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One version of the energy-time uncertainty principle states that the minimum time T⊥ for a quantum system to
evolve from a given state to any orthogonal state is h/(4�E), where �E is the energy uncertainty. A related bound
called the Margolus-Levitin theorem states that T⊥ � h/(2〈E〉), where 〈E〉 is the expectation value of energy and
the ground energy is taken to be zero. Many subsequent works have interpreted T⊥ as defining a minimal time
for an elementary computational operation and correspondingly a fundamental limit on clock speed determined
by a system’s energy. Here we present local time-independent Hamiltonians in which computational clock speed
becomes arbitrarily large relative to 〈E〉 and �E as the number of computational steps goes to infinity. We argue
that energy considerations alone are not sufficient to obtain an upper bound on computational speed, and that
additional physical assumptions such as limits to information density and information transmission speed are
necessary to obtain such a bound.
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I. INTRODUCTION

It is frequently argued that energy places a fundamental
limit on the speed of computation, even if the computation is
performed reversibly. Planck’s constant provides a conversion
factor between energy and frequency, and on dimensional
grounds one might expect that a quantum system at energy
scale E has maximum computational clock speed of order
E/h. More quantitatively, for a quantum system with energy
uncertainty �E, the time T⊥ to evolve to an orthogonal
quantum state obeys the bound [1–5]

T⊥ � h

4�E
. (1)

Several related energetic lower bounds on T⊥ have been proven
[6–11]. In particular, the Margolus-Levitin theorem [7] shows
that for a state with energy expectation 〈E〉, evolving according
to a time-independent Hamiltonian with zero ground energy,

T⊥ � h

2〈E〉 . (2)

See [12] for a recent review of such quantum speed limits and
their applications. Many estimates of computational capacity
of physical systems have their starting point in the assumption
that T −1

⊥ can be interpreted as a maximum computational clock
speed [11,13–25]. Related, but distinct, arguments for limits
on computational speed related to energy are given in [26–29].
Another relationship between the energy-time uncertainty
principle and computational complexity, which is not based on
associating T⊥ with the time necessary for a logical operation,
was recently given in [30].

For several reasons, equating T −1
⊥ with a maximum com-

putational clock speed seems quite plausible. In classical
computers, each logic gate brings the system to an orthogonal
state, and in quantum circuits, each logic gate typically1 brings

1As a rough argument, one could model a typical state at an
intermediate step of a quantum computation by a Haar random state
on n qubits. In this case, the root-mean-square inner product between

the system to a near-orthogonal state. T⊥ is the minimum time
to flip a qubit from |0〉 to |1〉 and it would seem surprising to
achieve G logical gates in time less than GT⊥. Furthermore,
energy-time uncertainty principles suggest that the uncertainty
of the timing of a logic operation scales as 1/�E, and if the
time between elementary logic operations is shorter than this
then one would expect their ordering to be uncertain, thereby
ruining the computation. (For a contrary conjecture, perhaps
presaging the present work, see [31].)

However, we here show that these obstacles can be evaded.
We give explicit constructions of quantum time evolutions
using time-independent Hamiltonians, which simulate the
operation of a quantum circuit of G elementary gates, while
traversing only a constant number of orthogonal states,
independent of G. The Hamiltonians achieving this involve
only four-qubit interactions and can be made spatially local in
two dimensions. The ratio of the computational clock speed to
�E is unbounded, specifically growing linearly with G. The
same holds for 〈E〉. In other words, rather counterintuitively,
the total time needed to simulate G gates is on the same
order as the minimum required time to flip a single bit. We
conclude that energy alone does not present a fundamental
limit to computational speed; to obtain such a limit one
must invoke additional assumptions such as a limit to the
spatial density at which qubits can be packed. The argument
based on energy-time uncertainty principles is evaded because,
although the uncertainty of the timing of each individual logic
operation is very large in our construction, these timings are
all correlated, leaving no ambiguity as to the ordering of the
operations.

II. BASIC CONSTRUCTION

Here we show how to simulate an arbitrary quantum circuit
of G gates by evolving for some time T according to a
time-independent four-local Hamiltonian. The computational

the states before and after a one-qubit gate has been performed is
1/

√
2n.

2469-9926/2017/95(3)/032305(10) 032305-1 Published by the American Physical Society

https://doi.org/10.1103/PhysRevA.95.032305


STEPHEN P. JORDAN PHYSICAL REVIEW A 95, 032305 (2017)

clock speed achieved fclock = G/T is such that the ratios
fclock/〈E〉 and fclock/�E both diverge linearly with G. This
construction thus suffices to serve as a counterexample for the
conjectures that computational clock speed is limited to some
maximum rate proportional to either the energy uncertainty
or the energy above the ground state. To those familiar with
Feynman-Kitaev clock Hamiltonians, the essential idea of the
construction can be concisely expressed: it is to initialize a
Feynman-Kitaev-type Hamiltonian with a wave packet whose
breadth is comparable to the number of gates G. Such broad
wave packets have small expected energy and low energy
uncertainty. Furthermore, they maintain large overlap with
previous states as they propagate, and thus the number of
orthogonal states traversed during the time evolution is O(1)
even as the number of computational steps G is increased. In
the remainder of this section, the construction is given in detail
without assuming prior familiarity with the Feynman-Kitaev
construction. Note that here we are using the Feynman-Kitaev
Hamiltonian to execute quantum computation “ballistically”
as in Feynman’s original construction [32], not adiabatically
as in [33].

Consider a quantum circuit U consisting of a sequence of
two-qubit gates U = UGUG−1 . . . U1 acting on n qubits. For a
given initial state |h0〉 the circuit proceeds through the states
|h0〉 → |h1〉 → · · · → |hG〉, where

|h1〉 = U1|h0〉,
|h2〉 = U2U1|h0〉, (3)...
|hG〉 = UG . . . U1|h0〉.

The standard Feynman-Kitaev clock Hamiltonian [32,34] acts
on a register of n computational qubits, together with a clock
register, as

H FK =
G∑

x=1

(−Ux ⊗ |x〉〈x − 1| − U †
x ⊗ |x − 1〉〈x| + 1 ⊗ |x〉

× 〈x| + 1 ⊗ |x − 1〉〈x − 1|), (4)

where 1 denotes the identity matrix, the first tensor factor
represents the computational qubits, and the second tensor
factor represents the clock register. The subspace

C = span{|h0〉|0〉,|h1〉|1〉, . . . ,|hG〉|G〉} (5)

is preserved by H FK and the block of H FK acting on this
subspace looks like

H FK|C =

⎡⎢⎢⎢⎢⎢⎢⎣

1 −1
−1 2 −1

−1 2 −1
. . .
−1 1

⎤⎥⎥⎥⎥⎥⎥⎦, (6)

with all other entries zero. In other words, H FK|C is the
discretized second derivative on a one-dimensional lattice.
Formally, if we think of H FK|C as acting on a discretization of
the unit interval [0,1] one has

lim
G→∞

G2H FK|C = − d2

dx2
. (7)

Consequently, the dynamics induced by H FK on the computa-
tional subspace C can be intuitively thought of as the dynamics
of a free particle on a line. A state

∑
x ψ(x)|hx〉|x〉 will evolve

according to2

i
∂

∂t
ψ(x,t) = H FKψ(x,t) 	 − 1

G2

∂2

∂x2
ψ(x,t). (8)

To perform computation, one can prepare an initial wave
packet at small x with momentum in the direction of increasing
x. Under Schrödinger time evolution according to (8) this wave
packet will propagate to larger x and broaden. Eventually, the
wave packet will reach the end of the line, and consist of a
superposition with nonzero amplitude on |ψG〉, which is the
output of the original quantum circuit.

One might be concerned about two apparent problems with
the Feynman-Kitaev construction. First, the initial wave packet
must have some width large compared to the lattice spacing
in order for the continuum approximation to be valid. Thus
it has support not only on the initial state |h0〉 ⊗ |0〉 but also
on states |h1〉 ⊗ |1〉,|h2〉 ⊗ |2〉, . . . in which some gates have
already been applied. This seems like cheating; we are seeking
to simulate the computation performed by the quantum circuit
U , but we start with an initial state in which some of this
computation has already been done. This problem is easily
solved by padding the circuit U with sufficiently many initial
identity gates so that the initial wave packet only has support on
states in which no nontrivial gates have been applied. Secondly,
upon measuring the final state, the probability of obtaining the
desired outcome |hG〉 ⊗ |G〉 will be much smaller than one
because the final wave packet has nonzero amplitude on states
|hG−1〉 ⊗ |G − 1〉,|hG−2〉 ⊗ |G − 2〉, . . . in which not all of
the gates have yet been applied. This second problem can be
similarly solved by padding the circuit with sufficiently many
identity gates at the end.

So far, we have not specified the physical implementation
of the clock register. We have simply labeled an orthonormal
basis |0〉,|1〉, . . . ,|G〉 for its Hilbert space. We can implement
this using G + 1 qubits in the following encoding:

|0〉 
→ |100 . . . 0〉,
|1〉 
→ |010 . . . 0〉, (9)...
|G〉 
→ |000 . . . 1〉.

This encoding is inefficient in the sense that only log2(G+1)
qubits are actually needed to store numbers in the range
{0,2, . . . ,G}. However, the advantage of this encoding is that
the operators such as |x − 1〉〈x| appearing H FK only act on two
qubits, namely qubits x and x − 1. Thus, if the original circuit
U is constructed from a universal gate set of one-qubit and two-
qubit quantum gates, then H FK is a four-local Hamiltonian.

Let’s first treat broadening of the wave packet as negligible
and take the width of the wave packet to be G, as illustrated
in Fig. 1. (We defer analysis of broadening to Sec. III.)
The original circuit U = UG . . . U1 should be padded with
G identity gates at the beginning and G identity gates at the

2For notational simplicity, we use units where h̄ = 1 here and
throughout the remainder of this paper.
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G 2G 3G

FIG. 1. Circuit U = UG . . . U1 is padded by G identity gates at
the beginning and end. The initial wave packet has width of order
G and support on the initial identity gates. The wave packet then
propagates rightward, ending with its support on the final segment of
G identity gates.

end, yielding a circuit U ′ = U ′
3GU ′

3G−1 . . . U ′
1 with a total of

3G gates and

U ′
x =

⎧⎨⎩ 1 1 � x � G,

Ux−G G + 1 � x � 2G,

1 2G + 1 � x � 3G.

(10)

The initial state can be chosen as a wave packet with width on
the order of G and support only on the initial G identity gates.
Let |h′

x〉 = U ′
xU

′
x−1 . . . U ′

1|h0〉 while retaining the notation
|hx〉 defined in (3) for the xth state obtained by the original
unpadded circuit. Thus the initial wave packet is

G∑
x=0

ψ(x)|h′
x〉|x〉 = |h0〉

(
G∑

x=0

ψ(x)|x〉
)

. (11)

That is, the computational register is initialized to the same
state that the original circuit starts with, which could be taken
as |0 . . . 0〉 without loss of generality.3 The wave packet ψ(x)
should be chosen with rightward momentum. Then it will
propagate down the line, yielding a final state of

G∑
x=0

ψ(x)|h′
x+2G〉|x + 2G〉 = |hG〉

(
G∑

x=0

ψ(x)|x + 2G〉
)

.

(12)

Thus, in the final state, the computational register contains the
output of the original circuit.

From Fig. 1 one sees that, as the wave packet propagates,
it passes through essentially three orthogonal states: the initial
state supported on zero through G, the state supported on G

through 2G, and the final state supported on 2G through 3G.
The energy uncertainty in a state of spatial width G for the
Hamiltonian H FK scales as �E ∼ 1/G2. The ground energy
of the Feynman-Kitaev Hamiltonian is zero. One can verify
this by noting that the state

1√
G + 1

G∑
x=0

|hx〉|x〉 (13)

is an energy-zero eigenvector of H FK and that, by (4) and (9),
H FK is positive semidefinite since it is a sum of G positive-
semidefinite terms.

Let G denote the number of gates in the padded quantum
circuit. (If the wave packet did not spread then we could take

3Quantum circuits acting on the all zeros string are computationally
universal because any classical input string can be hard-coded via
initial NOT gates.

G = 3G while still ensuring that the final superposition is only
over states in which the computation is finished. In the present
construction we will take G slightly larger than 3G, but still
only linear in G, as discussed in Sec. III.) Examining (8) with
G 
→ G, one sees that, in the limit of large G, the wave packet
propagates like a nonrelativistic particle of mass m = G2/2
on the unit interval. The velocity of such a particle (i.e., the
group velocity of the wave packet) is ∼p/m ∼ p/G2, where
p is the momentum of the wave packet. The time needed
to propagate to the end of the line is therefore T ∼ G2/p.
During this time, G gates are simulated, so the clock speed is
fclock ∼ G/T ∼ Gp/G2. As we show in Sec. III, it suffices to
choose G to be a constant multiple of G. Thus fclock ∼ p/G.
The expectation value of the energy in the wave packet state
is 〈E〉 = p2/2m ∼ p2/G2. Hence, by choosing p = O(1) we
can achieve a ratio of clock speed to energy of fclock/〈E〉 ∼ G.
As mentioned above, with wave packet of width of order G,
the energy uncertainty is of order 1/G2. Hence the ratio of
clock speed to energy uncertainty is also of order G.

III. DISPERSION

Suppose the initial state is a Gaussian wave packet

ψ(x,0) = η exp

[
− x2

2σ 2
x

+ ip0x

]
, (14)

where η is a normalization constant. Under Schrödinger’s
equation, i

∂ψ

∂t
= − 1

2m
∂2

∂x2 , this evolves to4

ψ(x,t) = η(t) exp

[
− [x − x0(t)]2

2σx(t)2
+ iφ(x,t)

]
, (15)

where φ(x,t) is a (real) phase, η(t) is a normalization factor,
and

x0(t) = p0t

m
, (16)

σx(t) =
√

σ 2
x +

(
t

mσx

)2

. (17)

In the units being used, where the length of the line is 1
and the lattice spacing is 1/G, we have, in the continuum limit
(i.e., G → ∞), an effective particle mass of

m = G2

2
(18)

and a propagation velocity

v = p0

m
= 2p0

G2
. (19)

Thus the time to propagate down the line is T ∼ 1/v and σx(T )
is O(1). In other words, the final superposition has width only a
constant factor larger than the initial superposition. To obtain a
wave packet with finite support, one can truncate the Gaussian
wave packet at some multiple of σx away from the mean.

4An easy way to obtain this is by going to Fourier space, where the
Hamiltonian is diagonal.
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That is,

ψtrunc(x,0) =
{

η exp
[− x2

2σ 2
x

+ ip0x
]
, |x − x0| � cσx,

0 otherwise.

(20)

The inner product between this wave packet and the un-
truncated Gaussian becomes exponentially close to one as
the multiple c is increased. By unitarity, the inner product
between the ideal and truncated final states will be equal to
the inner product between the ideal and truncated initial states.
Because initial and final σx are O(1), the initial truncated wave
function has support only on O(G) clock values and can be
completely accommodated by padding the circuit with O(G)
initial identity gates. The final state will, to an exponentially
good approximation for large c, have all its amplitude within
a range of O(G) clock values and can also be accommodated
by padding with O(G) final identity gates.

As a concrete example, suppose we start with a circuit of
G gates, and we pad it with 2G initial identity gates and 2G

final identity gates. Thus G = 5G. We set the initial state to
be a Gaussian superposition of width G

4 and mean G. Thus
we can take c = 4 and have zero amplitude outside the initial
pad, whose width is 2G. This ensures that the initial state
has zero amplitude for any of the computational gates to be
already computed. An initial superposition of width G

4 means,
in units where the length of the line is one, σx = 1

20 . We want
the wave packet to propagate from the middle of the initial
pad to the middle of the final pad. Thus the total distance to
propagate is 3

5 . By (19) this will take time T = 3G2

10p0
. Choosing

p0 = 240 (with corresponding energy p2
0

G2 ) yields, by (17), a

final wave packet width of σx(T ) =
√

2
20 . Measurement of the

clock register in the final wave packet will yield a Gaussian
probability distribution with mean 4G and standard deviation5

2×5Gσx(T ) = 1√
2
G. Almost all the probability thus lies in

the final pad of identity gates covering clock values 3G to 5G.
Outcomes in which the clock register has value less than 3G

correspond to events at least
√

2 standard deviations below the
mean, which have total probability about 8%. Hence, including
the errors from the truncation of the initial wave packet, one
finds that, upon measuring the final state, the computational
register will with probability at least 88% be in a state where
all G gates have been computed.

IV. DISTANCE TRAVERSED THROUGH HILBERT SPACE

The question whether the number of orthogonal states tra-
versed in a computation is a resource bearing on computational
capacity is perhaps interesting independent of connection to
energy. It could be asked in the context of computational
models where energy may not play a manifest role, such as
quantum cellular automata, quantum Turing machines, and the
quantum circuit model. To ask this question in a precise way,
we first note that the number of orthogonal states traversed

5The 2 comes from squaring the amplitudes. The 5 comes from
G = 5G.

during a computation is not a well-behaved metric. Instead,
for a discrete-time quantum computation, such as the quantum
circuit model, we can formalize the intuitive notion of distance
traversed through Hilbert space as

L =
G∑

x=1

‖|hx〉 − |hx−1〉‖, (21)

where |hx〉 is the quantum state obtained after the first x gates
have been applied, as in (3). The continuum analog of this
distance is

L(|ψ(t)〉; t2,t1) =
∫ t2

t1

dt

∥∥∥∥d|ψ(t)〉
dt

∥∥∥∥, (22)

which can be applied to Hamiltonian-based models of quantum
computation. Note that the continuum version of L remains
invariant if we multiply the speed at which we traverse the
path through Hilbert space by some factor, as is fitting for a
metric of distance.

The construction of Sec. II demonstrates that it is possible
to simulate G gates while keeping L = O(1). One way to see
this is by the following calculation:

L =
∫ T

0
dt

∥∥∥∥ d

dt
|ψ〉

∥∥∥∥ (23)

= T ‖H |ψ〉‖ (24)

= T
√

〈ψ |H 2|ψ〉 (25)

= T
√

(�E)2 + 〈E〉2 (26)

= O(1). (27)

The last line follows from the results of Sec. II stating that
T = O(G2), �E = O(1/G2), and 〈E〉 = O(1/G2).

V. DISPERSIONLESS DISCRETIZATION

In the construction of Sec. II, the dispersion relation is
quadratic and therefore the wave packet spreads as it propa-
gates. Here we give an alternative construction which avoids
this complication by modifying the Feynman-Kitaev Hamil-
tonian to yield a linear dispersion. This modified construction
achieves constant clock speed with energy uncertainty scaling
as �E ∼ 1/G. This is thus a faster method of computation
than the basic construction, which achieves O(1/G) clock
speed at O(1/G2) energy uncertainty.6 Furthermore, in the
linear-dispersion construction limG→∞ L is easy to calculate
in complete quantitative detail. However, it uses wave packets
whose energy is not close to the ground energy. Depending
on context this may or may not be relevant, which is why
both constructions are presented in this manuscript. Roughly
speaking, linear dispersion is achieved by discretizing a one-
dimensional analog of Dirac’s equation rather than discretizing
the one-dimensional Schrödinger equation. Similar ideas have
been used previously in [27,35].

6These speeds and energy scales are determined by our choice of
normalization of the Hamiltonian, but this choice is not arbitrary.
Physically, one expects the individual four-local terms to have O(1)
norm.
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Consider the Hamiltonian

H = v

[
0 − d

dx
d
dx

0

]
, (28)

where v is a “velocity”. This is Hermitian because d
dx

is anti-
Hermitian. Schrödinger’s equation then reads

d

dt

[
�

	

]
= −iv

[
0 − d

dx
d
dx

0

][
�

	

]
. (29)

Consequently,

d2

dt2

[
�

	

]
= v2

[
d2

dx2 0
0 d2

dx2

][
�

	

]
. (30)

That is, � and 	 each obey the one-dimensional wave
equation. A solution to the Schrödinger equation is therefore[

�

	

]
=

[
w(x − vt)
iw(x − vt)

]
(31)

for any function w, as can easily be verified. w describes the
shape of a wave packet that rigidly propagates in the positive-x
direction without distortion.

We can now discretize d
dx

and − d
dx

using finite differences
while maintaining Hermiticity. To achieve this, we use a
forward difference to discretize d

dx
and a backward difference

to discretize − d
dx

as illustrated by the following example on a
lattice of four sites:

H =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 0 0 0 1 −1 0 0
0 0 0 0 0 1 −1 0
0 0 0 0 0 0 1 −1
0 0 0 0 0 0 0 1
1 0 0 0 0 0 0 0

−1 1 0 0 0 0 0 0
0 −1 1 0 0 0 0 0
0 0 −1 1 0 0 0 0

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
. (32)

Using |�0〉, . . . ,|�G/2〉 as a basis for the � subspace and
|	0〉, . . . ,|	G/2〉 for the 	 subspace, one has

〈�x |H |	x〉 = 1,

〈�x |H |	x−1〉 = −1, (33)

with all other matrix elements zero other than the Hermitian
conjugates of the above.

The linear-dispersion Feynman-Kitaev computational
Hamiltonian corresponding to this discretization is

Hlin =
G/2∑
x=1

[U †
2x ⊗ |�x〉〈	x | + U2x ⊗ |	x〉〈�x |

−U2x−1 ⊗ |�x〉〈	x−1| − U
†
2x−1 ⊗ |	x−1〉〈�x |]. (34)

We can use G + 1 qubits to encode the clock state analogously
to (9). That is,

|�0〉 = |10000 . . . 0〉,
|	0〉 = |01000 . . . 0〉,
|�1〉 = |00100 . . . 0〉,
|	1〉 = |00010 . . . 0〉,

...

Then, the clock transitions are again two-local operators. Thus,
if the original circuit is built from gates that each act on at most
two qubits, Hlin is a four-local Hamiltonian.

Using this encoding, Hlin is an operator acting on a 2n+G-
dimensional Hilbert space. However, as with the Feynman-
Kitaev Hamiltonian, the subspace C is preserved by this
Hamiltonian, and within C,Hlin acts as illustrated in (32).
Discretizing d

dx
by a forward difference on a lattice of spacing

a corresponds to

1

a

⎡⎢⎢⎢⎢⎣
−1 1

−1 1
−1 1

. . .

⎤⎥⎥⎥⎥⎦.

So, if we think of the clock register as discretizing the unit
interval, the corresponding wave propagation speed v is 1/G,
up to higher-order corrections in 1/G.

With Hlin we can achieve arbitrary length computations
with constant-length paths through Hilbert space just as in the
Feynman-Kitaev example, but now the evolution of the wave
packet is simpler and cleaner to analyze. We pad the circuit
with G initial identity gates and G final identity gates. Then,
we prepare the initial wave packet state

|0〉⊗n ⊗ 1√
2

G/2∑
x=0

[
w

(
x

G

)
|�x〉 + iw

(
x

G

)
|	x〉

]
, (35)

where w is a normalized wave packet and, without loss
of generality, we take |0〉⊗n to be the initial state of the
computational register.

We can now compute L for this construction in the limit
G → ∞. In this continuum limit we have

|ψ(t)〉 = 1√
2

∫ 1

0
dx w(x − vt)|x�〉

+ i√
2

∫ 1

0
dx w(x − vt)|x	〉, (36)

where |x�〉 and |x	〉 are the continuum analogs of |h′
2x〉|�x〉

and |h′
2x+1〉|	x〉, respectively. Here we have chosen the

normalization so that ∫ 1

0
w(x)2 = 1. (37)

Thus one finds∥∥∥∥ d

dt
|ψ〉

∥∥∥∥ =
√

2v

∫ 1

0
dx|w′(x)|2, (38)

where w′ denotes the derivative of w. In our construction
padded with identity gates the propagation velocity is v 	 1

3G

and the total duration is T 	 3G. So

L =
∫ 3G

0
dt

√
2

3G

∫ 1

0
dx|w′(x)|2 =

√
2

∫ 1

0
dx|w′(x)|2. (39)

As a concrete example of a smooth normalized wave packet
w(x) with support only on 0 � x � 1

3 , one could choose

w(x) =
{√

2[1 − cos(6πx)], 0 � x � 1
3 ,

0 otherwise.
(40)
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In this case, one finds by straightforward calculation that

L = 12
√

2π2. (41)

Next we can compute �E. By (36)

〈ψ |H |ψ〉 = i〈ψ | d

dt
|ψ〉 (42)

= iv

∫ 1

0
dx w(x − vt)w′(x − vt) (43)

= 0. (44)

Thus

�E =
√

〈ψ |H 2|ψ〉 (45)

= ‖H |ψ〉‖ (46)

=
∥∥∥∥ d

dt
|ψ〉

∥∥∥∥ (47)

= L
3G

(48)

= 4
√

2π2

G
(49)

by (41).

VI. SPATIALLY LOCAL CONSTRUCTION

The constructions of Sec. II and Sec. V are perhaps
slightly unphysical in that, although the Hamiltonians are
local in the sense of involving only four-qubit interactions,
they are not spatially local. In this section we describe how
to use an idea from [36] to modify the constructions so that
they become spatially local in two dimensions. A detailed
illustrative example is given in Figs. 2–6.

We arrange the gates of the original circuit into “layers”
such that the gates within each layer act on distinct subsets of
the qubits. The number of layers D is called the circuit depth.
Correspondingly, we have a sequence |l0〉,|l1〉, . . . ,|lD〉, where

U1

U6

U5

U7

U2
U8

U4

U3 U9

|l3|l1 |l2|l0

FIG. 2. Here is an example of a quantum circuit, referred to
henceforth as “the original circuit”. |lj 〉 labels the state after the first
j layers of the circuit have been applied. We have assumed that all
gates in the original circuit act on nearest neighbors in one dimension.
This can always be achieved through the use of SWAP gates.

U3

U1

4)

7) 8)

5)

2) 3)

6)

9)

1)

2U

FIG. 3. Original circuit has depth three and six qubits. Corre-
spondingly we have a grid of three columns with six qubits each. The
above sequence of steps implements the first layer of gates. Initially
each column is in the state |l0〉, the input to the original circuit, which
can be taken to be the all zeros state. After these steps are complete,
the middle column contains state |l1〉. The paired × symbols indicate
swap gates.

|lj 〉 is the state of the qubits after j of the layers have been
applied.

Next, we construct a new equivalent quantum circuit on
n×D qubits as follows. We lay out an n×D square lattice of
qubits in two dimensions. Each column (of n qubits) is to be
initialized to |l0〉 which, without loss of generality, is the all
zeros state. The first stage in the new circuit is to obtain the
state |l1〉 in the second column. This is done by applying the
gates in the first layer of the original circuit in order from top
to bottom on the qubits of the first column, and following each
gate with a SWAP operation that brings the qubits it acted on
into the second column.

Any qubit that was not acted on in the first layer of the circuit
can be thought of as acted on by an identity gate. That is, it is
swapped into the second column. Next, the same thing is done
to implement the second layer of the circuit and swap the qubits
into the third column, except the gates are implemented in
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U4

U5

13)

16) 17)

14)

11) 12)

15)

10)

FIG. 4. These steps implement the second layer of gates. After
these steps are complete, the right column contains state |l2〉.

U8

U9

U7

U6

13)

11) 12)10)

FIG. 5. These steps implement the third layer of gates. After these
steps are complete, the right column contains state |l3〉, which is the
output of the original circuit.

17

21

20

1916

15

14

13

12

11

109

8

7

6

4

5

3

2

1 18

FIG. 6. Numbered circles represent clock qubits. The valid states
of the clock are Hamming weight one strings. If the xth clock qubit
is 1, then this corresponds to the xth step in Figs. 3–5. The clock
qubits are “snaked” among the computational qubits to ensure that
the implementation of the xth step triggered by the xth clock qubit is
spatially local, as is the hopping of the 1 from the xth clock qubit to
the (x + 1)th clock qubit.

order from bottom to top. Gates are implemented on successive
layers alternating between bottom-to-top order, and top-to-
bottom order, until all D layers are complete. After the last
layer there is no need for swap operations. This procedure
ensures that, at the end of the computation, the last column
contains state |lD〉, which is the output from the original circuit.
(See Figs. 2–5.)

The modified circuit can then be simulated using a clock
Hamiltonian with bounded-range interactions in two dimen-
sions. Recall the clock encoding (9). Here, we use the same
encoding, except the number of clock qubits will equal the
total number of gates of the modified circuit including the
swap gates. These clock qubits can then be “snaked” between
the layers so that each clock bit geometrically neighbors the
computational qubits acted on by the gate that the clock
bit corresponds to, and the hopping terms that move the
single 1 among the clock qubits are also spatially local.
The construction is thus local in two spatial dimensions and
involves four-body interactions (and fewer). The wave packet
propagates down the snaking path of the clock qubits, which
is of length at most nD, which is upper bounded by nG and
often much smaller. (See Fig. 6.)

VII. COMPRESSED CLOCK

In the above clock-based constructions, the total number
of qubits used is on the order of n + G, whereas the
original quantum circuit acted only on n qubits. Such an
increase in qubit requirement is undesirable, especially in
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the context of limited qubit density and signal propagation
speed, as discussed in Sec. VIII. In this section we show
how to modify the encoding of the clock so that only G1/r

clock qubits are used, at the cost of requiring (2r + 2)-local
interactions. Achieving such clock compression together with
spatial locality remains an open problem.

The most efficient encoding for the clock, in terms of
qubit count, would be to store the number x ∈ {0,1, . . . ,G}
as a binary number in b = �log2(G + 1)� qubits. However, a
Hamiltonian based on this clock would involve (b + 2)-qubit
interactions, and is therefore, in most circumstances, not
physically realistic. To achieve computational universality
using a k-local Hamiltonian of the sort described in Sec. II one
requires that the clock bit string encoding x can be incremented
to x + 1 by flipping at most k − 2 bits, and deciding whether a
given clock bit string encodes a given number x ∈ {0,1, . . . ,G}
requires examining at most k − 2 qubits. The “pulse” encoding
(9) is optimal in this respect: incrementing the clock requires
flipping two qubits, and deciding whether a string encodes
x requires only examining the xth qubit. However, as noted
above, the pulse encoding is highly suboptimal in terms of
number of qubits required, namely G.

We can interpolate between these extremes as follows.
We take all

(
b

r

)
strings of b bits in which the number of

ones (Hamming weight) is r . We number these from zero
to

(
b

r

) − 1. In such an encoding, the operators |x + 1〉〈x| and
|x〉〈x + 1| appearing in the clock Hamiltonian act nontrivially
on at most 2r bits, and therefore the clock Hamiltonian is
(2r + 2) local. The number of bits needed for the clock
register is the minimum b such that

(
b

r

)
� G + 1, which

scales as b = O(G1/r ). We leave open the problem of finding
the optimal tradeoff between locality and number of clock
qubits.

To ensure that, given a quantum circuit, computing a de-
scription of the corresponding clock Hamiltonian is efficient,
one must choose the numbering of the

(
b

r

)
bit strings so that

encoding of numbers into bit strings and decoding of bit
strings into numbers are both efficient. That is, the map should
admit polynomial-time classical encoding and decoding. The
lexicographical numbering of the Hamming weight r bit
strings admits simple methods for polynomial-time encoding
and decoding for any r as described for example in [37].

VIII. CONCLUSION AND OPEN PROBLEMS

The examples given above show that energy limitations
alone do not impose an upper bound on computational clock
speed, even if we restrict our attention to Hamiltonians that
are spatially local and involve only four-body interactions.
Should one conclude that our universe admits unlimited
computation speed, in principle? This seems unlikely. By
introducing more detailed assumptions about physics, beyond
just a limit on energy, one may recover limits on computational
speed.

Two goals one could consider are achieving constant clock
speed with asymptotically shrinking energy (as is done in
Sec. V) or achieving asymptotically growing clock speed with
constant energy (�E and/or 〈E〉). This latter goal could be
achieved by the constructions in this manuscript but with

the Hamiltonian rescaled by an appropriate factor, namely
a factor of order G2 for H FK, and a factor of order G for
Hlin. However, these rescaled Hamiltonians would then be
sums of four-body interactions each with norm scaling as G or
G2. Whether a construction is possible achieving unbounded
clock speed while keeping 〈E〉,�E, and the strength of the
local interactions bounded remains an open question. In other
words, limiting the interaction strength to O(1) might be a
sufficient additional physical assumption to recover a bound
on computational speed.

If we keep the normalization used throughout this paper,
where the interaction strengths are O(1), we no longer obtain
unbounded clock speed, but we still obtain unbounded ratio
of clock speed to the energy scales 〈E〉 and �E. Is this fully
physically realistic? It seems the most fundamental aspect of
this question is whether universal quantum computation by
states of vanishing energy and energy uncertainty evolving
according to time-indepentent Hamiltonians can be made fault
tolerant against the influences of imperfect implementation
and environmental noise. To our knowledge this is an open
question.

One might also recover computational speed limits by
bringing in space-time considerations. In particular, assume
a maximum speed v for signal propagation, and a maximum
density ρ at which qubits can be packed. Then, for a computer
of n qubits in three-dimensional space, the distance between
nearest-neighbor qubits is ∼ρ−1/3 and the average distance
between qubits is (n/ρ)1/3. Consequently, a two qubit gate
must take time at least

tmin ∼ ρ−1/3v−1 (50)

to act on neighboring qubits and on the order of ∼n1/3ρ−1/3v−1

to act on generic pairs of qubits.
The relevant limits to qubit density may appear at different

scales depending on context. In a present-day practical context
the limit on qubit density may be set by the atomic scale.
In considering the computational complexity implications
of relativistic quantum field theory, one can consider a
length scale 1/E as a cutoff,7 where E is the available
energy. More concretely, the quantum simulation algorithms
of [38–40] demonstrate (in simple examples of quantum field
theories) that scattering processes involving particles with total
energy E can be faithfully simulated by discretizing space
onto a lattice of spacing O(1/E) and associating a register
of logarithmically many qubits with each lattice site. This
suggests that, effectively, the density of qubits accessible by
experiments at energy scale E is limited to Õ(Ed ) in d spatial
dimensions. Perhaps the most fundamental limits to qubit
density come from quantum gravity considerations such as
the Bekenstein bound [41–43].

The practical limit on speed of information transmission
often coincides, at least approximately, with the fundamental
limit set by the speed of light. At the fundamental scale,
it is thought that the maximum number of bits of entropy
supportable within a region of space-time faces a limit
proportional to the surface area of the region, with the constant

7h̄c/E in units where explicit factors of c and h̄ are kept.
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of proportionality approximately 1069 bits per square meter
[41–43]. It may be tempting, therefore, for a given n to
compute from the Bekenstein bound a corresponding ρ and
consequently a maximum clock speed via (50) with the speed
of light taking the place of v. However, it is not clear that
this is a valid argument because in the regime where quantum
gravity effects are significant the question of spatial locality
may become subtle.
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