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We investigate the role of quantum coherence depletion (QCD) in the Grover search algorithm (GA) by
using several typical measures of quantum coherence and quantum correlations. By using the relative entropy
of coherence measure (Cr ), we show that the success probability depends on the QCD. The same phenomenon
is also found by using the l1 norm of coherence measure (Cl1 ). In the limit case, the cost performance is defined
to characterize the behavior about QCD in enhancing the success probability of GA, which is only related to
the number of searcher items and the scale of the database, regardless of using Cr or Cl1 . In the generalized
Grover search algorithm (GGA), the QCD for a class of states increases with the required optimal measurement
time. In comparison, the quantification of other quantum correlations in GA, such as pairwise entanglement,
multipartite entanglement, pairwise discord, and genuine multipartite discord, cannot be directly related to the
success probability or the optimal measurement time. Additionally, we do not detect pairwise nonlocality or
genuine tripartite nonlocality in GA since Clauser-Horne-Shimony-Holt inequality and Svetlichny’s inequality
are not violated.

DOI: 10.1103/PhysRevA.95.032307

I. INTRODUCTION

Quantum mechanics provides some distinctive compu-
tational resources that can be utilized to make quantum
algorithms superior to some classical algorithms [1]. The
origin of this speed-up in quantum computational processes
has attracted many research attentions. For instance, Jozsa
and Linden demonstrated that, for pure states, entanglement
is needed for some certain quantum computations if the
calculated results cannot be simulated classically [2]. In
addition, Vidal showed that, under arbitrary bipartite cut and
at all times, if the state of the quantum computer has Schmidt
rank polynomial in n, then the quantum computation can be
simulated classically [3]. However, a quantum computation us-
ing only separable states still surpasses classical computations
[3]. The celebrated Knill-Gottesman theorem tells us that some
quantum algorithms using highly entangled states can also be
efficiently simulated classically [4]. Thus, the existence of
entanglement is not sufficient for exponential quantum speed-
up [5]. Besides entanglement, quantum discord, as another
type of quantum correlations, is equally vital in quantum
algorithms. For example, in the some settings of one-way
algorithm for remote state preparation, discord does not vanish
while entanglement vanishes, when the noise is maximal and
fidelity drops to its minimum value [6]. Moreover, the effects
of quantum resources, such as entanglement, discord, and
nonlocality, on the process of quantum key distribution (QKD)
have received widespread attention and scrutiny [7–9].

Coherence, as a quantum property from the quantum states
superposition principle [10], has been widely studied in quan-
tum information processing [11–13]. A rigorous framework
for quantifying the coherence was proposed by Baumgratz
et al. in Ref. [14]. Recently, it has been proved that coherence
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can be converted to other valued quantum resources, such as
entanglement and discord, by suitable operations [15–17]. To
some extent, coherence is as important as entanglement or
discord. Moreover, coherence also exists in a single system
without any correlations. What role does coherence play in
quantum algorithms?

Recently, this topic has generated a great deal of interest.
Hillery declared that coherence can be viewed as a resource in
the Deutsch-Jozsa algorithm in the sense that a bigger amount
of coherence decreases the failure of this algorithm [18]. For
deterministic quantum computation with one qubit (DQC1),
Matera et al. showed that the precision of this algorithm is
directly related to the recoverable coherence [19,20]. At the
heart of quantum algorithms, there lies another fundamental
algorithm, Grover search algorithm (GA) [21,22]. GA was in-
troduced for accelerating the search process [23]. It is believed
that multipartite entanglement is necessary for GA to achieve
the speed-up [2]. To investigated properties of entanglement,
different measures of entanglement, such as concurrence and
geometric measure of entanglement, have been attempted in
GA [24–29]. However, the role of entanglement is not yet fully
demonstrated; in particular, the quantity of entanglement is not
directly related with the success probability in GA [30]. On the
other hand, the behavior of quantum discord, as a nonclassical
correlation beyond entanglement, has been proved to be
similar to the entanglement in GA [31]. It is worth noting
that coherence is potentially a more fundamental quantum
resource than entanglement and discord [32]. Much attention
has been paid in this direction [33–38]. Will coherence display
unique characteristics, which are different from entanglement
or discord in GA? To clarify the role of coherence, we
investigate coherence depletion in GA and in the generalized
Grover search algorithm (GGA). Other quantum correlations
are also discussed for comparison.

This paper is organized as follows. In Sec. II, we briefly
review GA and study its coherence dynamics of the whole
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n-qubit system in the cases of any solutions to the search
problem by using two different coherence measures, namely,
the relative entropy and the l1 norm. In additional, the relation-
ship between quantum coherence depletion (QCD) and success
probability in GA is also discussed. In Sec. III, we introduce
GGA and investigate the relationship between QCD of a class
of states and optimal measurement time in GGA. In Sec. IV, we
consider dynamics of entanglement, discord, and nonlocality
for any two qubits in the simplest situation of single solution to
Grover search. Moreover, multipartite entanglement, genuine
quantum correlation, and genuine tripartite nonlocality are also
discussed. Finally, the main results are summarized in Sec. V.

II. COHERENCE DEPLETION IN STANDARD GROVER
SEARCH ALGORITHM

The first step of GA is to initialize the n-qubit database to
an equally weighted superposition of all computational basis
states |ψ0〉 = 1/

√
2n

∑2n−1
x=0 |x〉, which can be realized by pro-

jecting a prepared pure state |0, . . . ,0〉 to local Hadamard gates
H⊗n where H = (|0〉〈0| + |0〉〈1| + |1〉〈0| − |1〉〈1|)/√2. It
should be pointed that the initialized n-qubit database is a
maximally coherent state with N = 2n equiprobable items |x〉
and our goal is to obtain desired items (in the following we call
them “solutions” to the GA) from it with maximum probability
after the GA. The initialized database can be written in a more
convenient form,

|ψ0〉 =
√

j

N
|X〉 +

√
N − j

N
|X⊥〉, (1)

where j represents the number of solutions and |X〉 =
1/

√
j

∑
xs

|xs〉 [|X⊥〉 = 1/
√

N − j
∑

xn
|xn〉] is constructed

by states |xs〉 [|xn〉] that are solutions [nonsolutions] to the GA.
It is easy to confirm that both |X〉 and |X⊥〉 are orthonormal.
The next step is to apply Grover operation G repeatedly
(called iteration) to improve proportion of solutions gradually.
The Grover operation, G = DO, is composed of oracle
O = I − 2|X〉〈X| and an inversion about average operation
D = 2|ψ0〉〈ψ0| − I [21]. After r iterations of the Grover
operation G, the global state has the following form [1,31]

|ψr〉 ≡ Gr |ψ0〉 = sin αr |X〉 + cos αr |X⊥〉, (2)

with αr = (r + 1/2)α and α = 2 arctan
√

j/(N − j ). Note
that |ψr〉 is also a pure state since G is unitary and initial state
|ψ0〉 is a pure state. The above processes are summarized in
Fig. 1: (1) Initialize the n-qubit database to |ψ0〉. (2) Oracle O

reflects the vector |ψ0〉 according to |X⊥〉 and then operation D

reflects the vector O|ψ0〉 according to |ψ0〉. Therefore, the role
of Grover operation G is to rotate the vector before iteration
anticlockwise by an angle α.

The final step (3) is that measure |ψr〉 to get |X〉 with
maximum probability. The success probability is expressed as

P (r) = sin2 αr . (3)

Therefore, the optimal time to stop iteration is ropt = CI [(π −
α)/(2α)], where CI [x] denotes the closest integer to x. In the
following, we will confine our discussion to 0 � r � ropt.

Quantum coherence describes the capability of a quantum
state to exhibit quantum interference phenomena. The first

FIG. 1. An illustration to show the first two steps of GA.
First, initialize the n-qubit database to |ψ0〉; second, O reflects
|ψ0〉 according to |X⊥〉 and D reflects O|ψ0〉 according to |ψ〉.
Consequently, one whole iteration G turns the vector before iteration
anticlockwise by an angle α.

rigorous framework to quantify the coherence was built by
Baumgratz et al. in Ref. [14]. Based on this work, a number of
coherence measures, such as the relative entropy of coherence,
the l1 norm of coherence, the Tsallis relative α entropy of
coherence, and the coherence of formation [14,39,40], have
been proposed. Recently, an interesting phenomenon has been
founded in Ref. [41]: All measures of coherence are frozen
for an initial state in a strictly incoherent channel if and only
if the relative entropy of coherence is frozen for the state. It
means that the relative entropy of coherence is an excellent
coherence measure. Hence we choose it to investigate the GA
and also calculate the l1 norm of coherence for comparison.
In this section, we consider coherence dynamics under the
general case of any j solutions. According to Eq. (2), the
density matrix of state generated by GA can be written as

ρ(r) = a2

j

∑
xs ,ys

|xs〉〈ys | + b2
∑
xn,yn

|xn〉〈yn|

+ ab√
j

[∑
xs

∑
yn

(|xs〉〈yn| + |yn〉〈xs |)
]
, (4)

where subscripts s and n denote that they are solutions
and nonsolutions, respectively. Here a = sin αr and b =
1/

√
N − j cos αr are brought in for convenience.

A. The relative entropy of coherence

The definition of relative entropy of coherence is [14]

Cr (ρ) = min
δ∈I

S(ρ‖δ), (5)

where S(ρ‖δ) = Tr(ρ log2 ρ − ρ log2 δ) is the quantum rela-
tive entropy and I denotes a set of incoherent quantum states
whose density matrices are diagonal in the calculational basis.
This formula can be rewritten as a closed form [14], avoiding
the minimization

Cr (ρ) = S(ρdiag) − S(ρ), (6)
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FIG. 2. Evolution of coherence in GA for the whole 11-qubit
system with j (from 1 to 10) solutions.

where ρdiag = ∑
i ρii |i〉〈i| and S(ρ) = −Tr(ρ log2 ρ) is the

von Neumann entropy.
Substituting Eq. (4) into Eq. (6), we obtain the coherence

dynamics of n-qubit

Cr (ρ) = H (a2) + log2(N − j ) + a2 log2
j

N − j
, (7)

where H (x) = −x log2 x − (1 − x) log2(1 − x) is the binary
Shannon entropy function. Note that the relative entropy of
coherence is independent of the choices of solutions. In other
words, it only depends on the number of solutions j since
S(ρ) = 0 and S(ρdiag) is only connected with the diagonal
elements of ρ(r). From Eq. (7), we have

dCr (ρ)

dr
= log2

j (1 − a2)

(N − j )a2
sin(2αr )α � 0 (8)

for 0 � r � ropt due to a(r) = sin αr � a(0) = √
j/N , which

means that Cr (ρ) is a decreasing function of r . On the contrary,
the success probability P (r) is a increasing function for 0 �
r � ropt. Moreover, the coherence achieves the minimal value
while the probability of success reaches the maximal value 1.
That is to say, the improvement of success probability depends
on the QCD; see Fig. 2.

It is possible to express the coherence Cr (ρ) as a function
of the success probability P . Due to the fact that P = a2, the
coherence becomes

Cr (ρ) = H (P ) + log2(N − j ) + P log2
j

N − j
. (9)

Actually, the GA is usually applied in the situation of a few
solutions in a huge database. Under this condition (j 
 N and
N � 1), H (P ) can be omitted compared with log2(N − j ) and
then Eq. (9) takes the following form

Cr (ρ) � −P log2
N

j
+ log2 N, (10)

which is a linear function of P . The ability of coherence in
enhancing the success probability can be quantified as cost
performance w,

w = − dP

dCr

= 1

log2
N
j

. (11)

Clearly, the cost performance is related to a constant j/N ,
which represents the ratio of number of solutions to the scale
of database.

B. The l1 norm of coherence

The l1 norm of coherence is a very intuitive quantification
which comes from a simple fact that coherence is linked with
the off-diagonal elements of considered quantum states. The
expression of the l1 norm of coherence is defined as [14]

Cl1 (ρ) =
∑
i =j

|ρij |. (12)

By employing this equation, we have the coherence dynamics
in GA

Cl1 (ρ) = (
√

j sin αr +
√

N − j cos αr )2 − 1, (13)

when 0 � r � ropt. Using Eq. (3), the l1 norm of coherence
can be rewritten as a function of P

Cl1 (ρ) = [
√

jP +
√

(N − j )(1 − P )]2 − 1. (14)

In the asymptotic limits j 
 N and N � 1, the l1 norm of
coherence takes the simple form

Cl1 (ρ) � −NP + N. (15)

The same phenomenon that the success probability depends
on the QCD is also existed under the l1 norm of coherence
measure. From this perspective, we say that the QCD is of
great significance in GA, and the cost performance w equals
to 1/N .

III. COHERENCE DEPLETION IN GENERALIZED
GROVER SEARCH ALGORITHM

In Ref. [42], the Grover search algorithm was generalized to
deal with arbitrary initial complex amplitude distributions. The
only difference between GA and generalized Grover search
algorithm (GGA) is that there is no initialization step in GGA.
Thus the GGA includes the following steps: (1) Use any initial
amplitude distribution of a system which does not need to be
initialized to the uniform distribution. (2) Repeat the following
two steps r times: (i) Rotate the solutions by a phase of π

radians. (ii) Rotate all states according to the average amplitude
of all states by π . (3) Measure the resulting state in the optimal
time ropt.

We denote the amplitudes of solutions by ki(r), i =
1, . . . ,j , and nonsolutions by li(r), i = j + 1, . . . ,N . Let the
average amplitudes over solutions and over nonsolutions be
represented respectively by

k̄(r) = 1

j

j∑
i=1

ki, (16)

l̄(r) = 1

N − j

N∑
i=j+1

li . (17)
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FIG. 3. Coherence depletion �CGGA
r vs optimal measurement

time rGGA
opt for the initial states of |φ0〉 in GGA.

The success probability in optimal measurement time was
founded by Biham et al. [42],

P GGA
max = 1 − (N − j )σ 2

l . (18)

where σ 2
l = 1/(N − j )

∑N
i=j+1 |li(rGGA

opt ) − l̄(rGGA
opt )|2, and the

optimal measurement time is given by

rGGA
opt =

(
π

2
− β

)/
ω (19)

with cos ω = (1 − 2j/N ) and tan β = √
j/(N − j ) k̄(0)/l̄(0).

The dynamics of the amplitudes are described by [42]

ki(r) = k̄(r) + ki(0) − k̄(0), (20)

li(r) = l̄(r) + (−1)r [li(0) − l̄(0)]. (21)

Now let us consider the initial state

|φ0〉 = φ0|0〉 + φ1|1〉 + 1√
N

N−1∑
x=2

|x〉, (22)

where φ2
0 + φ2

1 = 2/N, φ0, φ1 ∈ R and |0〉, |1〉 are solutions.
Without loss of generality, we assume that φ0 � φ1. From
Eqs. (18) and (22), it follows immediately that the success
probability of these kind of states can reach the maximum
value 1, and corresponding states can be written as

|φopt〉 = k1|0〉 + k2|1〉, (23)

with k1 =
√

(N − 2)/(2N ) + 1/4(φ0 + φ1)2 + 1/2(φ0 − φ1)
and k2 =

√
(N − 2)/(2N ) + 1/4(φ0 + φ1)2 − 1/2(φ0 − φ1).

By using Eqs. (6), (22), and (23), the QCD of these kind
of states in GGA is

�CGGA
r ≡ Cr (|φ0〉〈φ0|) − Cr (|φopt〉〈φopt|)

= −φ2
0 log2 φ2

0 − φ2
1 log2 φ2

1

+ N − 2

N
log2 N − H

(
k2

1

)
, (24)

where H is the binary Shannon entropy function. Both �CGGA
r

and rGGA
opt are increased with the decrease of φ0; see Fig. 3.

It means that the optimal measurement time depends on the
QCD for this kind of states in GGA. In other words, as the
optimal measurement time is smaller, the QCD is smaller also.

IV. OTHER QUANTUM CORRELATIONS IN GROVER
SEARCH ALGORITHM

In this section, we only consider the simplest situation of
single solution (j = 1) for convenience, which has the benefit
of capturing the essence of other quantum resource dynamics
in GA. Without loss of generality, we assume that the solution
is located at |0〉 and the density matrix of states generated by
GA [Eq. (4)] has the following form:

ρ(r) =

⎛
⎜⎜⎜⎜⎜⎝

a2 ab ab ab · · ·
ab b2 b2 b2 · · ·
ab b2 b2 b2 · · ·
ab b2 b2 b2 · · ·
...

...
...

...
. . .

⎞
⎟⎟⎟⎟⎟⎠

N×N

. (25)

A. Entanglement in Grover search

Entanglement is widely considered as the main undertaker
for quantum computational speed-up, though the role of
entanglement is not clear. Here we use concurrence, a widely
accepted entanglement measure, to investigate the behavior of
entanglement during the GA.

The reduced matrix of any two qubits takes the following
form:

ρ2 =

⎛
⎜⎝

�0 �1 �1 �1

�1 �2 �2 �2

�1 �2 �2 �2

�1 �2 �2 �2

⎞
⎟⎠, (26)

where �0 = a2 + (N
4 − 1)b2,�1 = ab + (N

4 − 1)b2, and
�2 = N

4 b2. The concurrence of arbitrary two-qubit states is
defined in Ref. [43] and is calculated as follows:

E2(ρ) = max{0,λ1 − λ2 − λ3 − λ4}, (27)

where λis are square roots of the eignvalues of matrix ρρ̃

in decreasing order, λ1 � λ2 � λ3 � λ4. Here ρ̃ = (σy ⊗
σy)ρ∗(σy ⊗ σy), where σy is Pauli matrix (0 −i

i 0 ), and ρ∗ is
the conjugation of ρ. According to Eqs. (26) and (27), the
expression of concurrence between any two qubits ρ2 in GA
can be obtained [24] as

E2(ρ2) = 2|�1 − �2| = 2|ab − b2|. (28)

The behavior of pairwise entanglement in the case of n = 11 is
displayed in Fig. 4. The pairwise entanglement first increases
to the maximal value and then decreases to almost zero when
the optimal number of iterations is reached.

Now let us consider the multipartite entanglement of the
n-qubit system, which may better depict the behavior of P (r).
The concurrence of n-qubit states is introduced in Ref [44]

En(ψ) = 2√
N

√
(N − 2)〈ψ |ψ〉2 −

∑
β

Trρ2
β, (29)

032307-4



COHERENCE DEPLETION IN THE GROVER QUANTUM . . . PHYSICAL REVIEW A 95, 032307 (2017)

where N = 2n and β labels (N − 2) different reduced
density matrices; i.e., there are Ck

N different terms when
tracing over k different subsystems from the n-qubit system.

Note that the concurrence for n-qubit states used is upper
bound. From Eq. (25), we have the reduced matrix for any
k-qubit:

ρk =

⎛
⎜⎜⎜⎜⎜⎝

a2 + (2n−k − 1)b2 ab + (2n−k − 1)b2 ab + (2n−k − 1)b2 ab + (2n−k − 1)b2 · · ·
ab + (2n−k − 1)b2 2n−kb2 2n−kb2 2n−kb2 · · ·
ab + (2n−k − 1)b2 2n−kb2 2n−kb2 2n−kb2 · · ·
ab + (2n−k − 1)b2 2n−kb2 2n−kb2 2n−kb2 · · ·

...
...

...
...

. . .

⎞
⎟⎟⎟⎟⎟⎠

2k×2k

. (30)

Thereby, concurrence of the whole n-qubit system can be
expressed as

En = 2√
N

√√√√(N − 2) −
n−1∑
k=1

Ck
nTrρ2

k . (31)

By substituting Eq. (30) into the above equation, we have

En = 2√
2n

[2n − 2 − (4 × 3n − 2n+3 + 4)a2b2

− (8n + 4 × 3n − 3 × 22n+1 + 3 × 2n − 2)b4

− (2n − 2)a4 − 4(4n − 2 × 3n + 2n)ab3]
1
2 . (32)

By virtue of this equation, we present the behavior of
multipartite entanglement of the n-qubit system in the case
that n = 11, which is similar with the pairwise entanglement
(see Fig. 4).

B. Discord in Grover search

Discord was introduced in Ref. [45] to quantify quantum
correlation, which is viewed as the difference between total
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FIG. 4. The evolutions for the entanglement in the case of
11-qubit system. The pairwise entanglement is depicted by orange
diamonds while the entanglement of the whole 11-qubit system
is shown by pink points. The blue squares represent the success
probability.

correlation and classical correlation,

D(ρ) = I(ρ) − C(ρ), (33)

where I and C represent the total correlation and classical
correlation, respectively. In Ref. [46], the total correlation
between two systems A and B is defined by the minimal
amount of noise, which is wanted to destroy all the correlation
between them. The total correlation is equal to the quantum
mutual information,

I(ρAB) = S(ρA) + S(ρB) − S(ρAB), (34)

where ρA(B) = TrB(A)ρAB . The classical correlation was pro-
posed in Ref. [47] as the maximum information we can obtain
from A by measuring B. Under projective measurements {∏i},
the classical correlation can be written as

C(ρ) = max
{∏i }

{S(ρA) −
∑

i

piS(ρA|i)}, (35)

where pi = TrAB(I ⊗ ∏
i)ρAB(I ⊗ ∏

i) and ρA|i =
1/piTrB(I ⊗ ∏

i)ρAB(I ⊗ ∏
i). Put Eqs. (34) and (35)

into Eq. (33), and then

D(ρ) = min
{∏i }

∑
i

[piS(ρA|i) + S(ρB) − S(ρAB)]. (36)

We choose the bipartite discord to analyze discord dynamics
in GA. The projective measurement can be parameterized
via 0 � θ � π and 0 � φ � 2π in the form of {cos θ |0〉 +
eiφ sin θ |1〉, e−iφ sin θ |0〉 − cos θ |1〉}. Using the exact diago-
nalization method, we calculate pairwise discord in the case of
11-qubit system. Figure 5 shows that the behavior of pairwise
discord is similar to the entanglement.

In Ref. [48], a quantifier for genuine multipartite quantum
correlation was proposed based on relative entropy. For
tripartite pure states ρABC, the genuine quantum correlation
D(3) is equal to half of genuine total correlation T (3), namely

D(3)(ρABC) = T (3)(ρABC)

2
. (37)

Here T (3) is defined as the difference between total correlation
T and the maximum among the bipartite correlation T (2)

T (3)(ρABC) = T (ρABC) − T (2)(ρABC), (38)

where T (ρABC) = S(ρA) + S(ρB ) + S(ρC) − S(ρABC) and
T (2)(ρABC) = max{I(ρAB),I(ρAC),I(ρBC)}. Defined in this
way, T (3) is the shortest distance to a state without tripartite
correlations based on relative entropy. For pure states of n
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FIG. 5. The evolutions for the discord in the case of 11-qubit
system. The pairwise discord is depicted by green diamonds while the
genuine quantum correlation of the whole 11-qubit system is shown
by red points. The blue squares represent the success probability.

qubits, genuine n-partite quantum correlation can also be
expressed as [48]

D(n)(ρ) = T (n)(ρ)

2
, (39)

where T (n)(ρ) = S(ρ||σ ) and σ is a product state making
S(ρ||σ ) minimum. Besides, Modi et al. found that σ is the
reduced states of ρ in the product form. According to Eq. (30),
we obtain

T (n)(ρ) = min∑
i ki=n

S

(
ρ||

⊗
i

ρki

)

= min∑
i ki=n

[
−S(ρ) − Tr

(
ρ log2

⊗
i

ρki

)]

= min∑
i ki=n

[
−

∑
i

Tr
(
ρki

log2 ρki

)]

= min∑
i ki=n

∑
i

S
(
ρki

)
(40)

since ρ in GA is a pure state. By using the Lagrangian
multiplier method, the above equation is simplify into

T (n)(ρ) = S(ρ1) + S(ρn−1) = 2S(ρ1), (41)

where ρ1 is a reduced state of any single qubit in GA:

ρ1 =
(

a2 + (2n−1 − 1)b2 ab + (2n−1 − 1)b2

ab + (2n−1 − 1)b2 2n−1b2

)
. (42)

Thus, the dynamics of genuine quantum correlation in GA
becomes

D(n) = S(ρ1) = H

(
1 + √

�

2

)
, (43)

where � = 1 − 4(2n−1 − 1)(ab − b2)2. Figure 5 depicts the
behavior of genuine quantum correlation of the whole 11-qubit
system in GA.

C. Nonlocality in Grover search

Nonlocality is another manifestation of nonclassical cor-
relation which tells us that reproducing the predictions of
quantum theory by considering local hidden variables (LHV) is
impossible. It is well known that the entanglement is necessary
for the existence of nonlocality but nonlocality is not necessary
for entanglement [49]. We are interested about whether non-
locality appears in GA or not. Unfortunately, there is a lack of
necessary and sufficient criteria or suitable measurements for
nonlocality. Violating the CHSH (Clauser, Horne, Shimony,
and Holt) inequality provides a powerful tool to recognize the
nonlocality of two-qubit systems. Consequently, we choose
the CHSH inequality to investigate the nonlocality of any two
qubits during the Grover search.

The CHSH inequality is described as [50]

|〈BCHSH〉| = |Tr(BCHSHρ)| � 2, (44)

where

BCHSH = �a · �σ1 ⊗ (�b + �b′) · �σ2 + �a′ · �σ1 ⊗ (�b − �b′) · �σ2 (45)

and �a, �a′,�b, �b′ are unit vectors in R3. In Ref. [51], a theorem
that a two-qubit system violates the CHSH inequality if and
only if M(ρ) > 1 has been given. Note that obeying the
CHSH inequality does not mean that the system is local. Here,
M(ρ) = maxi =j {ui + uj } with ui being the three eigenvalues
of the matrix T T T , where T = Tij = Trρ(σi ⊗ σj ) is the
correlation matrix. The correlation matrix for ρ2 is given by

T =
⎛
⎝2�1 + 2�2 0 2�1 − 2�2

0 2�2 − 2�1 0
2�1 − 2�2 0 �0 − �2

⎞
⎠ (46)

and the corresponding eigenvalues are λ1 = 2�2 − 2�1, λ2 =
(�0 + 2�1 + �2 − √�)/2, and λ3 = (�0 + 2�1 + �2 +√�)/2 with � = �2

0 + 20�2
1 + 25�2

2 − 4�0�1 − 6�0�2 −
20�1�2. Therefore, we have

M(ρ2) =
{

λ2
2 + λ2

3, λ1 � λ2;

λ2
1 + λ2

3, λ1 > λ2.
(47)

In the asymptotic limits N � 1, we have λ1 � λ2 and

M(ρ2) = lim
N→∞

λ2
2 + λ2

3 = lim
N→∞

(�0 + 2�1 + �2)2 + �
2

= lim
N→∞

�2
0 + 12�2

1 + 13�2
2 − 2�0�2 − 8�1�2

= 1 − 2 sin2

(
2r + 1

2
α

)
cos2

(
2r + 1

2
α

)
� 1, (48)

which means that the pairwise nonlocality does not exist in
this limit case.

Next we will discuss genuine tripartite nonlocality of
reduced tripartite states in the GA by using the Svetlichny’s
inequality. The violation of Svetlichny’s inequality means that
the correlations cannot be simulated by a hybrid nonlocal-
local ensemble [52]; thus the correlation is genuine tripartite
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nonlocality. Svetlichny’s inequality is in the form of [52]

|〈BS〉| = |Tr(BSρ)| � 4. (49)

where BS is the Svetlichny’s operator and defined as

BS = A[(B + B ′)C + (B − B ′)C ′]

+A′[(B − B ′)C − (B + B ′)C ′]. (50)

Here the measurements are spin projections onto unit vectors:
A = �a · �σ1 (A′ = �a′ · �σ1) on the first qubit, B = �b · �σ2 (B ′ =
�b′ · �σ2) on the second qubit, and C = �c · �σ3 (C ′ = �c′ · �σ3) on
the third qubit. By defining �b + �b′ = 2 �d cos t and �b − �b′ =
2 �d ′ sin t ( �d · �d ′ = 0), BS can be further simplified as

|〈BS〉| = 2|(〈AD′C ′〉 sin t − 〈A′DC ′〉 cos t)

+ (〈A′D′C〉 sin t + 〈ADC〉 cos t)|
� 2(

√
〈AD′C ′〉2 + 〈A′DC ′〉2

+
√

〈A′D′C〉2 + 〈ADC〉2) (51)

where D = �d · �σ2 and D′ = �d ′ · �σ2.
Any tripartite states can be expressed as

ρ3 = 1

8

(
I +

∑
i

eiσi ⊗ I ⊗ I +
∑

i

fiI ⊗ σi ⊗ I

+
∑

i

giI ⊗ I ⊗ σi +
∑
ij

Ma
ij I ⊗ σi ⊗ σj

+
∑
ij

Mb
ijσi ⊗ I ⊗ σj +

∑
ij

Mc
ijσi ⊗ σj ⊗ I

+
∑
ijk

Tijkσi ⊗ σj ⊗ σk

⎞
⎠ (52)

and

Tijk = Tr(σi ⊗ σj ⊗ σkρ3). (53)

In the asymptotic limits N � 1, by using Eqs. (30) and (53),
the T of reduced tripartite states generated by GA has only two
nonzero elements: T111 = (cos2 αr )/4 and T333 = (sin2 αr )/8.
Let T̃ij = ∑

k Tijkc
′
k , and it gives

〈AD′C ′〉2 + 〈A′DC ′〉2 � max{[�a · (T̃ �d ′)]2 + [ �a′ · (T̃ �d)]2}
= max{||T̃ �d ′||2 + ||T̃ �d||2}
= v1 + v2, (54)

where v1 and v2 are two greater eigenvalues of T̃ T T̃ , v1 =
c′2

1 /16 cos4 αr , and v2 = c′2
3 /64 sin4 αr . Thus,

〈AD′C ′〉2 + 〈A′DC ′〉2 � 1. (55)

Similarly, we can also obtain

〈A′D′C〉2 + 〈ADC〉2 � 1. (56)

According to Eqs. (51), (55), and (56), we have

|Tr(BSρ3)| � 4, (57)

which means genuine tripartite nonlocality is not detected by
using Svetlichny’s inequality.

V. CONCLUSIONS

In this work, we have systematically studied the evolutions
of coherence and other typical quantum correlations in the
process of Grover search. Eventually, we find that both success
probability in GA and optimal measurement time in GGA can
be directly related to a scalar function of state, QCD. By using
the relative entropy measure of coherence, we show that the
improvement of success probability relies on the coherence
depletion for any number of solutions in GA. Explicitly, in
the limit case of a few searcher items j 
 N and large
database N � 1, the cost performance about coherence in
enhancement the success probability is associated with the
ratio of number of searched solutions to the scale of database,
j/N . The same phenomenon also exists by using the l1 norm
of coherence and corresponding cost performance equals to
1/N . In GGA, we discover a class of states where the required
optimal measurement time increases with the QCD.

For pairwise entanglement, multipartite entanglement,
pairwise discord, and genuine quantum correlation, they
are always present during the whole process of GA. Their
behaviors generally start from zero, then reach the maximum,
and decrease to almost zero. But we fail to connect them
with success probability. Moreover, in the limit case, the
nonlocalities with respect to two-qubit and three-qubit systems
have not been detected during GA by using CHSH-type Bell
inequality and Svetlichny’s inequality.

Our research exhibits the significance of QCD in Grover
search algorithm, contributing to the resource theory of
quantum coherence and providing deep insights into the role
of coherence in quantum algorithms. On one hand, QCD
increases the success probability in GA. On the other hand,
a smaller amount of QCD decreases the required optimal
measure time in GGA. Therefore, the coherence can be viewed
as a potential resource in the Grover search algorithm. Our
method is also worth applying to investigate QCD in other
quantum information processes, such as Shor’s algorithm,
teleportation, and so on.
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