traveling Salesman Problem: A Guided
Tour of Combinatorial Optimization (Wiley-Interscience, New
York, 1985).

[3] L. K. Grover, in Proceedings of the 28th Annual ACM Sympo-
sium on Theory of Computing (STOC’96), edited by G. L. Miller
(ACM, New York, 1996), pp. 212–219.

[4] M. Held and R. M. Karp, J. Soc. Ind. Appl. Math. 10, 196
(1962).

[5] A. Björklund, T. Husfeldt, P. Kaski, and M. Koivisto, in
Proceedings of the 35th International Conference on Au-
tomata, Languages and Programming (ICALP’08), edited by
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