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We analyze theoretically spontaneous parametric down-conversion in a multimode nonlinear waveguide as a
source of entangled pairs of spatial qubits, realized as superpositions of a photon in two orthogonal transverse
modes of the waveguide. It is shown that, by exploiting intermodal dispersion, down-conversion into the relevant
pairs of spatial modes can be selected by spectral filtering, which also provides means to fine tune the properties
of the generated entangled state. We also discuss an inverting interferometer detecting the spatial parity of the
input beam as a versatile tool to characterize properties of the generated state. A single-photon Wigner function
obtained by a scan of the displaced parity can be used to identify the basis modes of a spatial qubit, whereas
correlations between displaced parity measurements on two photons can directly verify quantum entanglement
through a violation of Bell’s inequalities.
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I. INTRODUCTION

Optical systems find numerous applications in current
efforts to implement emerging quantum enhanced technolo-
gies [1]. This prominence is owed in large measure to the
availability of multiple degrees of freedom that permit a
broad range of well-controlled manipulations on the generated
quantum states of light [2–4]. In particular, the spatial degree of
freedom is currently studied in the context of quantum imaging
and communication [5–9]. While the spatial characteristics of
optical fields in free space and bulk media can be described
by continuous variables, waveguiding structures introduce a
natural discrete set of transverse spatial modes. In classical
optical communication they are becoming a valuable resource
for data multiplexing [10,11] whereas in the field of quantum
optics they can be naturally used to implement qubit- or
qudit-based quantum protocols [12,13].

In this paper, we present a theoretical study of a mul-
timode nonlinear waveguide as a medium to generate and
characterize spatial qubits. Such qubits are implemented
as single photons prepared in superpositions of orthogonal
transverse modes. In order to relate the studied scenario
to existing manufacturing capabilities, we will consider a
specific example of a multimode waveguide fabricated through
an ion-exchange process in a periodically polled potassium
titanyl phosphate (PPKTP) crystal [14,15]. In recent years,
large χ (2) nonlinearities exhibited by such structures have
been exploited to construct high-brightness down-conversion
sources of photon pairs [16,17]. Although so far attention has
been primarily focused on generating photons in fundamental
spatial modes [18–20], it has been noted that by exploring
higher-order modes one can access more complex forms of
entanglement [21–25]. We will address here the feasibility of
such an approach assuming realistic parameters of a PPKTP
waveguide.

*michal.jachura@fuw.edu.pl

Specifically, we will analyze here generation of a max-
imally entangled state of two spatial qubits in orthogonal
polarizations, each qubit spanned by a pair of fundamental and
first-order transverse modes. We will show that such a state can
be easily produced through a suitably arranged type-II down-
conversion process in the waveguide subjected to spectral
filtering. In addition, the spectral degree of freedom can be
conveniently used to fine tune the properties of the generated
entangled state. We will also consider characterization of the
produced two-photon state. We will show that the inverting
interferometer [26–28] is a very useful tool that enables
identification of the transverse modes spanning the spatial
qubits as well as verification of the generated entanglement.
While qubit manipulations could be ultimately also integrated
into waveguide structures, using, e.g., electro-optic devices de-
scribed in [29], the free-space interferometric approach allows
one to test exclusively the generation stage. It can also provide
complete information about the spatial characteristics of the
produced state including the basis modes of the spatial qubits.

This paper is organized as follows. In Sec. II we describe
the waveguide structure, discuss its transverse modes, and
define spatial qubits. The down-conversion process in a multi-
mode nonlinear waveguide is analyzed in detail in Sec. III. The
wave function of photon pairs generated by selecting down-
conversion into specific combinations of transverse modes is
calculated in Sec. IV. Section V presents a method to identify
basis modes of spatial qubits by measuring a single-photon
Wigner function with the help of an inverting interferometer.
The same measurement scheme extended to photon pairs is
applied in Sec. VI to verify generated entanglement through
the violation of Bell’s inequalities. Finally, Sec. VII concludes
the paper.

II. WAVEGUIDE MODES AND SPATIAL QUBITS

In our numerical simulations we assume realistic PPKTP
waveguide dimensions of w = 6 μm width, d = 10 μm depth,
and L = 1 mm length. We use the crystallographic coordinate
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(a) (b)

FIG. 1. (a) Waveguide modes involved in spatial entanglement
generation. (b) Higher waveguide modes the generation of which is
suppressed by the means of intermodal-dispersion-based method.

system with the waveguide propagation axis oriented along the
x direction and the nonlinear medium occupying the area z � 0
in the perpendicular plane. The waveguide is modeled with
sharp boundaries in the y direction and a diffusive refractive
index profile along the z direction given by

nκ = nκ,PPKTP + �nκerfc(−z/d), κ = y,z, (1)

where nκ,PPKTP is the refractive index of the substrate crystal
for the light polarized along the κth axis and �nκ denotes
the maximal refractive index contrast of the waveguide. For
the substrate refractive index we relied on Sellmeier equations
parameters measured in [30] whereas index contrasts �ny =
0.021 and �nz = 0.025 have been taken from waveguide
manufacturer data (AdvR, USA). Waveguide modes were
found numerically using the finite difference method described
in [31] assuming transverse electric (TE) propagation.

Exemplary transverse modes at the 800-nm wavelength are
depicted in Fig. 1 using respective electric-field distributions
u

ij
μ (r) in the plane r = (y,z). The modes are labeled using

two integers ij specifying the number of nodes along the
y and z direction, respectively, and a subscript μ = H,V

denoting polarization. Altogether, the waveguide supports
twelve modes for each of the two polarizations at the
770–830-nm wavelength range that will be used for the
generation of photon pairs via the down-conversion process.

As the basis states for the spatial qubit, we will take
a single photon prepared in transverse modes 00 and 10
shown in Fig. 1(a). The waveguide can support two such
qubits distinguished by photon polarization. The advantage
of this specific choice is that the two modes used for the
basis states have opposite parity with respect to the symmetry
plane of the structure perpendicular to the waveguide facet.
Consequently, they can be separated in a deterministic way
using a Mach-Zehnder interferometer with an inverting Dove
prism inserted in one of the arms, as shown in Fig. 2. For the
right choice of the relative phase between the interferometer
arms, destructive interference occurs at a different output port
of the interferometer depending on whether the input mode
had an even or odd parity [26–28]. Consequently, detecting
the photon at the output ports of the interferometer implements

Out 1

Out 2

Dove
prism

y
Input

k

FIG. 2. Inverting Mach-Zehnder interferometer utilized for prob-
ing the parity of the incoming spatial mode.

a projective measurement in the spatial qubit basis. We will
see in Sec. V that by displacing and tilting laterally the input
beam one can effectively determine the transverse modes that
form the basis states of the spatial qubits. Furthermore, sending
the horizontally and vertically polarized photons to two such
interferometers can be used to test the generated entanglement,
as lateral displacement before the interferometer entrance
provides a noncommuting measurement capable of violating
Bell’s inequalities [32]. This idea will be discussed in Sec. VI.

III. WAVEGUIDE DOWN-CONVERSION

Second-order χ (2) nonlinearity of the PPKTP waveguide
provides a possibility to generate entanglement between two
spatial qubits described in Sec. II. This can be achieved by
employing type-II spontaneous parametric down-conversion to
produce a pair of photons distinguishable by their polarizations
H and V . In order to generate their entangled state, we will
consider simultaneous realization of two down-conversion
processes, producing pairs in modes 00H 10V and 10H 00V . For
experimental convenience, the pump P should be prepared
in a single spatial mode. The efficiency of a specific down-
conversion process lmP → ijH i ′j ′

V depends on the spatial
overlap of the three involved modes:

αlmP →ijH i ′j ′
V

=
∫

d2r ulm
P (r)

[
u

ij

H (r)ui ′j ′
V (r)

]∗
. (2)

Because of the opposite parity of the down-converted modes
H and V , the pump mode needs to be odd for the integral
in Eq. (2) to be nonzero. The most natural candidate is
10P . The pump in this mode could be prepared by filtering
a laser beam through an auxiliary waveguide, or by using
the output of a sum-frequency generation process, which is
highly selective in transverse modes for fixed frequencies of
fundamental beams [33–35]. As shown in Fig. 3, depicting
coupling efficiencies |α10P →ijH i ′j ′

V
|2 for different pairs of

down-converted modes, the choice of the 10P mode has
an additional advantage of exhibiting the strongest coupling
for two processes under consideration. However, two issues
remain. A careful inspection of Fig. 3 shows that the overlaps
|α10P →00H 10V

|2 and |α10P →10H 00V
|2 are slightly different, which

may prevent generation of a maximally entangled state.
Furthermore, although the efficiencies of other processes are
suppressed, they remain non-negligible. To address these two
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FIG. 3. Efficiencies of down-conversion processes for the pump
coupled in 10P mode |α10P →ijH +i′j ′

V
|2.

issues we will exploit the spectral degree of freedom which also
needs to be considered to ensure spectral indistinguishability
of the two components in the generated entangled state [36].

The spectral characteristics of down-converted photons de-
pend on the phase matching function, obtained by integrating
along the propagation direction the longitudinal phase factors
of the three waves coupled through the nonlinear interaction. In
a multimode waveguide, the phase-matching function depends
on the specific triplet of P , H , and V modes involved in the
process and takes the form

φlmP →ijH i ′j ′
V
(ωH ,ωV ) = L

2
sinc

[
L

2

(
klm
P (ωH + ωV )

− k
ij

H (ωH ) − k
i ′j ′
V (ωV ) − 2πp

	

)]
.

(3)

Here ωH and ωV are the frequencies of the down-converted
H and V photons, L is the length of the medium, and k

ij
μ (ω)

describe the dependence of the wave number on the frequency
ω for the fields μ = P,H,V . The additive term 2πp/	 is
contributed by the quasi-phase-matching condition for the
order p and the poling period equal to 	.

Intermodal dispersion makes the wave numbers k
ij
μ (ω)

decrease for higher transverse modes. This has significant
effect on the phase-matching function, as illustrated in Fig. 4
for the pump prepared in the 10P mode. It is seen that the phase-
matching condition k10

P (ωH + ωV ) = k
ij

H (ωH ) + k
i ′j ′
V (ωV ) is

satisfied along different curves in the plane spanned by
wavelengths λH = 2πc/ωH and λV = 2πc/ωV , and that for
realistic waveguide length the phase-matching bands centered
around these curves are usually well separated. Substantial
overlap is present for two interactions required to generate an
entangled state of two spatial qubits. Such an overlap is needed
to ensure spectral indistinguishability of the produced photons
that warrants high visibility of two-photon correlations. It will
be convenient to label the two processes of interest with single

λH(nm)

λ V
(n

m
)

0777 8305877 800 815

5877

800

815

830

10P

FIG. 4. Phase-matching bands of several lowest-order down-
conversion processes multiplied by their respective efficiencies for
the pump coupled in 10P mode, along with its transversal field
profile (inset). The energy conservation condition curve for the
monochromatic pump λP = 400 nm has been represented by a white
dashed line. For a better visualization of individual phase-matching
bands here we assumed crystal length L = 4 mm and 	 = 7.8 μm.

digits

1 : 10P → 00H 10V ,

2 : 10P → 10H 00V , (4)

that will be used in the following as the indices for the
respective quantities, such as probability amplitudes.

In the example shown in Fig. 4 and further numerical cal-
culations, the poling period of 	 = 7.8 μm has been selected
to maximize the spectral overlap of the two concurrent down-
conversion processes specified in Eq. (4) that are involved in
spatial entanglement generation for the waveguide pumped
using a 400-nm continuous-wave laser. The corresponding
quasi-phase-matching order is p = 1.

IV. TWO-PHOTON WAVE FUNCTION

Let us now consider the complete two-photon wave function
including both the spatial and the spectral degrees of freedom.
Owing to energy conservation in the down-conversion process,
the sum of the frequencies ωH and ωV of the generated
horizontal and vertical photons must be equal to the frequency
of the pump photon ωP = ωH + ωV . For cw pumping, this
defines a curve in the plane of Fig. 4, presented as a white
dashed line, running at approximately 45◦ with respect to the
graph axes, which defines actual frequencies of generated
photons. Because the phase-matching condition lines are
oriented at different angles than 45◦, the pump frequency
constraint introduces separation between the two processes
of interest and other combinations of down-conversion spatial
modes. Consequently, the latter can be removed using coarse
spectral filtering. The feasibility of this approach has been
demonstrated for the down-conversion process between fun-
damental modes, 00P → 00H 00V in recent experiments with
PPKTP waveguides [19,20].
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FIG. 5. Spectra of two concurrent modal processes 10P →
00H 10V (blue leftmost line), 10P → 10H 00V (red rightmost line)
for λP = 400 nm complemented by an exemplary spectral filtering
profile (dash-dotted line).

Assuming a monochromatic cw pump, the spectral ampli-
tudes of the generated photons can be parametrized with the
frequency ω of the H photon and written as

φ1(ω) = φ10P →00H 10V
(ω,ωP − ω),

φ2(ω) = φ10P →10H 00V
(ω,ωP − ω). (5)

In Fig. 5 we depict the effective spectra for the two processes
given by expressions |αiφi(ω)|2, i = 1,2, where αi are spatial
overlaps defined in Eq. (2) labeled using notation introduced
in Eq. (4). It is seen that the produced photon pairs are
partially distinguishable, and furthermore the production rates
are slightly different. These two detrimental effects can be dealt
with by introducing narrow-band spectral filtering, shown in
Fig. 5 with a dash-dotted line. Adjusting the central frequency
ω0 of the filter can concurrently reduce distinguishability and
equalize contributions from the two processes of interest. To
analyze quantitatively this effect, we will assume a Gaussian
profile for the filter with unit transmission at the maximum

f (ω) = exp[−(ω − ω0)2/2σ 2] (6)

where σ characterizes the filter bandwidth. This filter function
multiplies the spectral amplitudes αiφi(ω). It will be conve-
nient to denote overall production rates of filtered photons for
processes i = 1,2 as

Ri =
∫

dω |αif (ω)φi(ω)|2, (7)

and to introduce normalized spectral amplitudes

ψi(ω) = 1√
Ri

αif (ω)φi(ω). (8)

The complete two-photon wave function in the position
representation, parametrized with two-dimensional transverse
positions rH and rV of the respective photons, is given for cw
pumping by the expression

(rH ,rV ; ω) =
√

R1

R1 + R2
ψ1(ω)u00

H (rH )u10
V (rV )

+
√

R2

R1 + R2
ψ2(ω)u10

H (rH )u00
V (rV ). (9)
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FIG. 6. Spectral visibility V (solid line, left scale) and the overall
generation rate R1 + R2 (dashed line, right scale) as a function of the
bandwidth of the interference filter.

The overall production rate of photon pairs after filtering is
R1 + R2.

When the spectral degree of freedom is traced out, co-
herence between the two terms in the superposition can be
characterized with the visibility parameter [36]

V =
∫

dω [ψ1(ω)]∗ψ2(ω). (10)

Figure 6 presents as a function of the filter bandwidth the
absolute value of the visibility parameter |V| as well as the
pair generation rate which has been normalized to unity in
the absence of filtering. The central frequency of the filter
ω0 in Eq. (6) is chosen for all the bandwidths such that
R1 = R2. It is seen that the state can be brought close to
the maximally entangled form while the total production rate
R1 + R2 remains at a reasonable level.

V. QUBIT CHARACTERIZATION

The spatial qubits are defined by selecting two specific
transverse modes for the continuous position variable. Ex-
perimental identification of these modes may be required,
e.g., to ensure mode matching with other integrated optics
devices. In this section we will discuss how to perform such
an identification using the inverting interferometer shown in
Fig. 2.

For simplicity, we will consider only the y coordinate, with
respect to which the qubit basis modes exhibit opposite parity.
The single-photon density matrix for the spatial coordinate y

in the case of the horizontally polarized photon H reads

�H (y,y ′) =
∫

dzH

∫
dyV

∫
dzV

∫
dω,

×(y,zH ,yV ,zV ; ω)∗(y ′,zH ,yV ,zV ; ω)

= 1

R1 + R2

∫
dz

[
R1u

00
H (y,z)u00

H (y ′,z)

+R2u
10
H (y,z)u10

H (y ′,z)
]

(11)

where the second expression makes use of the explicit form of
the two-photon wave function given in Eq. (9) and of the
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FIG. 7. (a) Numerical simulation of H -polarized photon Wigner
function for nearly maximally spatially entangled state measured on
a grid of 3 × 105 experimental points with a signal-to-noise ratio
of SNR = 12.5. (b) Density matrix of H -polarized photon obtained
from the Wigner function by applying the transformation defined in
Eq. (13).

orthogonality of the mode functions u00
V (rV ) and u10

V (rV ).
The density matrix �V (y,y ′) for the photon V is defined
analogously.

Displacing and tilting the input beam before entering the
inverting interferometer and counting photons at its outputs
allows us to measure point by point the spatial Wigner
function [26,37], which is an equivalent representation of the
density matrix related through the formula [38]

WH (y,k) = 1

π

∫
dξ e−2ikξ �H (y + ξ,y − ξ ). (12)

The arguments of the Wigner function parametrizing the phase
space can be scanned directly by steering the input beam before
the interferometer entrance: the position y is defined by the
displacement with respect to the interferometer axis, whereas
the wave number k is proportional to the tilt of the input beam.
In Fig. 7(a) we present a numerical simulation of such a scan on
a 120 × 250 grid. The simulation included additive Gaussian
noise at each phase-space point with standard deviation equal
to 0.08 of the maximum absolute value of the Wigner function.
This yields the signal-to-noise ratio of 12.5 defined as the
ratio of the maximum Wigner function value to the standard
deviation of additive Gaussian noise. In numerical calculations
we assumed a two-photon state (rH ,rV ; ω) defined in
Eq. (9) with component weights R1/(R1 + R2) = 0.4933 and
R2/(R1 + R2) = 0.5067. These are the most balanced values
obtained for numerical optimization over the poling period 	

when no spectral filtering is applied. Removing the spectral
filter increases the photon rate, hence reducing the duration of
the phase-space scan.

As suggested by the second explicit expression for �H (y,y ′)
in Eq. (11), diagonalization of the single-photon density matrix
should yield explicitly the basis modes. To implement this
procedure, we used the simulated noisy Wigner function to
calculate the density matrix on a discrete grid of 360 × 360
points extending over the −9 � y,y ′ � 9-μm range with the
help of an inverse formula to Eq. (12):

�H (y,y ′) =
∫

dk eik(y−y ′)WH

(
(y + y ′)/2,k

)
. (13)

Subsequently, using a standard diagonalization algorithm
available in the MATLAB computing environment we decom-

FIG. 8. Spatial profiles of (a) u00
H (x) and (b) u10

H (x) basis modes
reconstructed from numerically simulated noisy Wigner function
(red dotted lines) compared with their initially assumed counterparts
(black solid lines).

posed the reconstructed density matrix into eigenvalues wn

and eigenvectors un(y):

�H (y,y ′) =
∑

n

wnun(y)u∗
n(y ′). (14)

In Fig. 8 we compare the squared absolute values of eigenvec-
tors |un(y)|2 corresponding to two highest eigenvalues with
marginal intensity distributions

∫
dz|uij

H (y,z)|2, ij = 00,10
of the modes used in simulations. The agreement is very
good despite the statistical noise included in the simulated
experimental data. It is noteworthy that these results have
been obtained with the second spatial coordinate z traced
out in the reconstruction procedure. This shows that for
the model waveguide modes considered here the y and z

coordinates can be treated as effectively uncorrelated, which
greatly simplifies practical characterization of the qubit modes.
We found that for noisy input data, slightly unequal rates R1

and R2 stabilize the result of the diagonalization procedure.
This is easily understood, as for a maximally entangled state,
when R1 = R2, an arbitrary superposition of the basis modes
is also an eigenvector of the single-photon density matrix.

VI. TESTING BELL’s INEQUALITIES

One of the striking consequences of entanglement is the
violation of Bell’s inequalities, which rules out a broad class
of theories alternative to quantum mechanics based on local
hidden variable theories. We will now describe a method
to verify the spatial entanglement of the two-photon state
produced by the waveguide source by measuring and correlat-
ing displaced mode parities using an inverting interferometer
shown in Fig. 2.
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In a commonly used scenario for testing Bell’s inequalities
described by Clauser, Horne, Shimony, and Holt (CHSH),
two separated parties perform measurements with dichotomic
outcomes ±1. In each experimental run, they choose randomly
and independently between two settings of their measuring
apparatuses, ζH or ζ ′

H for one party, and ζV or ζ ′
V for the

other party. After a series of measurements, calculating the
average product of outcomes on both sides for each pair of
settings yields four correlation functions C(ζH ,ζV ), C(ζH ,ζ ′

V ),
C(ζ ′

H ,ζV ), and C(ζ ′
H ,ζ ′

V ). These quantities are used to evaluate
the combination

B = C(ζH ,ζV ) + C(ζH ,ζ ′
V ) + C(ζ ′

H ,ζV ) − C(ζ ′
H ,ζ ′

V )

(15)

the absolute value of which for local hidden variable theories
cannot exceed 2, −2 � B � 2.

In the case of a pair of spatially entangled photons prepared
in a state (rH ,rV ; ω) described by Eq. (9), the dichotomic
measurement can be implemented using the inverting interfer-
ometer with the binary ±1 result corresponding to the parity
of the mode in which a photon has been detected at the output.
As the controllable setting of the measuring apparatuses, the
parties can use a lateral displacement of the input beam in a
direction perpendicular to the symmetry axis of the inverting
interferometer. A straightforward calculation shows that the
correlation function measured in this case is given by the
following expression:

C(ζH ,ζV ) =
∫

d2rH

∫
d2rV

∫
dω(ζH + yH ,zH ,ζV

+ yV ,zV ; ω)∗(ζH − yH ,zH ,ζV − yV ,zV ; ω)

(16)

where integrations in the transverse plane have been
parametrized with rH = (yH ,zH ) and rV = (yV ,zV ). It
is worth noting that for zero displacements we have
C(0,0) = −1, as the modes of the two produced photons
always have opposite parities. The maximum value of the
CHSH combination optimized over ζ = ζH = ζV , assuming
that the second pair of displacements is zero, ζ ′

H = ζ ′
V = 0, is

shown in Fig. 9.
A stronger violation of the CHSH inequality can be

demonstrated using deterministic single-qubit gates, which
would facilitate projections onto arbitrary superpositions of the
basis states in strict analogy with spin-1/2 measurements [29].
In this case the combination B could approach the maximum
value permitted by quantum mechanics equal to 2

√
2 ≈ 2.828,

assuming that the two components of the entangled state are
balanced and the visibility parameter V is sufficiently close
to 1.

In the experimental realization of the proposed entan-
glement verification scheme, the light can be outcoupled
from a waveguide and collimated by means of an aspheric
lens [23] or a microscopic objective [19,20]. While collimated,
horizontally and vertically polarized photons can be separated
using a polarizing beam splitter to test local realism using
Bell’s inequalities. The transverse mode profile of each photon
can be then reliably imaged in a desired location using a
single focusing lens. This approach has been successfully
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FIG. 9. Absolute value of CHSH combination with respect to
spectral visibility and displacements ξ = ξH = ξV , ξ ′

H = ξ ′
V = 0.

employed for the experimental inspection of various transverse
mode profiles of the KTP waveguide [34]. Eventually the
spatially separated parties perform measurements by the
means of their inverting Mach-Zehnder interferometers, where
the displacement is applied. Diffraction effects occurring
during the propagation inside the interferometer optical paths
can be reduced by using an imaging lens with a sufficiently
long focal length.

VII. CONCLUSIONS

In this paper we analyzed theoretically generation of an
entangled state of two spatial qubits, each spanned by a pair
of transverse modes in a multimode nonlinear waveguide. We
showed that despite the presence of higher transverse modes, it
is possible to remove their contribution to the down-conversion
process by coarse filtering. This approach is facilitated by
the effect of intermodal dispersion, which correlates pairs of
individual transverse modes with wavelengths at which down-
conversion can occur. The properties of the generated state can
be fine tuned by additional narrow-band spectral filtering.

We also considered the inverting interferometer, which
detects the transverse spatial parity of the input beam, as
a tool to characterize the generated state. We showed that
a single-mode Wigner function measured via a phase-space
scan realized by displacing and tilting the input beam can
be used to identify the basis modes spanning the spatial
qubit. Interestingly, for realistic parameters of the multimode
waveguide, it is sufficient to carry out this procedure in only
one spatial coordinate. Simultaneous detection of both photons
with independently controlled spatial displacement provides a
scheme to verify generated entanglement via a violation of the
standard Clauser-Horne-Shimony-Holt inequality.
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